• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of bridge pier on the stability of ice jam*

    2015-12-01 02:12:14WANGJun王軍SHIFayi施發(fā)義CHENPangpang陳胖胖WUPengSUIJueyiCollegeofCivilandHydraulicEngineeringHefeiUniversityofTechnologyHefei0009ChinamailwangjunhfutcomDongfengMotorCorporationTechnicalCentreWuhan40058ChinaEnvironmentalEngi
    關(guān)鍵詞:王軍

    WANG Jun (王軍), SHI Fa-yi (施發(fā)義), CHEN Pang-pang (陳胖胖), WU Peng, SUI Jueyi. College of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 0009, China,E-mail:wangjunhfut@6.com. Dongfeng Motor Corporation Technical Centre, Wuhan 40058, China. Environmental Engineering Program, University of Northern British Columbia, Prince George, BC, Canada

    Impact of bridge pier on the stability of ice jam*

    WANG Jun (王軍)1, SHI Fa-yi (施發(fā)義)2, CHEN Pang-pang (陳胖胖)1, WU Peng3, SUI Jueyi3
    1. College of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China,
    E-mail:wangjunhfut@126.com
    2. Dongfeng Motor Corporation Technical Centre, Wuhan 430058, China
    3. Environmental Engineering Program, University of Northern British Columbia, Prince George, BC, Canada

    (Received September 23, 2014, Revised November 12, 2014)

    River ice jam is one of the most important issues in rivers in cold regions during winter time. With the extra solid boundary due to the ice cover, the flow condition under ice-covered conditions is completely different from that of a open channel flow. The presence of bridge piers will further change the velocity field around the bridge piers. As a consequence, the formation and the accumulation of ice jams in the vicinity of the bridge pier will be affected. On the other side, the formation of an ice jam around the piers can cause extra turbulence to reduce the stability of a river bridge. The present study focuses on the stress analysis of the ice jam in the vicinity of a bridge pier. By developing a governing equation for describing the equilibrium state of an ice jam, the stability of the ice jam around bridge piers is analyzed and determined. As seen from the field data in literature, the stability estimations of an ice jam around bridge piers determined by the present method agree well with the field observations. Therefore, the proposed approach can be used for the prediction of the formation of ice jams around bridge piers.

    bridge pier, ice jam, stress analysis, equilibrium state, stability analysis

    Introduction0F

    River ice jam is one of the most important hydraulic issues in cold region during winter. As the ice jam adds an extra solid boundary to the flowing water,it significantly affects the hydrodynamic conditions through changes of both the flow velocity fields and the sediment transport process. Furthermore, the presence of a bridge pier can further change the flow conditions. For example, a pier can initiate the formation of an ice jam and at the same time increase the possibility of ice jam flooding[1-4]. Meanwhile, a bridge pier can significantly affect the flow velocity field and result in a local scour around the bridge pier or the abutment[5]. The formation of an ice jam in the vicinity of a bridge pier can also potentially harm the safety of the bridge infrastructure, such as by the local scour around the bridge pier or by the bridge pier. Both the forces and the shear stress acting on the bridge piers(caused by the flowing water and the ice jam) can also be increased. Consequently, comparing to the flow conditions without the bridge pier, the presence of a bridge pier changes the flow field and the forces acting on the ice jam in the vicinity of the bridge pier. Hence, the stability of the ice jam will be affected. This paper investigates the characteristics of the ice jam around a bridge pier. Stability analysis is conducted for the prediction of the formation of an ice jam.

    To study the ice force on a structure, either experimental approaches[6,7], or stress analyses or numerical simulations[3]were used. Recently, the local scour around bridge piers under ice-covered conditions was studied[8]. The experimental approach is based on flume experiments to study the ice jam around bridge piers. Urroz et al.[9]conducted one small scale flume experiments to investigate the ice cube conveyance around bridge piers. It is shown that the location of the pier can affect the ice cube conveyance in sinuous channels significantly. They suggested that the deleterious effects on the ice conveyance in sinuous rivers with bridges crossing can be reduced by installing bri-dges at the apex of channel bends. In the past decades,numerical simulations for the river ice process were also significantly improved due to the advances in computer technologies. Xiong and Xu[10]presented one numerical simulation for the interaction process between the river ice and the bridge pier. They indicated that the river ice increases the lateral constraint stiffness of the bridge piers. They suggested that the proper contact stress value should be around 0.88 MPa,much less than 2.88 MPa, as indicated in the CAS guideline[11]. The stress analysis is another approach used to study the ice jam around bridge piers. Yu et al.[12]analyzed the floating ice cubes on the Huma River based on field observations. The stress acting on the bridge pier was also calculated. According to Beltaos et al.[4], if the flow drag force together with the gravity force is larger than the resistant force provided by the pier, the chance for the formation of an ice jam around pier is small. In the present paper, the interactions between the bridge piers and the ice jam around the piers are studied experimentally, by numerical simulations and stress analyses. In the interactions between the ice jam and the bridge pier, the ice jam is treated as the accumulation of a number of individual ice cubes (or ice jam elements) under the ice cover. For the stress analyses under the equilibrium state, a governing equation for describing the stability of the ice jam is developed. The developed equation is then applied by using the field data to assess the stability of the ice jam around the bridge pier. Calculated results agree well with the field observations.

