• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet*

    2015-12-01 02:12:21GANGASARANYAVISHNUGANESHABDULHAKEEMDepartmentofMathematicsProvidenceCollegeforWomenCoonoor64304IndiamailgangabhosegmailcomDepartmentofMathematicsSriRamakrishnaMissionVidyalayaCollegeofArtsandScienceCoimbatore6400India
    水動力學研究與進展 B輯 2015年6期

    GANGA B., SARANYA S., VISHNU GANESH N., ABDUL HAKEEM A. K.. Department of Mathematics, Providence College for Women, Coonoor-643 04, India,E-mail: gangabhose@gmail.com. Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore-64 00, India

    Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet*

    GANGA B.1, SARANYA S.2, VISHNU GANESH N.2, ABDUL HAKEEM A. K.2
    1. Department of Mathematics, Providence College for Women, Coonoor-643 104, India,E-mail: gangabhose@gmail.com
    2. Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore-641 020, India

    (Received February 4, 2014, Revised June 19, 2015)

    In this paper we analyzed the effects of space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink) on magnetohydrodynamic boundary layer flow of water based nanofluid over a stretching sheet with different nanoparticles. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied normally to the stretching sheet. A scaling group of transformation is used to reduce the governing momentum and energy equations into non-linear ordinary differential equations. The resulting differential equations are solved analytically using hypergeometric functions and numerically by the fourth order Runge-Kutta method with shooting technique. The influence of nanoparticle volume fraction, magnetic field, Prandtl number, non uniform heat source/sink, local skin friction coefficient and reduced Nusselt number are investigated for different nanoparticles.

    nanofluid, MHD, heat generation/absorption, stretching sheet

    Introduction0F

    Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Many of the publications on nanofluids try to understand their behaviour so that they can be utilized where straight heat transfer enhancement is paramount as in many industrial applications, such as nuclear reactors,transportation, electronics as well as biomedicine and food. The broad range of current and future applications involving nanofluids has been given by Wong and Leon[1]. Nanofluids are not naturally occurring but they are synthesized in the laboratory. The thermal conductivity of these fluids plays an important role on the heat transfer coefficient between the heat transfer medium and the heat transfer surface. Therefore, numerous methods have been taken to improve the thermal conductivity of fluid by suspending nano/micro sized particles materials in base fluid such as oil,water and ethylene glycol mixture which are poor heat transfer fluids[2-5].

    The boundary layer flow over a continuously stretching surface finds many important applications in engineering processes, such as polymer extrusion, drawing of plastic films etc.. The boundary layer flow of nanofluids has been recently considered by several authors. Khan and Pop[6]analyzed the development of steady boundary layer flow, heat transfer and nanoparticle volume fraction over a linear stretching surface in a nanofluid. Kuznetsov and Nield[7]studied the classical problem of free convection boundary layer flow of a viscous and incompressible fluid past a vertical flat plate in the case of nanofluids.

    Magnetic nanofluid is a colloidal suspension of carrier liquid and magnetic nanoparticles. The advantage of magnetic nanofluid is that fluid flow and heat transfer can be controlled by external magnetic field,which makes it applicable in various fields such as electronic packing, thermal engineering and aerospace.Effect of magnetic field on nanofluid convection in different geometries has been studied by several authors[8-10]. Hamad[11]has done work on an analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. Vishnu Ganesh et al.[12]analyzed the effect of magnetic field on nanofluid flow over a stretching sheet numerically. Very recently, Vishnu Ganesh et al.[13]investigated the MHD flow of water based nanofluid over a stretching sheet with thermal radiation effect both analytically and numerically.

    The effect of heat source/sink is very important in cooling process. Vajravelu et al.[14]have studied the convective heat transfer in the flow of viscous Agwater and Cu-water nanofluids over a stretching surface in the presence of uniform internal heat generation/ absorption. Abo-Eldahab and El Aziz[15]have investigated the effects of space dependent heat source/sink in addition to the temperature dependent heat source/ sink in the study of viscous flow. Very recently,Abdul Hakeem et al.[16]studied the effect of non uniform heat source/sink in a Walter's liquid B fluid over a stretching sheet with elastic deformation and thermal radiation effects. A close observation of the literature reveals that, to the best of the author's knowledge, so far no one has considered the effects of space and temperature dependent internal heat generation/absorption in nanofluids.

    Keeping this in mind in this paper, we analysed the effects of space and temperature dependent internal heat generation/absorption on the boundary layer flow of a nanofluid over a stretching sheet in the presence of magnetic field both analytically and numerically.