    1. Internal stress of ice jam and model

    A major consequence of the ice-cover formation in many rivers is the associated jamming, particularly,during the periods of fall freeze-up or spring breakup. In fact, the ice jamming is one of the most conspicuous and momentous ice-related phenomena. Ice jams are formed when the ice transported by the current is arrested by obstacles such as the stationary ice cover, or congested, say, due to a local reduction of the ice-transport capacity[13-15]. The ice jam is normally formed by accumulation of vast amount of frazil particles and ice blocks. Due to the large thickness and the high hydraulic resistance of the aggregate ice relative to the sheet ice, the ice jams tend to disturb the riverbed, can lead to a high water stage and many other problems[16]. The formation and the development of the ice jam are related with the complicated hydraulic conditions, the thermal regime and the boundary conditions in natural rivers. Also, an ice jam evolves during its presence in the river. Therefore, it is extremely difficult to precisely describe the ice jam process by using mathematical equations.

    The equilibrium state of an ice jam in the river is the result of the joint actions of many forces. Since an ice jam consists of vast amount of individual ice jam elements, an individual ice jam element is selected for the stress analysis. Forces acting on the ice jam element include the drag force, the gravity force and the buoyant force as well as the resistant force from the pier.

    Fig.1 Stress analysis of a unit element of ice jam

    1.1 Stress analysis of the ice jam section from the ice jam toe to the front surface of pier

    The external stress of the ice jam from the ice jam toe to the front surface of the pier is not affected by the bridge pier, but is affected by the drag force on the ice jam bottom surface caused by the flowing water (τi), the gravity force component in the flow direction (siρgtSw), the supporting force from the river bank and pier (k0λc)as well as the cohesive force (τc). Following the analysis procedure of Kenedy (1958), the stress analysis of an ice jam element is carried out as shown in Fig.1.

    Hence, the force analysis for an ice jam element in equilibrium leads to the following equation:

    where siis the specific gravity of ice,tis the thickness of the ice jam,ρis the mass density of water, Swis the hydraulic slope,k0is the transverse thrust coefficient,g is the gravity acceleration,τiis the drag force on the ice jam bottom surface,B is the ice jam width, which is equal to the river width in this case,F(xiàn) is the internal force acting on a unit length of the ice jam,λcis the internal friction coefficient, τcis the internal cohesive force of the ice jam.

    Here, it is assumed that the hydraulic pressure force at the ice jam toe is f1. Equation (1) is integrated to obtain,which is also the modified Kennedy Equation from Pariset et al. (1966).

    Fig.2 Stress analysis of a unit element of ice jam affected by pier

    1.2 Stress analysis of ice jam section from the front surface of pier to the rear surface of pier

    Because the presence of the bridge pier, the stresses acting on the ice jam section are changed significantly from the front surface of the pier to the rear surface of the pier in the flow direction. Comparing to the flow condition without the pier, the forces acting on the ice jam in front of the pier include the drag force on the ice jam bottom caused by the flowing water,the gravity force component in the flow direction, the supporting force caused by the river bank and the pier,the friction forces between the pier and the ice jam as well as the cohesive force, as shown in Fig.2.

    Therefore, according to the analysis of the ice jam in equilibrium, the forces acting on an ice jam element can be expressed as

    wheren is the number of bridge piers,λpis the internal friction coefficient between the ice jam and the bridge pier[17],τpis the cohesive force between the ice jam and the bridge pier.

    According to the American Association of State Highway and Transportation Officials[18], the forces acting on the bridge pier by the ice can be calculated as follows:

    α is the angle between the pier surface and the ice cover, which should be larger than 15o,pis the effective pressure,wis the interaction area on the front pier surface with ice.

    Regarding the pressure on the bridge piers caused by the ice jam, AASHTO (2004) suggests that the range should be between 0.96×10-3MPa and 9.6× 10-3MPa, while the Canadian Highway Bridge Design Code (CSA, 2004) suggests a range from 5× 10-3MPa to 10-2MPa.

    If the location of the front surface of the pier is x=x0, Eq.(2) can be used to determine the force per unit width acting on the front face of the bridge pier

    Meanwhile, Eq.(3) is integrated, with the initial conditions of x=x0,F(xiàn)=F2, then we have

    It is clear that 0≤x-x0≤l, in which,lis the length (or thickness) of the pier in the flow direction(in this case,l is equal to the diameter of the pier). From the expression ofF , it can be found that, with the presence of the bridge pier, the supporting force due to the bridge pier is increased while the internal force of the ice jam is decreased. If x-x0=l, the internal forces of the ice jam at the rear surface of the bridge pier can be obtained as

    1.3 The stress analysis of ice jam section from the rear surface of pier to the tail section of ice jam

    The stress analysis of the ice jam section from the rear surface of the bridge pier to the tail section of the ice jam is nearly similar to the analysis for the ice jam section from the ice jam toe to the front surface of the pier (as mentioned in Section 2.1). However, as the initial condition, the supporting force on the ice jam provided by the pier will be changed. As shown in Fig.1, from the forces acting on an ice jam element,we can obtain

    Integrating the above equation with the initial conditions of x=x0+l,F(xiàn)=F3, the following equation can be obtained

    As pointed out by Beltaos, comparing to the internal friction forces on the ice jam, the cohesive forces can be neglected. Therefore,τc=0,τp=0. By analyzing Eqs.(2), (7) and (10), the following conclusions can be drawn.

    (1) If the ice jam is in an equilibrium state before reaching the bridge pier, which also means thatx→∞in Eq.(2),F(xiàn)can reach its extreme value and can be expressed as

    The internal force of the ice jamFas shown by Eq.(11), which was also obtained by Pariset et al.(1966), is for an equilibrium ice jam before reaching the bridge pier (namely, when the bridge pier has no impacts on the ice jam). The force acting on a unit width of the front surface of the bridge pier can be expressed as

    (2) The unit internal force at the rear surface of the bridge pier can be described as:

    Assuming that

    Eq.(13) is turned into

    By substituting Eq.(14) into Eq.(12), we have

    Pariset et al. (1966) treated the maximum strength of the ice jam as the passive pressure of movable particles, which means that:

    It is obvious that if the external forces acting on the ice jam are smaller than the internal forces, the ice jam could stay in a stable condition. Hence,

    where the equilibrium in the extreme state can be reached if F=Kγt2. The ice jam reaches the maxipemum strength under this condition.Kpis the passive earth pressure coefficient,γeis the specific gravity of ice cubes, which is equal to

    Table 1 Parameters used in the present study

    Table 2 Ice jam and hydraulic conditions at the Utsutsu River bridge and Shokotsu River bridge in Japan

    At the location of the rear surface of the bridge pier, the equilibrium state of the ice jam can be reached under the following condition.

    Equation (18) is the governing equation for describing whether or not an ice jam around bridge piers is stable.

    2. Validation of governing equation and analysis

    Due to the lack of field observations, the field data from Beltaos et al.[4]and Shen et al.[19]are used for the validation of the governing equation for determining if the ice jam is stable. In the present study, the values of the following parameters are used, as shown in Table 1.pJis the ice cube pore rate,f0is the water underside friction coefficient,fiis the friction coefficient of the ice cubes.

    2.1 Case 1: Bridge over the Saint John River between Clair/New Brunswick, and Fort Kent/Maine

    Based on the field observations, for the bridge over the Saint John River between Clair, New Brunswick/Canada, and Fort Kent, Maine/USA, Beltaos et al.[4]suggested that τi+siρgtSw=15 Pa, B≈190 m,t =0.5 m,n=2. According to AASHTO[18], the calculated force is Fp=11040 N. Equation (18) gives:

    Sincef3>Kpγet2, it is indicated that the ice jam cannot be formed. According to Beltaos et al.[2], based on the long-term observations from 1933 to 2004, there had never been ice jams observed at this location because of the bridge piers. Thus, the governing Eq.(18) for prediction of the ice jam formation around bridge piers at this location is valid.

    2.2 Case 2: The Utsutsu River Bridge and Shokotsu River Bridge in Japan

    Shen et al.[19]collected a great number of data for ice jams and flow conditions at the Shokotsu River Bridge and the Utsutsu River Bridge in Japan, as shown in Table 2. Using Eq.(18), the stability analysis for ice jams at these 2 locations is conducted. As shown in Figure 3, the point of intersection of the line f and the curveKγt2in Figure 3 represents the3peequilibrium state of the ice jam under the critical condition. Under the condition of f>Kγt2, the ice jam3peis in an unstable state. It can also be noted from Figure 3 that, with the increase of the ice cube thickness, the value of f3decreases correspondingly, which can be attributed to the increase of the supporting force provided by the bridge piers. Meanwhile, the extreme ice cube forces increase evidently with the increase of the ice cube thickness. When the value exceeds the value of the intersection point of Kγt2and f), the valuepe3of f keeps smaller thanKγt2, in other words, the3peice cube stays in a stable state.

    From Fig.3 and Table 2, according to the governing equation for assessing the stability of an ice jam, one can see that f>Kγt2under all flow conditions.3peIt means that the ice jam cannot be formed in the vicinity of both the Utsutsu River Bridge and the Shokotsu River Bridge. Additionally, the ice coverage around the Utsutsu River Bridge is only 10%. While the ice coverage in the vicinity of the Shokotsu River Bridge is reduced from 100% (1995-02-06) to 10%(1995-03-16). It suggests that the ice cover around these two bridges are all under an unstable state. Thepredicted results show a good agreement with the field observations at these 2 bridge locations.