    Fig.1 Schematic of the physical model

    1. Formulation of the problem

    Consider the steady laminar two-dimensional flow of an incompressible viscous nanofluid past a linearly semi-infinite stretching sheet. We also consider a constant magnetic field strength B0which is applied normally to the sheet (see Fig.1). The temperature at the stretching surface takes the valuewhile the ambient value, attained as y tends to infinity, takes the constant value T∞. The fluid is assumed to be a water based nanofluid containing different types of nanoparticles: Copper (Cu), Silver (Ag), Alumina(Al2O3), and Titanium Oxide (TiO2) with internal heat generation/absorption. It is also assumed that the base fluid and the nanoparticles are in thermal equilibrium and no slip occurs between them. The thermos-physical properties of the nanofluid are considered as given in Vishnu Ganesh et al.[12]. Under the above assumptions, the boundary layer equations governing the flow and thermal fields can be written in the dimensional form as:

    wherex is the coordinate along the sheet,uis the velocity component in thex direction,yis the coordinate perpendicular to the sheet,v is the velocity component in they direction,σis the electric conductivity,B0is the constant magnetic field strength, T is the local temperature of the fluid,αnf=knf/(ρCp)nfis the thermal diffusivity of the nanofluid andq′′is the space and temperature dependent internal heat generation(>0)or absorption(<0)(see also Abdul et al.[16]) which can be expressed for this problem as

    here,A?andB?are parameters of space and temperature-dependent internal heat generation/absorption. It is to be noted that A?>0and B?>0correspond to internal heat generation while A?<0and B?<0 correspond to internal heat absorption. Therefore Eq.(3) is simplified to

    where ρnfis the effective density of the nanofluid, μnfis the effective dynamic viscosity of the nanofluid,(ρCp)nfis the heat capacitance and knfis the thermal conductivity of the nanofluid, are given as:

    here,φ is the solid volume fraction.

    The boundary conditions of Eqs.(1)-(3) are

    where μfis the dynamic viscosity of the basic fluid, ρfis the density of the pure fluid,(ρCp)fis the specific heat parameter of the base fluid,kfis the thermal conductivity of the base fluid,ρsis the density of the nanoparticles,(ρCp)sis the specific heat parameter of the nanoparticles,ksis the thermal conductivity of the nanoparticles andaandb are constants.

    By introducing the following non-dimensional variables

    Equations (1), (2) and (5) take the following nondimensional form

    With the boundary conditions

    where Pr=vf/αfis the Prandtl number and Mn=is the magnetic parameter.

    By introducing the stream functionψ, which is defined as u=?ψ/?y and v=-?ψ/?x, then the Eqs.(12) and (13) become

    and the corresponding boundary conditions (14) become

    Now using the scaling group G of transformations, we get the scaling transformations as stated by Vishnu Ganesh et al.[12]

    2. Solution of flow field

    Now using the similarity transformations in Eq.(15), we get

    and the corresponding boundary conditions are

    where the primes denote the differentiation with respect toη.

    The exact solution to the differential Eq.(19) satisfying the boundary conditions (20) is obtained as

    wherem is the parameter associated with the nanoparticle volume fraction, the fluid density and the nanoparticle density as follow

    Thus the non-dimensional velocity components are

    The dimensional velocity components are

    The shear stress at the stretching sheet characterized by the skin friction coefficient Cf, is given by

    Using Eqs.(10), (18), (21), (22) and (24), the skin friction can be written as

    3. Solution for the thermal transport

    Substituting the similarity transformations (18) in(16), we get

    and the corresponding boundary conditions are

    Now defining the new variable

    Using Eqs.(21) and (29) in (27), the governing equation for temperature can be put in the form

    with the corresponding boundary conditions

    where

    The relation 4βB?/m2≤p2must be satisfied in order to have real values ofq .

    The solution of Eq.(30) with the corresponding boundary conditions in Eqs.(31) in terms ofηis obtained as

    Dimensionless wall temperature gradient θ′(0) is obtained as

    whereM is the hypergeometric function (Anjali devi and Ganga[17]) defined as following

    The quantity of practical interest, in this section the Nusselt number Nuxis defined as

    Using (10) and (18) we obtain the following Nusselt number

    4. Numerical method for solution

    The nonlinear coupled differential Eqs.(19) and(27) along with the boundary conditions (20) and (28)form a two point boundary value problem and is solved using shooting technique together with fourth order Runge-Kutta integration scheme by converting it into an initial value problem. In this method we have to choose a suitable finite value ofη→∞, say η∞. We set following first order system:

    with the boundary conditions

    To solve (37) with (38) as an initial value problem we need the values of y3(0)i.e.,F(xiàn)′′(0)and y5(0)i.e.,θ′(0)but no such values are given. The initial guess values for F′′(0)and θ′(0)are chosen and the fourth order Runge-Kutta integration scheme is applied to obtain the solution. Then we compare the calculated values of F′(η)and θ (η)at n∞with the given boundary conditions F′(η∞)=0and θ (η∞)=0, and adjust the values of F′′(0)and θ′(0)using shooting iteration technique to give better approximation for the solution. The process is repeated until we get the results correct up to the desired accuracy of 10-9level, which fulfils the convergence criterion.

    Table 1 Comparison of results for the reduced Nusselt number -θ′(0)

    5. Results and discussion

    In order to get the clear insight of the physical problem, the present results are discussed with the help of graphical illustrations for Al2O3-water. The effects of nanoparticle volume fraction, magnetic field,space and temperature dependent internal heat generation/absorption on velocity field and thermal field are discussed for the nanoparticles Cu, Ag, Al2O3and TiO2when the base fluid is water. The magnetic parameter(Mn)is varied from 0 to 6 and the nanoparticle volume fraction (φ) is varied from 0 to 0.2. The Prandtl number is fixed as 6.2 for base fluid water. In order to validate the present analytical and numerical results, we have compared our results with those of Turkyilmazoglu[18]for rated heat transfer -θ′(0)in the absence of nanoparticle volume fraction, magnetic parameter and internal heat generation/absorption. The comparisons in the above cases are found to be in excellent agreement as shown in Table 1.

    Fig.2 Effect of Mn on velocity distribution F′(η)withφ= 0.2

    5.1 Effects of physical parameters on velocity field

    Figure 2 depicts the effect of magnetic parameter Mn on the transverse velocity F′(η). It can be seen that the increasing values of magnetic parameter decrease the momentum boundary layer thickness. This is due to the intense amount of magnetic field inside the boundary layer increases the Lorentz force which significantly opposes the flow in reverse direction. Thus the increasing values of magnetic parameter cause the velocity of the fluid to decrease.

    Fig.3 Velocity profiles for different types of nanofluids when φ=0.1,Mn=1

    Figure 3 illustrates the effect of various nanoparticles on the nanofluid velocity. It is obvious that the different nanofluid has different velocity and also the velocity of Titanium Oxide nanofluid is higher than those of Copper, Silver and Aluminium Oxide nanofluids. The velocity field of the nanofluid depends onthe density of the nanoparticles. The velocity of the Silver-water is very low compared with others. This is due to the fact the density of the Silver is much higher than that of Cu, Al2O3and TiO2.

    Fig.4 Effects of space dependent heat generation/absorbtion(A?)on temperature distribution θ( η)with φ=0.2,Mn =0.2,B?=0.2and Pr=6.2

    Fig.5 Effects of temperature dependent heat generation/absorbtion(B?)on temperature distribution θ( η)withφ= 0.2,Mn =2,A?=0.2and Pr=6.2

    Fig.6 Effect of φ on temperature distribution θ( η)with space and temperature dependent heat generation/absorbtion,Mn =2and Pr=6.2

    5.2 Effects of physical parameters on thermal field

    Figures 4 and 5 display the effect of space and temperature dependent internal heat generation/absorption on the temperature field. It is clear that the increasing values of A?(>0)and B?(>0)lead to increase the thermal boundary layer thickness. This is expected since the presence of heat source (A?>0(Fig.4) and B?>0(Fig.5)) in the boundary layer generates energy which causes the temperature of the nanofluid to increase. This increase in the temperature produces an increase in the flow field due to the presence of nanoparticles. Heat sink (A?<0(Fig.4) and B?<0(Fig.5)) has an opposite effect which is cooling of the fluid, reducing the temperature in the boundary layer.

    Fig.7 Effect ofMn on temperature distributionθspace and temperature dependent heat generation/absorbtion,φ= 0.2 and Pr=6.2

    Fig.8 Effect ofPr on temperature distribution θ (η)space and temperature dependent heat generation/absorbtion,φ=0.2 and Mn=2

    Figure 6 shows the effect of nanoparticle volume fraction (φ) with non uniform heat source/sink(A?,B?)on the temperature field. It is clear that the increasing values of nanoparticle volume fraction increase the thermal boundary layer thickness. Also it is noted that the same values of nanoparticle volume fraction has different effect on temperature in the presence of heat source/sink. In the presence of heat source(A?>0,B?>0), the additional energy is generated in the boundary layer. The temperature increases withthe nanoparticle volume fraction. But in the case of heat sink (A?<0,B?<0) an amount of energy is observed from the boundary layer and the temperature get decreased.

    Figures 7 and 8 reveal the effect of magnetic parameter(Mn)and Prandtl number(Pr)on thermal field. The increasing values ofMn cause the fluid to become warmer and therefore increase the temperature. The presence of magnetic field always increases the thermal boundary layer thickness. The increasing values of Prandtl number decrease the thermal field. Base fluids with lower Prandtl number have higher thermal conductivities (and thicker thermal boundary layer structures) so that heat can diffuse from the sheet faster than for fluids of higherPr (thinner boundary layers). Hence Prandtl number can be used to increase the rate of cooling in conducting nanofluid flows. For the same values ofMnandPr the temperature increases or decreases according to the presence of heat source and sink.

    Fig.9 Temperature profiles for different types of nanofluids when Pr =6.2,φ=0.2,Mn =2and A?=B?=0.2

    Fig.10 Effect of the nano particle volume fractionφ on local skin friction coefficient

    Figure 9 is plotted to get a clear idea about the nanoparticles on thermal field when the base fluid is water. This figure illustrates the effect of thermal conductivity of the nanoparticles on nanofluid thermal field. The temperature of the nanofluid with high thermal conductivity nanoparticles is higher than that of the nanofluid with low thermal conductivity nanoparticles. From Fig.9 it is clear that the thermal field is higher for Ag-water.

    5.3 Effects on local skin friction coefficient and reduced Nusselt number

    Figure 10 shows the variations of local skin friction coefficient versus the magnetic parameterMn for selected values of the nanoparticles volume parameter in the case of Al2O3-water. It is noticed that the change in the local skin friction to be higher for large values of φ when the value ofMnis small and for large value ofMn , it is observed that the local skin friction decreases as φ increases. The values of reduced Nusselt number are presented in Table 2 for various values of physical parameters. It can be seen that the reduced Nusselt number decreases with the parametersMn,φ,A?andB?. The increasing values of the Prandtl number increase the rate of heat transfer. The values of reduced Nusselt number are maximum for TiO2-water and are minimum for Ag-water. The reduced Nusselt number of Al2O3-water is greater than Ag-water. The rate of heat transfer is higher for TiO2-water than others. This shows that the rate of heat transfer is influenced by the thermal conductivity of the nanoparticles.