    Fig.3 Stability analysis of ice jams at Utsutsu River and Shokotsu River bridges

    3. Conlcusion

    The presence of bridge piers in rivers complicate the flow field as well as the forces acting on the river ice, and the possibility of the formation of ice jams in the vicinity of bridge piers is increased. In the present study, the stress analyses of the ice jam section in the vicinity of the bridge pier (both upstream section and downstream section) are carried out. The governing equation is developed to assess the stability of an ice jam around bridge piers. Using field data collected at the Utsutsu River Bridge and the Shokotsu River Bridge, the governing equation for assessing the stability of an ice jam in the vicinity of bridge piers is validated. One can see that the predictions agree well with the field data.

    [1] BELTAOS S. Progress in the study and management of river ice jams[J]. Cold Regions Science and Technology, 2008, 51(1): 2-19.

    [2] BELTAOS S. River ice breakup processes: Recent advances and future directions[J]. Canadian Journal of Civil Engineering, 2007, 34(6): 703-716.

    [3] BELTAOS S., MILLER L. and BURRELL B. C. et al. Hydraulic effects of ice breakup on bridges[J]. Canadian Journal of Civil Engineering, 2007, 34(4):539-548.

    [4] BELTAOS S., MILLER L. and BURRELL B. C. et al.Formation of breakup ice jams at bridges[J]. Journal of Hydraulic Engineering, ASCE, 2006, 132(11): 1229-1236.

    [5] SUI J., AFZALIMEHR H. and SAMANI A. K. et al. Clear-water scour around semi-elliptical abutments with armored beds[J]. International Journal of Sediment Research, 2010, 25(3): 233-245.

    [6] BROWN T. G. Analysis of ice event loads derived from structural response[J]. Cold Regions Science and Technology, 2007, 47(3): 224-232.

    [7] SODHI D. S., HAEHNEL R. B. Crushing ice forces on structures[J]. Journal of Cold Regions Engineering,2003, 17(4):153-170.

    [8] WU P., HIRSHFIELD Faye and SUI J. Impacts of ice cover on local scour around semi-circular bridge abutment[J]. Journal of Hydrodynamics, 2014, 26(1): 10-18.

    [9] URROZ G. E.,SCHAEFER J. and ETTEMA R. Bridge-pier location and ice conveyance in curved channels[J]. Journal of Cold Regions Engineering, 1994,8(2): 66-72.

    [10] XIONG F., XU G. Numerical investigation of river icebridge pier interaction[C]. Proceedings of the Structures Congress. Austin Texas, USA, 2009, 48-57.

    [11] CANADIAN STANDARDS ASSOCIATION. Canadian highway bridge design code[S]. Toronto, Ontario,Canada: Canadian Standards Association, 2006.

    [12] YU T., LEI J. and LI C. et al. Compressive strength of floating ice and calculation of ice force on bridge piers during ice collision[C]. Cold Regions Engineering 2009: Cold Regions Impacts on Research, Design,and Construction. 2009, 609-617.

    [13] MORSE B., HICKS F. Advances in river ice hydrology 1999-2003[J]. Hydrological Processes, 2005, 19(1):247-264.

    [14] BELTAOS S. Advances in river ice hydrology[J]. Hydrological Processes, 2000, 14(9): 1613-1625.

    [15] SUI J., KARNEY B. W. and SUN Z. et al. Field investigation of frazil jam evolution: A case study[J]. Journal of Hydraulic Engineering, ASCE, 2002, 128(8):781-787.

    [16] SUI J., WANG D. and KARNEY B. W. Suspended sediment concentration and deformation of riverbed in a frazil jammed reach[J]. Canadian Journal of Civil Engineering, 2000, 27(6): 1120-1129.

    [17] BARKER A., SAYED M. and TIMCO G. Numerical simulation of ice interaction with a wide cylindrical pier[C]. Cold Regions Engineering Cold Regions Impacts on Transportation and Infrastructure, Proceedings of the Eleventh International Conference. Anchorage, AK, USA, 2014, 617-628.

    [18] AMERICAN ASSOCIATION OF STATE HIGHWAY,TRANSPORTATION OFFICIALS. Standard specifications for highway bridges[S]. AASHTO, 2004.

    [19] SHEN H. T., LIU L. Shokotsu River ice jam formation[J]. Cold Regions Science and Technology, 2003,37(3): 35-49.

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51379054, 50979021).

    Biography: WANG Jun (1962-), Male, Ph. D., Professor

    SUI Jueyi, E-mail: jueyi.sui@unbc.ca

    猜你喜歡
    王軍
    HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELD
    石榴樹想法妙
    我要好好來欣賞
    好孩子畫報(2020年5期)2020-06-27 14:08:05
    黃陵祭
    不下戰(zhàn)場的士兵——王軍
    活力(2019年19期)2020-01-06 07:34:36
    蜜蜂和油菜花
    可愛的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    Revisit submergence of ice blocks in front of ice cover-an experimental study *
    Simulations of ice jam thickness distribution in the transverse direction*
    久久久久久久久久黄片| 亚洲性夜色夜夜综合| 69人妻影院| 热99re8久久精品国产| 精品日产1卡2卡| 99久久99久久久精品蜜桃| 在线观看66精品国产| 18禁黄网站禁片免费观看直播| 国产亚洲欧美在线一区二区| 午夜精品在线福利| 天堂影院成人在线观看| 在线国产一区二区在线| 悠悠久久av| 久久久久久久久久黄片| 高清毛片免费观看视频网站| 高清在线国产一区| 又紧又爽又黄一区二区| 久久亚洲精品不卡| 国产精品久久久久久人妻精品电影| 色视频www国产| 国产伦精品一区二区三区四那| 欧美日韩精品网址| 婷婷六月久久综合丁香| 天天躁日日操中文字幕| 两人在一起打扑克的视频| 精品久久久久久久人妻蜜臀av| 波野结衣二区三区在线 | 久久这里只有精品中国| 亚洲国产精品成人综合色| 性欧美人与动物交配| 成人精品一区二区免费| 色哟哟哟哟哟哟| 九九久久精品国产亚洲av麻豆| 日韩欧美免费精品| 婷婷丁香在线五月| 久久国产精品影院| 亚洲av成人av| 成人性生交大片免费视频hd| 在线看三级毛片| 亚洲人与动物交配视频| 日韩欧美一区二区三区在线观看| 最好的美女福利视频网| 岛国在线观看网站| 一区二区三区高清视频在线| 伊人久久大香线蕉亚洲五| 欧美午夜高清在线| 制服丝袜大香蕉在线| 精品欧美国产一区二区三| 久久精品国产99精品国产亚洲性色| 国产成人a区在线观看| 国产精品亚洲美女久久久| 老汉色∧v一级毛片| 国产一区在线观看成人免费| 欧美黄色片欧美黄色片| 亚洲国产欧洲综合997久久,| 日本 欧美在线| 国产成人影院久久av| 亚洲欧美精品综合久久99| 亚洲欧美日韩高清在线视频| 岛国在线观看网站| 日韩精品青青久久久久久| 国产免费av片在线观看野外av| 国产精品精品国产色婷婷| 亚洲最大成人手机在线| 国产单亲对白刺激| 18+在线观看网站| av专区在线播放| 国产免费男女视频| 成人国产一区最新在线观看| 午夜影院日韩av| 99热只有精品国产| 亚洲国产精品成人综合色| 一区二区三区免费毛片| 99久久综合精品五月天人人| 免费看十八禁软件| 最近在线观看免费完整版| 日韩欧美在线二视频| 欧美乱色亚洲激情| 身体一侧抽搐| 一级a爱片免费观看的视频| 黄片小视频在线播放| 欧美日韩乱码在线| 欧美色视频一区免费| 亚洲不卡免费看| 久久精品亚洲精品国产色婷小说| 久久久久久九九精品二区国产| 男女午夜视频在线观看| 国产国拍精品亚洲av在线观看 | 在线观看日韩欧美| 国产 一区 欧美 日韩| 亚洲无线观看免费| 老熟妇仑乱视频hdxx| 欧美av亚洲av综合av国产av| 亚洲精品粉嫩美女一区| 午夜福利免费观看在线| 精品欧美国产一区二区三| 国产aⅴ精品一区二区三区波| 一个人看视频在线观看www免费 | 老司机午夜十八禁免费视频| 久久草成人影院| 亚洲第一欧美日韩一区二区三区| 99久久成人亚洲精品观看| 午夜视频国产福利| 欧美日韩精品网址| 午夜免费成人在线视频| 18禁国产床啪视频网站| 免费搜索国产男女视频| 亚洲一区高清亚洲精品| 又爽又黄无遮挡网站| 国产 一区 欧美 日韩| 啦啦啦观看免费观看视频高清| 国产高清三级在线| 在线国产一区二区在线| 欧美日韩黄片免| 日韩精品青青久久久久久| 十八禁网站免费在线| 少妇裸体淫交视频免费看高清| 男插女下体视频免费在线播放| 1024手机看黄色片| 丰满人妻熟妇乱又伦精品不卡| 欧美不卡视频在线免费观看| 色在线成人网| www.999成人在线观看| 嫩草影院精品99| a在线观看视频网站| 别揉我奶头~嗯~啊~动态视频| 高清毛片免费观看视频网站| 