    6. Conclusions

    An analysis has been carried out to study the effects of space and temperature dependent internal heat generation/absorption on the boundary layer flow of a water based nanofluid with various nanoparticles such as Cu, Ag, Al2O3and TiO2over a stretching sheet in the presence of magnetic field. The momentum and heat transfer equations are solved both analytically and numerically after converted into nonlinear ordinary differential equations by means of scaling transformations and the following results are obtained:

    (1) The presence of the magnetic field decreases the velocity field. The velocity field is influenced by the density of the nanoparticles and the temperature of the nanofluid is influenced by the thermal conductivity of the nanoparticles.

    (2) The increasing values of magnetic parameter increase the thermal field and the increasing values of Prandtl number shows an opposite effect on thermal field.

    (3) The thermal field of nanofluid increases in the presence of space and temperature dependent heat source and decreases in the presence of heat sink.

    (4) The local skin friction increases asMn increases with φ for small values ofMn, while for large values ofMn the local skin friction decreases as φ increases.

    Table 2 Values of -θ′(0)for various values of governing parameters

    (5) The reduced Nusselt number increases with the increasing values of magnetic parameter, non uniform heat sink parameter and nanoparticle volume fraction parameter and decreases with the increasing values of Prandtl number.

    (6) The values of Nusselt number is maximum for TiO2-water and is minimum for Ag-water. The Nusselt number of Al2O3-water is greater than that of Ag-water. The rate of heat transfer is higher for TiO2than for others. This shows that the rate of heat transfer is influenced by the thermal conductivity of the nanoparticles.

    Acknowledgements

    The authors wish to express their sincere thanks to the honourable referees and the editor for their valuable comments and suggestions to improve the quality of the paper. One of the authors (N.V.G) gratefully acknowledges the financial support of Rajiv Gandhi National Fellowship (RGNF), UGC, New Delhi, India for pursuing this work (Grant No. F1-17.1/2012-13/RGNF-2012-13-SC-TAM-16936).

    [1] WONG K. F. V., LEON O. D. Applications of nanofluids: Current and future[J]. Advances in Mechanical Engineering, 2010, 2(2): 1652-1660.

    [2] DAS S. K., CHOI S. U. S. and LI S. et al. Nanofluids:Science and technology[M]. Hoboken, New Jersey,USA: Wiley, 2007.

    [3] KAKAC S., PRAMUANJAROENKIJ A. Review of convective heat transfer enhancement with nano fluids[J]. International Journal of Heat and Mass Transfer, 2009, 52(13): 3187-3196.

    [4] WANG X., MUJUMDAR A. S. A review of nano fluids-Part 1: Theoretical and numerical investigations[J]. Brazilian Journal of Chemical Engineering, 2008,25(4): 613-630.

    [5] WANG X., MUJUMDAR A. S. A review of nano fluids-Part 2: Experiments and applications[J]. Brazilian Journal of Chemical Engineering, 2008,25(4): 631-648.

    [6] KHAN W. A., POP I. Boundary layer flow of a nanofluid past a stretching sheet[J]. International Journal of Heat and Mass Transfer, 2010, 53(11): 2477-2483.

    [7] KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences,2010, 49(2): 243-247.

    [8] AMINOSSADATI S. M., RAISI A. and GHASEMI B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel[J]. International Journal of Non-Linear Mechanics, 2011, 46(10):1373-1382.

    [9] GHASEMI B., AMINOSSADATI S. M. and RAISI A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure[J]. International Journal of Thermal Sciences, 2011, 50(9): 1748-1756.

    [10] MAHMOUDI A. H., POP I. and SHAHI M. Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid[J]. International Journal of Thermal Sciences, 2012, 59(2): 126-140.

    [11] HAMAD M. A. A. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field[J]. International Communications in Heat and Mass Transfer, 2011,38(4): 487-492.

    [12] VISHNU GANESH N., GANGA B. and ABDUL HAKEEM A. K. Lie symmetry group analysis of magnetic field effects on free convective flow of a nanofluid over a semi-infinite stretching sheet[J]. Journal of the Egyptian Mathematical Society, 2014, 22(2): 304-310.

    [13] VISHNU GANESH N., ABDUL HAKEEM A. K. and JAYAPRAKASH R. et al. Analytical and numerical studies on hydromagnetic flow of water based metal nanofuids over a stretching sheet with thermal radiation effect[J]. Journal of Nanofluids, 2014, 3(2):154-161.

    [14] VAJRAVELU K., PRASAD K. V. and LEE J. et al. Convective heat transfer in the flow of viscous Agwater and Cu-water nanofluids over a stretching surface[J]. International Journal of Thermal Sciences,2011, 50(5): 843-851.

    [15] ABO-ELDAHAB E. M., EL AZIZ M. A. Blowing/suction effect on hydro magnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption[J]. International Journal of Thermal Sciences, 2004, 43(7):709-719.