免费人成视频x8x8入口观看| 叶爱在线成人免费视频播放| 国产亚洲精品久久久com| 欧美成人免费av一区二区三区| 久久精品国产综合久久久| 1000部很黄的大片| 美女大奶头视频| 深夜精品福利| 久久精品91无色码中文字幕| 成熟少妇高潮喷水视频| 欧美乱色亚洲激情| 午夜免费成人在线视频| 日本精品一区二区三区蜜桃| 丰满人妻一区二区三区视频av | 久久精品人妻少妇| 亚洲自拍偷在线| 伊人久久精品亚洲午夜| 1000部很黄的大片| 国产免费av片在线观看野外av| 国产av在哪里看| 精华霜和精华液先用哪个| 99热这里只有是精品50| 夜夜躁狠狠躁天天躁| 搡老熟女国产l中国老女人| 国产爱豆传媒在线观看| 国产精品免费一区二区三区在线| 琪琪午夜伦伦电影理论片6080| 久久精品91无色码中文字幕| 可以在线观看毛片的网站| 精品人妻1区二区| 日日干狠狠操夜夜爽| 日本在线视频免费播放| 亚洲精品亚洲一区二区| www.www免费av| 窝窝影院91人妻| 免费看a级黄色片| 天天躁日日操中文字幕| 在线国产一区二区在线| 精品国产三级普通话版| 黄色片一级片一级黄色片| 757午夜福利合集在线观看| 久久久成人免费电影| 1024手机看黄色片| 久久精品亚洲精品国产色婷小说| 一二三四社区在线视频社区8| av片东京热男人的天堂| 亚洲成人免费电影在线观看| 18禁美女被吸乳视频| av黄色大香蕉| 久久久久久九九精品二区国产| 男女之事视频高清在线观看| 丁香六月欧美| 日韩欧美一区二区三区在线观看| 最新在线观看一区二区三区| 国产午夜福利久久久久久| 听说在线观看完整版免费高清| 亚洲国产精品久久男人天堂| 在线观看av片永久免费下载| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 国产蜜桃级精品一区二区三区| 在线观看免费午夜福利视频| 在线观看免费视频日本深夜| 国产亚洲欧美在线一区二区| 午夜久久久久精精品| 成人国产一区最新在线观看| 国产精品久久久久久人妻精品电影| 国产色婷婷99| 最新中文字幕久久久久| 午夜激情福利司机影院| 女同久久另类99精品国产91| 亚洲av电影在线进入| 国产精品久久电影中文字幕| 久久久久久人人人人人| 亚洲精品久久国产高清桃花| a级一级毛片免费在线观看| 亚洲成人中文字幕在线播放| 国产欧美日韩一区二区精品| 国产黄片美女视频| 久久久精品欧美日韩精品| 黄色丝袜av网址大全| 久久欧美精品欧美久久欧美| 国产精品嫩草影院av在线观看 | 在线看三级毛片| 又紧又爽又黄一区二区| 中文字幕熟女人妻在线| 久久久精品大字幕| 色综合亚洲欧美另类图片| 在线免费观看不下载黄p国产 | 国产伦在线观看视频一区| 丰满的人妻完整版| 狂野欧美激情性xxxx| 夜夜看夜夜爽夜夜摸| 深爱激情五月婷婷| 成人18禁在线播放| 婷婷精品国产亚洲av| 久久久久亚洲av毛片大全| 日本黄色视频三级网站网址| 村上凉子中文字幕在线| 噜噜噜噜噜久久久久久91| 日本一二三区视频观看| 亚洲一区高清亚洲精品| 亚洲无线观看免费| 亚洲人成网站在线播放欧美日韩| 成人三级黄色视频| 男人舔女人下体高潮全视频| 亚洲性夜色夜夜综合| 成年人黄色毛片网站| 久久草成人影院| 亚洲在线自拍视频| 欧美+日韩+精品| 精品一区二区三区人妻视频| 国产av在哪里看| 琪琪午夜伦伦电影理论片6080| 日本三级黄在线观看| 91字幕亚洲| 欧美成人一区二区免费高清观看| 特级一级黄色大片| 欧美性猛交黑人性爽| 午夜久久久久精精品| 精品久久久久久,| 久久久久九九精品影院| 黄色成人免费大全| 亚洲七黄色美女视频| 国产成人av激情在线播放| 国产精品香港三级国产av潘金莲| 久久久久性生活片| 国产乱人视频| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| 哪里可以看免费的av片| 制服人妻中文乱码| avwww免费| 国产成人av教育| 国产视频一区二区在线看| 亚洲av电影在线进入| 黑人欧美特级aaaaaa片| 91麻豆精品激情在线观看国产| 久久久国产成人精品二区| 国产精品综合久久久久久久免费| 欧美乱妇无乱码| 一个人看的www免费观看视频| 90打野战视频偷拍视频| 天堂av国产一区二区熟女人妻| 他把我摸到了高潮在线观看| 最新在线观看一区二区三区| 此物有八面人人有两片| 国产美女午夜福利| 一进一出抽搐gif免费好疼| 最近最新免费中文字幕在线| 尤物成人国产欧美一区二区三区| 亚洲成人久久性| 宅男免费午夜| 久久精品影院6| 精品久久久久久久毛片微露脸| 久久久久国内视频| 国产精品一区二区免费欧美| 国内精品美女久久久久久| 日韩欧美三级三区| 极品教师在线免费播放| 亚洲久久久久久中文字幕| 欧美精品啪啪一区二区三区| 国产三级中文精品| 免费看美女性在线毛片视频| 国产久久久一区二区三区| 九九在线视频观看精品| 久久久久久国产a免费观看| 又爽又黄无遮挡网站| 夜夜躁狠狠躁天天躁| 在线观看免费视频日本深夜| 亚洲,欧美精品.