    [16] ABDUL HAKEEM A. K., VISHNU GANESH N. and GANGA B. Effect of heat radiation in a Walter's liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation[J]. Journal of King Saud University-Engineering Sciences, 2013, 26(2):168-175.

    [17] ANJALI DEVI S. P., GANGA B. Viscous dissipation effects on nonlinear MHD flow in a porous medium over a stretching porous surface[J]. International Journal of Applied Mathematics and Mechanics, 2009,5(7): 45-59.

    [18] TURKYILMAZOGLU M. Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet[J]. International Journal of Mechanical Sciences, 2011, 53(10): 886-896.

    * Biography: GANGA B. (1979-), Female, Ph. D.,Assistant Professor

    ABDUL HAKEEM A. K.,E-mail: abdulhakeem6@gmail.com

    欧美中文综合在线视频| 99国产极品粉嫩在线观看| 色吧在线观看| 18禁裸乳无遮挡免费网站照片| 色av中文字幕| 一本综合久久免费| 国产野战对白在线观看| 九九热线精品视视频播放| 久久九九热精品免费| 欧美成人免费av一区二区三区| 在线播放无遮挡| ponron亚洲| 久久精品国产清高在天天线| 亚洲精华国产精华精| 99精品久久久久人妻精品| 日韩欧美在线二视频| 免费看光身美女| 国产av在哪里看| 国产一区二区激情短视频| 一本一本综合久久| 夜夜躁狠狠躁天天躁| 女同久久另类99精品国产91| 在线免费观看的www视频| 亚洲精品影视一区二区三区av| 99久久综合精品五月天人人| 色老头精品视频在线观看| 久久国产乱子伦精品免费另类| 国产精品爽爽va在线观看网站| 高清毛片免费观看视频网站| 99热这里只有是精品50| 免费在线观看影片大全网站| 一进一出好大好爽视频| 久久久精品欧美日韩精品| 一级作爱视频免费观看| 可以在线观看毛片的网站| 999久久久精品免费观看国产| 国产精品一及| 成年人黄色毛片网站| 国产高清三级在线| 欧美三级亚洲精品| 麻豆国产97在线/欧美| 欧美乱妇无乱码| 久久人妻av系列| 内射极品少妇av片p| h日本视频在线播放| av中文乱码字幕在线| 亚洲自拍偷在线| 琪琪午夜伦伦电影理论片6080| 午夜福利在线观看吧| 亚洲久久久久久中文字幕| 日韩精品中文字幕看吧| 久久婷婷人人爽人人干人人爱| 欧美在线一区亚洲| 91麻豆av在线| 国产精品1区2区在线观看.| 少妇丰满av| 69av精品久久久久久| 性欧美人与动物交配| 国产亚洲精品一区二区www| 国产精品影院久久| 岛国在线免费视频观看| 91麻豆av在线| 老司机在亚洲福利影院| 久久久久久久久久黄片| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| 91在线观看av| 人妻夜夜爽99麻豆av| 免费高清视频大片| 午夜激情欧美在线| 欧美绝顶高潮抽搐喷水| 久久这里只有精品中国| 国产精品久久久久久人妻精品电影| 老司机福利观看| www日本在线高清视频| av国产免费在线观看| 久久久久久久精品吃奶| 色尼玛亚洲综合影院| 国产精品98久久久久久宅男小说| 亚洲av免费在线观看| 国产亚洲精品久久久com| 久久人妻av系列| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| av女优亚洲男人天堂| 脱女人内裤的视频| 久久人人精品亚洲av| 我要搜黄色片| 国产成人啪精品午夜网站| 白带黄色成豆腐渣| 亚洲精品色激情综合| 好男人在线观看高清免费视频| 免费在线观看日本一区| 中文字幕av成人在线电影| 九九热线精品视视频播放| 精品欧美国产一区二区三| 国产色爽女视频免费观看| 国产一级毛片七仙女欲春2| 亚洲精品美女久久久久99蜜臀| 真人一进一出gif抽搐免费| 日日摸夜夜添夜夜添小说| 91字幕亚洲| 久久久精品欧美日韩精品| 欧美3d第一页| 又紧又爽又黄一区二区| 麻豆国产97在线/欧美| aaaaa片日本免费| 国产伦一二天堂av在线观看| 美女免费视频网站| a级毛片a级免费在线| 99热6这里只有精品| 国产精品99久久久久久久久| 国产精品久久久人人做人人爽| 俺也久久电影网| 亚洲在线观看片| 欧美一区二区精品小视频在线| 淫秽高清视频在线观看| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲精品色激情综合| 欧美日韩福利视频一区二区| 久久久久久久久久黄片| 三级毛片av免费| 香蕉久久夜色| 亚洲美女视频黄频| 成人性生交大片免费视频hd| 国产亚洲精品一区二区www| 国产一区二区在线观看日韩 | 国产激情欧美一区二区| 人人妻,人人澡人人爽秒播| 亚洲av一区综合| 亚洲人成网站在线播| 国产老妇女一区| 天堂√8在线中文| 精品无人区乱码1区二区| 欧美绝顶高潮抽搐喷水| 日本精品一区二区三区蜜桃| 国产69精品久久久久777片| 欧美激情久久久久久爽电影| 亚洲av美国av| 国产97色在线日韩免费| 亚洲av五月六月丁香网| 久久久久久久午夜电影| 欧美另类亚洲清纯唯美| 国产伦一二天堂av在线观看| 身体一侧抽搐| 3wmmmm亚洲av在线观看| 欧美性猛交╳xxx乱大交人| xxxwww97欧美| 91在线观看av| 成年女人看的毛片在线观看| 午夜福利高清视频| 国产真人三级小视频在线观看| 亚洲片人在线观看| 九色成人免费人妻av| 男插女下体视频免费在线播放| 日本在线视频免费播放| 岛国在线观看网站| 人人妻人人澡欧美一区二区| 亚洲性夜色夜夜综合| 亚洲成人久久爱视频| 啦啦啦观看免费观看视频高清| 欧美区成人在线视频| 久久这里只有精品中国| 18禁在线播放成人免费| 亚洲精品影视一区二区三区av| 禁无遮挡网站| 国产成人欧美在线观看| 色av中文字幕| 真人做人爱边吃奶动态| 亚洲人成网站在线播放欧美日韩| 99精品欧美一区二区三区四区| 亚洲黑人精品在线| 熟女少妇亚洲综合色aaa.| 国产精品1区2区在线观看.| 欧美午夜高清在线| 好男人在线观看高清免费视频| 中文字幕av在线有码专区| 亚洲中文字幕一区二区三区有码在线看| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区亚洲| 色视频www国产| 两性午夜刺激爽爽歪歪视频在线观看| 色在线成人网| АⅤ资源中文在线天堂| 很黄的视频免费| 国产av麻豆久久久久久久| 亚洲av成人不卡在线观看播放网| 一二三四社区在线视频社区8| 久久久久国内视频| 国产69精品久久久久777片| 熟妇人妻久久中文字幕3abv| 精品人妻1区二区| 偷拍熟女少妇极品色| 亚洲一区高清亚洲精品| 色综合婷婷激情| 97碰自拍视频| 国产伦精品一区二区三区视频9 | 首页视频小说图片口味搜索| 一区二区三区国产精品乱码| 国产精品98久久久久久宅男小说| 午夜免费成人在线视频| 露出奶头的视频| 精品无人区乱码1区二区| 免费av观看视频| 亚洲精品一区av在线观看| 哪里可以看免费的av片| 国产黄色小视频在线观看| 色精品久久人妻99蜜桃| 国产淫片久久久久久久久 | 亚洲无线在线观看| 美女cb高潮喷水在线观看| 欧美另类亚洲清纯唯美| 天天一区二区日本电影三级| 精品久久久久久,| 国产精品精品国产色婷婷| 老司机午夜十八禁免费视频| 一级毛片高清免费大全| 亚洲一区二区三区色噜噜| 宅男免费午夜| www.www免费av| 日本在线视频免费播放| 亚洲色图av天堂| 国产不卡一卡二| 最近最新中文字幕大全免费视频| 女人被狂操c到高潮| 99国产精品一区二区三区| 国产一区二区在线观看日韩 | 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 国产精品,欧美在线| 日韩欧美精品免费久久 | 精品国内亚洲2022精品成人| 婷婷亚洲欧美| 日韩欧美精品v在线| 女人十人毛片免费观看3o分钟| 国内毛片毛片毛片毛片毛片| 亚洲第一欧美日韩一区二区三区| 伊人久久精品亚洲午夜| 精品人妻1区二区| 俄罗斯特黄特色一大片| 色综合欧美亚洲国产小说| 色老头精品视频在线观看| 最新中文字幕久久久久| 成年人黄色毛片网站| 欧美一区二区精品小视频在线| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 手机成人av网站| 亚洲av成人av| 久久久久性生活片| 亚洲国产高清在线一区二区三| 精品免费久久久久久久清纯| 夜夜躁狠狠躁天天躁| 国产精品影院久久| 欧美日韩福利视频一区二区| 日本成人三级电影网站| 国产黄色小视频在线观看| 成人欧美大片| 免费高清视频大片| 99热这里只有是精品50| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看亚洲国产| 亚洲人成网站在线播放欧美日韩| 老鸭窝网址在线观看| 香蕉久久夜色| 波多野结衣高清作品| 日本黄色片子视频| 日韩欧美 国产精品| 亚洲七黄色美女视频| 成人欧美大片| 丁香欧美五月| 熟女人妻精品中文字幕| 国产免费一级a男人的天堂| 日韩欧美免费精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲成人精品中文字幕电影| 