| 欧美日韩一级在线毛片| 级片在线观看| 免费av不卡在线播放| 久久精品国产亚洲av香蕉五月| 99riav亚洲国产免费| 久久国产精品人妻蜜桃| 欧美最新免费一区二区三区 | 91字幕亚洲| 国产精品自产拍在线观看55亚洲| 亚洲人成伊人成综合网2020| 国产成+人综合+亚洲专区| 亚洲成人中文字幕在线播放| 亚洲精品影视一区二区三区av| 亚洲天堂国产精品一区在线| 国产免费一级a男人的天堂| 亚洲av电影在线进入| 最新在线观看一区二区三区| 日本一本二区三区精品| 久久久久久久久久黄片| 久久久久久久亚洲中文字幕 | 啪啪无遮挡十八禁网站| 手机成人av网站| 免费观看人在逋| 一区二区三区国产精品乱码| 99在线人妻在线中文字幕| 午夜久久久久精精品| 亚洲成人中文字幕在线播放| 精品午夜福利视频在线观看一区| 无遮挡黄片免费观看| 老司机午夜十八禁免费视频| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 午夜两性在线视频| 免费人成视频x8x8入口观看| 欧美日韩精品网址| 精品久久久久久久末码| 欧美不卡视频在线免费观看| 国产精品 国内视频| 一个人看视频在线观看www免费 | 精品一区二区三区视频在线观看免费| 欧美在线一区亚洲| 国产精品1区2区在线观看.| 欧美zozozo另类| 欧美乱色亚洲激情| 亚洲欧美一区二区三区黑人| 久久精品国产亚洲av涩爱 | 日本黄色片子视频| 国产午夜精品久久久久久一区二区三区 | 亚洲av日韩精品久久久久久密| 一级毛片女人18水好多| 亚洲精品美女久久久久99蜜臀| 男女那种视频在线观看| 免费电影在线观看免费观看| 国产又黄又爽又无遮挡在线| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 88av欧美| 日日夜夜操网爽| 日本精品一区二区三区蜜桃| 国产探花在线观看一区二区| 久久精品影院6| 怎么达到女性高潮| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 变态另类丝袜制服| av专区在线播放| 国产一区二区在线av高清观看| 淫妇啪啪啪对白视频| 国产精品免费一区二区三区在线| 天堂影院成人在线观看| www.999成人在线观看| 久久久精品大字幕| 有码 亚洲区| 丁香六月欧美| 久久久国产精品麻豆| 免费人成在线观看视频色| 变态另类丝袜制服| 亚洲国产欧美网| 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 精品久久久久久久毛片微露脸| 亚洲国产欧美网| 最近视频中文字幕2019在线8| 波多野结衣巨乳人妻| 国产高清激情床上av| 成人18禁在线播放| 美女高潮喷水抽搐中文字幕| 99久久成人亚洲精品观看| 高清日韩中文字幕在线| 一级毛片女人18水好多| 午夜福利免费观看在线| 特级一级黄色大片| 久久亚洲真实| 欧美三级亚洲精品| 成人av在线播放网站| 两个人的视频大全免费| 亚洲成人久久爱视频| 此物有八面人人有两片| 免费看日本二区| 亚洲精品日韩av片在线观看 | 91久久精品电影网| 51国产日韩欧美| 国产av在哪里看| 性欧美人与动物交配| 五月伊人婷婷丁香| 亚洲国产精品久久男人天堂| 亚洲av免费在线观看| 99热这里只有是精品50| 成年女人永久免费观看视频| 欧美高清成人免费视频www| 国产精品女同一区二区软件 | 黄色片一级片一级黄色片| 身体一侧抽搐| 国产单亲对白刺激| 三级男女做爰猛烈吃奶摸视频| 色吧在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 免费电影在线观看免费观看| 在线观看午夜福利视频| 国产精品嫩草影院av在线观看 | eeuss影院久久| 欧美日韩一级在线毛片| 国产亚洲精品一区二区www| 99久久精品热视频| 黄色片一级片一级黄色片| h日本视频在线播放| 国产精品98久久久久久宅男小说| 欧美av亚洲av综合av国产av| 亚洲欧美日韩卡通动漫| 黑人欧美特级aaaaaa片| 亚洲真实伦在线观看| 欧美性猛交╳xxx乱大交人| 欧美色欧美亚洲另类二区| 日本黄色视频三级网站网址| 成人特级av手机在线观看| 少妇的丰满在线观看| 国产午夜精品论理片| 九九热线精品视视频播放| 国产成+人综合+亚洲专区| 久久6这里有精品| 欧美zozozo另类| 黄色成人免费大全| 成年人黄色毛片网站| 一区二区三区高清视频在线| 国产69精品久久久久777片| 日本与韩国留学比较| 欧美日韩亚洲国产一区二区在线观看| 在线免费观看的www视频| 