老司机午夜十八禁免费视频| 又粗又爽又猛毛片免费看| 国产成人影院久久av| 免费av观看视频| 国产蜜桃级精品一区二区三区| 成人性生交大片免费视频hd| 亚洲中文字幕一区二区三区有码在线看| 啪啪无遮挡十八禁网站| 韩国av一区二区三区四区| 亚洲熟妇中文字幕五十中出| 国产又黄又爽又无遮挡在线| 黄色女人牲交| 亚洲精品乱码久久久v下载方式 | 亚洲欧美日韩高清在线视频| 久久中文看片网| 老司机福利观看| 女人高潮潮喷娇喘18禁视频| 成人性生交大片免费视频hd| 身体一侧抽搐| tocl精华| 国产极品精品免费视频能看的| 一个人观看的视频www高清免费观看| 韩国av一区二区三区四区| 国产成人福利小说| 免费在线观看日本一区| 美女黄网站色视频| 最近最新中文字幕大全电影3| 午夜a级毛片| 成年女人毛片免费观看观看9| 99久久久亚洲精品蜜臀av| 午夜老司机福利剧场| 欧美精品啪啪一区二区三区| 搡老妇女老女人老熟妇| 亚洲欧美日韩东京热| 深爱激情五月婷婷| 韩国av一区二区三区四区| 国产精品日韩av在线免费观看| 一本精品99久久精品77| 丰满的人妻完整版| 亚洲第一电影网av| 久久久成人免费电影| 熟女少妇亚洲综合色aaa.| 国产真实伦视频高清在线观看 | 99精品久久久久人妻精品| 国产99白浆流出| 国产精品久久久久久人妻精品电影| 国产探花在线观看一区二区| 亚洲真实伦在线观看| 俺也久久电影网| 波野结衣二区三区在线 | 搡老熟女国产l中国老女人| 十八禁网站免费在线| 成熟少妇高潮喷水视频| 精品久久久久久,| 亚洲成a人片在线一区二区| 午夜福利高清视频| 一进一出抽搐动态| 97碰自拍视频| av片东京热男人的天堂| 亚洲美女黄片视频| e午夜精品久久久久久久| 男人舔奶头视频| 亚洲精品久久国产高清桃花| 成年版毛片免费区| 欧美xxxx黑人xx丫x性爽| 亚洲国产精品合色在线| 天天躁日日操中文字幕| 中文字幕av在线有码专区| 日韩欧美精品v在线| 久久午夜亚洲精品久久| 一级黄色大片毛片| 在线观看午夜福利视频| 九九在线视频观看精品| 成年人黄色毛片网站| 亚洲精品在线美女| 日韩亚洲欧美综合| 国内少妇人妻偷人精品xxx网站| 高清毛片免费观看视频网站| 国产伦在线观看视频一区| 色综合站精品国产| 日韩欧美在线乱码| 少妇裸体淫交视频免费看高清| 亚洲av中文字字幕乱码综合| 最近视频中文字幕2019在线8| 午夜日韩欧美国产| 欧美一区二区亚洲| www日本在线高清视频| 69人妻影院| 成人高潮视频无遮挡免费网站| 制服丝袜大香蕉在线| 久久精品亚洲精品国产色婷小说| 91在线精品国自产拍蜜月 | 日本一二三区视频观看| 亚洲精品在线美女| 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| x7x7x7水蜜桃| 少妇人妻一区二区三区视频| 99热这里只有精品一区| 一进一出好大好爽视频| 夜夜躁狠狠躁天天躁| 国产欧美日韩精品亚洲av| 亚洲久久久久久中文字幕| 精品人妻偷拍中文字幕| 老鸭窝网址在线观看| 看免费av毛片| 无遮挡黄片免费观看| 亚洲精品影视一区二区三区av| 日日夜夜操网爽| 国产不卡一卡二| 最近在线观看免费完整版| 一本综合久久免费| 国产精品久久久人人做人人爽| 国产麻豆成人av免费视频| h日本视频在线播放| 淫秽高清视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产高清视频在线播放一区| 日韩av在线大香蕉| 免费一级毛片在线播放高清视频| 亚洲片人在线观看| 成人av在线播放网站| 757午夜福利合集在线观看| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 日韩人妻高清精品专区| 成人性生交大片免费视频hd| 女人高潮潮喷娇喘18禁视频| 精品日产1卡2卡| 国产不卡一卡二| 成人18禁在线播放| www.999成人在线观看| 国产欧美日韩精品一区二区| or卡值多少钱| 岛国在线观看网站| 十八禁人妻一区二区| 亚洲中文字幕日韩| 日韩有码中文字幕| 国产午夜精品久久久久久一区二区三区 | av欧美777| www.熟女人妻精品国产| 一二三四社区在线视频社区8| 国产欧美日韩精品一区二区| 香蕉丝袜av| 国产精品国产高清国产av| 啪啪无遮挡十八禁网站| 国产极品精品免费视频能看的| 国产真实乱freesex| 波多野结衣高清无吗| 久久精品国产99精品国产亚洲性色| 好男人电影高清在线观看| 天天躁日日操中文字幕| 欧美日韩黄片免| 黄色片一级片一级黄色片| 午夜福利18| 亚洲欧美精品综合久久99| 精品国产三级普通话版| 午夜精品一区二区三区免费看| 天堂√8在线中文| 久久久久久久久中文| 观看美女的网站| 国产黄片美女视频| 国产成人影院久久av| 每晚都被弄得嗷嗷叫到高潮| 国产69精品久久久久777片| 在线观看一区二区三区| 久久久久久久亚洲中文字幕 | 国内精品久久久久久久电影| 啦啦啦免费观看视频1| 久久伊人香网站| 黄片小视频在线播放| 日日摸夜夜添夜夜添小说| 免费大片18禁| 欧美日韩综合久久久久久 | 色综合站精品国产| 757午夜福利合集在线观看| 欧美一级a爱片免费观看看| 日本精品一区二区三区蜜桃| 欧美日本视频| 亚洲黑人精品在线| av在线蜜桃| 97超级碰碰碰精品色视频在线观看| 欧美在线黄色| 最近最新中文字幕大全电影3| 亚洲精品国产精品久久久不卡| 欧美日韩国产亚洲二区| 免费搜索国产男女视频| av在线蜜桃| 亚洲成a人片在线一区二区| 男女下面进入的视频免费午夜| 一本精品99久久精品77| 九九热线精品视视频播放| 日本熟妇午夜| 给我免费播放毛片高清在线观看| 波多野结衣高清无吗| 色av中文字幕| 亚洲精品美女久久久久99蜜臀| 欧美日本视频| 免费看十八禁软件| 国产三级中文精品| 欧洲精品卡2卡3卡4卡5卡区| 岛国视频午夜一区免费看| 免费av观看视频| 色播亚洲综合网| 国内精品美女久久久久久| xxxwww97欧美| 亚洲精品一区av在线观看| 最新在线观看一区二区三区| 午夜a级毛片| 一级毛片女人18水好多| a级毛片a级免费在线| 国产精品国产高清国产av| 亚洲最大成人手机在线| 亚洲自拍偷在线| 精品人妻一区二区三区麻豆 | 国产色爽女视频免费观看| 综合色av麻豆| 欧美最新免费一区二区三区 | 特大巨黑吊av在线直播| 亚洲国产欧洲综合997久久,| 内射极品少妇av片p| 桃红色精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 久久伊人香网站| 国产精品三级大全| 手机成人av网站| 欧美色视频一区免费| 亚洲欧美日韩无卡精品| 国产精品一区二区免费欧美| 免费观看人在逋| 一区二区三区激情视频| 国产69精品久久久久777片| 91麻豆精品激情在线观看国产| 日日摸夜夜添夜夜添小说| 岛国在线免费视频观看| 99久久久亚洲精品蜜臀av| 国产精品久久久久久久久免 | 黄色视频,在线免费观看| 变态另类成人亚洲欧美熟女| 热99re8久久精品国产| 少妇丰满av| 国产激情欧美一区二区| 亚洲黑人精品在线| 91字幕亚洲| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区国产精品久久精品| h日本视频在线播放| 国产成人aa在线观看| 国产一区二区在线观看日韩 | 国产91精品成人一区二区三区| 一区二区三区国产精品乱码| 国产精品久久视频播放| 亚洲精品在线观看二区| 国产在视频线在精品| 舔av片在线| 国产精品亚洲一级av第二区| 日本黄色片子视频| 国产成年人精品一区二区| 香蕉久久夜色| 久久九九热精品免费| 少妇人妻一区二区三区视频| 人妻丰满熟妇av一区二区三区| 51午夜福利影视在线观看| 人妻夜夜爽99麻豆av| 人妻久久中文字幕网| 19禁男女啪啪无遮挡网站| 免费无遮挡裸体视频| 亚洲人成电影免费在线| 热99在线观看视频| 免费av观看视频| 久久久久九九精品影院| 精品久久久久久,| 欧美一级a爱片免费观看看| 91在线精品国自产拍蜜月 | 国产v大片淫在线免费观看| 欧美黑人欧美精品刺激| www日本在线高清视频| 欧美日韩一级在线毛片| 久久精品国产亚洲av香蕉五月| 在线国产一区二区在线| 99riav亚洲国产免费| 久久人人精品亚洲av| 天堂网av新在线| 99国产精品一区二区蜜桃av| 国产爱豆传媒在线观看| 高清在线国产一区| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕一区二区三区有码在线看| 免费看日本二区| 国产黄a三级三级三级人| 老司机在亚洲福利影院| x7x7x7水蜜桃| 亚洲av美国av| 国产精品国产高清国产av| 亚洲人与动物交配视频| 18禁国产床啪视频网站| 日韩国内少妇激情av| 熟女人妻精品中文字幕| 国产欧美日韩一区二区三| 国产成+人综合+亚洲专区| 99在线视频只有这里精品首页| 久久精品夜夜夜夜夜久久蜜豆| 18+在线观看网站| 亚洲五月婷婷丁香| 成人三级黄色视频| 免费一级毛片在线播放高清视频| 欧美成人一区二区免费高清观看| 亚洲美女黄片视频| 成人一区二区视频在线观看| 91久久精品国产一区二区成人 | 午夜福利免费观看在线| 欧美乱色亚洲激情| 日本a在线网址| 黄色成人免费大全| 高清毛片免费观看视频网站| 身体一侧抽搐| 成熟少妇高潮喷水视频| 国产精品爽爽va在线观看网站| 亚洲国产高清在线一区二区三| 婷婷丁香在线五月| 露出奶头的视频| 999久久久精品免费观看国产| 99热这里只有精品一区| 乱人视频在线观看| 国产免费一级a男人的天堂| 色尼玛亚洲综合影院| 免费观看人在逋| 在线观看av片永久免费下载| 国产高清videossex| 69人妻影院| 神马国产精品三级电影在线观看| 淫妇啪啪啪对白视频| 天天躁日日操中文字幕| 午夜福利18| 日日摸夜夜添夜夜添小说| 嫁个100分男人电影在线观看| 搡老岳熟女国产| 一级毛片高清免费大全|