丁香六月欧美| 51午夜福利影视在线观看| 亚洲av五月六月丁香网| 亚洲精华国产精华精| 国产乱人伦免费视频| 久久九九热精品免费| 身体一侧抽搐| 日本黄色片子视频| 日韩欧美一区二区三区在线观看| 国产激情欧美一区二区| 18禁在线播放成人免费| 国产毛片a区久久久久| 欧美xxxx黑人xx丫x性爽| 国产一级毛片七仙女欲春2| 美女 人体艺术 gogo| 免费看a级黄色片| 亚洲国产中文字幕在线视频| 美女高潮喷水抽搐中文字幕| 99久久99久久久精品蜜桃| 男女之事视频高清在线观看| 九九在线视频观看精品| 一本一本综合久久| 婷婷精品国产亚洲av在线| 久99久视频精品免费| 两个人的视频大全免费| 欧美中文日本在线观看视频| 国产私拍福利视频在线观看| 亚洲国产欧美网| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久久电影 | 97人妻精品一区二区三区麻豆| www.熟女人妻精品国产| 国产国拍精品亚洲av在线观看 | 亚洲精品国产精品久久久不卡| 真人做人爱边吃奶动态| 69av精品久久久久久| 亚洲中文字幕一区二区三区有码在线看| 午夜激情欧美在线| 日本 av在线| 日韩大尺度精品在线看网址| 观看美女的网站| 国产精品99久久99久久久不卡| 国产淫片久久久久久久久 | 国产精品久久久久久精品电影| 级片在线观看| 老汉色av国产亚洲站长工具| 好看av亚洲va欧美ⅴa在| 99久久无色码亚洲精品果冻| 国内精品美女久久久久久| 狂野欧美白嫩少妇大欣赏| 日本五十路高清| 成人18禁在线播放| 丰满乱子伦码专区| 国产精品一区二区三区四区免费观看 | 欧美极品一区二区三区四区| 宅男免费午夜| 好看av亚洲va欧美ⅴa在| 久久天躁狠狠躁夜夜2o2o| 悠悠久久av| 国产精品久久久久久久久免 | 18禁在线播放成人免费| 国产精品亚洲一级av第二区| 免费在线观看亚洲国产| 在线观看一区二区三区| 免费在线观看日本一区| 国产伦人伦偷精品视频| 小说图片视频综合网站| 老司机午夜十八禁免费视频| 婷婷六月久久综合丁香| 成人精品一区二区免费| 夜夜爽天天搞| 大型黄色视频在线免费观看| 婷婷丁香在线五月| 哪里可以看免费的av片| 日本熟妇午夜| 欧美乱妇无乱码| 最好的美女福利视频网| 久久久久精品国产欧美久久久| 天堂√8在线中文| 少妇熟女aⅴ在线视频| 好男人在线观看高清免费视频| 国产成人系列免费观看| 国内精品久久久久精免费| 叶爱在线成人免费视频播放| 日本黄色视频三级网站网址| 成人鲁丝片一二三区免费| 日韩欧美三级三区| 欧美+日韩+精品| 久久性视频一级片| 搡老岳熟女国产| 一级毛片女人18水好多| 女人十人毛片免费观看3o分钟| 我的老师免费观看完整版| 久久久国产成人精品二区| 国产成年人精品一区二区| 老司机深夜福利视频在线观看| 成年人黄色毛片网站| 91av网一区二区| 中文字幕久久专区| 色播亚洲综合网| 亚洲专区中文字幕在线| 日韩欧美在线二视频| 午夜福利免费观看在线| 小说图片视频综合网站| 国产97色在线日韩免费| 日本精品一区二区三区蜜桃| 天天一区二区日本电影三级| 国产真实乱freesex| 亚洲片人在线观看| 亚洲国产欧美网| 俺也久久电影网| 色在线成人网| 免费观看精品视频网站| 欧美成人性av电影在线观看| av在线蜜桃| 熟女少妇亚洲综合色aaa.| 久久精品综合一区二区三区| 日本成人三级电影网站| 欧美黄色淫秽网站| 久久精品影院6| 亚洲色图av天堂| 别揉我奶头~嗯~啊~动态视频| 少妇丰满av| 午夜日韩欧美国产| 国模一区二区三区四区视频| 亚洲美女黄片视频| 精品国内亚洲2022精品成人| 亚洲aⅴ乱码一区二区在线播放| 中文字幕av成人在线电影| 级片在线观看| 搡老妇女老女人老熟妇| 精品电影一区二区在线| 精品人妻一区二区三区麻豆 | 天堂网av新在线| 丝袜美腿在线中文| 此物有八面人人有两片| 国产精品一区二区免费欧美| 久久6这里有精品| 亚洲av成人不卡在线观看播放网| 久久久久精品国产欧美久久久| 香蕉丝袜av| 成人av一区二区三区在线看| 成人18禁在线播放| 亚洲av一区综合| 国产精品综合久久久久久久免费| 高清在线国产一区| 一个人免费在线观看电影| 一进一出抽搐gif免费好疼| 在线播放国产精品三级| 天美传媒精品一区二区| 悠悠久久av| 尤物成人国产欧美一区二区三区| 在线观看美女被高潮喷水网站 | 亚洲国产精品合色在线| a在线观看视频网站| 国产爱豆传媒在线观看| 精品无人区乱码1区二区| 久久久久亚洲av毛片大全| aaaaa片日本免费| 欧美bdsm另类| 国产精品一区二区免费欧美| 90打野战视频偷拍视频| 日韩精品中文字幕看吧| 毛片女人毛片| 人人妻人人澡欧美一区二区| 国产精品永久免费网站| www.999成人在线观看| 久久久久免费精品人妻一区二区|