• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet*

    2015-12-01 02:12:21GANGASARANYAVISHNUGANESHABDULHAKEEMDepartmentofMathematicsProvidenceCollegeforWomenCoonoor64304IndiamailgangabhosegmailcomDepartmentofMathematicsSriRamakrishnaMissionVidyalayaCollegeofArtsandScienceCoimbatore6400India
    水動力學研究與進展 B輯 2015年6期

    GANGA B., SARANYA S., VISHNU GANESH N., ABDUL HAKEEM A. K.. Department of Mathematics, Providence College for Women, Coonoor-643 04, India,E-mail: gangabhose@gmail.com. Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore-64 00, India

    Effects of space and temperature dependent internal heat generation/absorption on MHD flow of a nanofluid over a stretching sheet*

    GANGA B.1, SARANYA S.2, VISHNU GANESH N.2, ABDUL HAKEEM A. K.2
    1. Department of Mathematics, Providence College for Women, Coonoor-643 104, India,E-mail: gangabhose@gmail.com
    2. Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coimbatore-641 020, India

    (Received February 4, 2014, Revised June 19, 2015)

    In this paper we analyzed the effects of space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink) on magnetohydrodynamic boundary layer flow of water based nanofluid over a stretching sheet with different nanoparticles. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied normally to the stretching sheet. A scaling group of transformation is used to reduce the governing momentum and energy equations into non-linear ordinary differential equations. The resulting differential equations are solved analytically using hypergeometric functions and numerically by the fourth order Runge-Kutta method with shooting technique. The influence of nanoparticle volume fraction, magnetic field, Prandtl number, non uniform heat source/sink, local skin friction coefficient and reduced Nusselt number are investigated for different nanoparticles.

    nanofluid, MHD, heat generation/absorption, stretching sheet

    Introduction0F

    Nanofluids are suspensions of nanoparticles in fluids that show significant enhancement of their properties at modest nanoparticle concentrations. Many of the publications on nanofluids try to understand their behaviour so that they can be utilized where straight heat transfer enhancement is paramount as in many industrial applications, such as nuclear reactors,transportation, electronics as well as biomedicine and food. The broad range of current and future applications involving nanofluids has been given by Wong and Leon[1]. Nanofluids are not naturally occurring but they are synthesized in the laboratory. The thermal conductivity of these fluids plays an important role on the heat transfer coefficient between the heat transfer medium and the heat transfer surface. Therefore, numerous methods have been taken to improve the thermal conductivity of fluid by suspending nano/micro sized particles materials in base fluid such as oil,water and ethylene glycol mixture which are poor heat transfer fluids[2-5].

    The boundary layer flow over a continuously stretching surface finds many important applications in engineering processes, such as polymer extrusion, drawing of plastic films etc.. The boundary layer flow of nanofluids has been recently considered by several authors. Khan and Pop[6]analyzed the development of steady boundary layer flow, heat transfer and nanoparticle volume fraction over a linear stretching surface in a nanofluid. Kuznetsov and Nield[7]studied the classical problem of free convection boundary layer flow of a viscous and incompressible fluid past a vertical flat plate in the case of nanofluids.

    Magnetic nanofluid is a colloidal suspension of carrier liquid and magnetic nanoparticles. The advantage of magnetic nanofluid is that fluid flow and heat transfer can be controlled by external magnetic field,which makes it applicable in various fields such as electronic packing, thermal engineering and aerospace.Effect of magnetic field on nanofluid convection in different geometries has been studied by several authors[8-10]. Hamad[11]has done work on an analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field. Vishnu Ganesh et al.[12]analyzed the effect of magnetic field on nanofluid flow over a stretching sheet numerically. Very recently, Vishnu Ganesh et al.[13]investigated the MHD flow of water based nanofluid over a stretching sheet with thermal radiation effect both analytically and numerically.

    The effect of heat source/sink is very important in cooling process. Vajravelu et al.[14]have studied the convective heat transfer in the flow of viscous Agwater and Cu-water nanofluids over a stretching surface in the presence of uniform internal heat generation/ absorption. Abo-Eldahab and El Aziz[15]have investigated the effects of space dependent heat source/sink in addition to the temperature dependent heat source/ sink in the study of viscous flow. Very recently,Abdul Hakeem et al.[16]studied the effect of non uniform heat source/sink in a Walter's liquid B fluid over a stretching sheet with elastic deformation and thermal radiation effects. A close observation of the literature reveals that, to the best of the author's knowledge, so far no one has considered the effects of space and temperature dependent internal heat generation/absorption in nanofluids.

    Keeping this in mind in this paper, we analysed the effects of space and temperature dependent internal heat generation/absorption on the boundary layer flow of a nanofluid over a stretching sheet in the presence of magnetic field both analytically and numerically.

    Fig.1 Schematic of the physical model

    1. Formulation of the problem

    Consider the steady laminar two-dimensional flow of an incompressible viscous nanofluid past a linearly semi-infinite stretching sheet. We also consider a constant magnetic field strength B0which is applied normally to the sheet (see Fig.1). The temperature at the stretching surface takes the valuewhile the ambient value, attained as y tends to infinity, takes the constant value T∞. The fluid is assumed to be a water based nanofluid containing different types of nanoparticles: Copper (Cu), Silver (Ag), Alumina(Al2O3), and Titanium Oxide (TiO2) with internal heat generation/absorption. It is also assumed that the base fluid and the nanoparticles are in thermal equilibrium and no slip occurs between them. The thermos-physical properties of the nanofluid are considered as given in Vishnu Ganesh et al.[12]. Under the above assumptions, the boundary layer equations governing the flow and thermal fields can be written in the dimensional form as:

    wherex is the coordinate along the sheet,uis the velocity component in thex direction,yis the coordinate perpendicular to the sheet,v is the velocity component in they direction,σis the electric conductivity,B0is the constant magnetic field strength, T is the local temperature of the fluid,αnf=knf/(ρCp)nfis the thermal diffusivity of the nanofluid andq′′is the space and temperature dependent internal heat generation(>0)or absorption(<0)(see also Abdul et al.[16]) which can be expressed for this problem as

    here,A?andB?are parameters of space and temperature-dependent internal heat generation/absorption. It is to be noted that A?>0and B?>0correspond to internal heat generation while A?<0and B?<0 correspond to internal heat absorption. Therefore Eq.(3) is simplified to

    where ρnfis the effective density of the nanofluid, μnfis the effective dynamic viscosity of the nanofluid,(ρCp)nfis the heat capacitance and knfis the thermal conductivity of the nanofluid, are given as:

    here,φ is the solid volume fraction.

    The boundary conditions of Eqs.(1)-(3) are

    where μfis the dynamic viscosity of the basic fluid, ρfis the density of the pure fluid,(ρCp)fis the specific heat parameter of the base fluid,kfis the thermal conductivity of the base fluid,ρsis the density of the nanoparticles,(ρCp)sis the specific heat parameter of the nanoparticles,ksis the thermal conductivity of the nanoparticles andaandb are constants.

    By introducing the following non-dimensional variables

    Equations (1), (2) and (5) take the following nondimensional form

    With the boundary conditions

    where Pr=vf/αfis the Prandtl number and Mn=is the magnetic parameter.

    By introducing the stream functionψ, which is defined as u=?ψ/?y and v=-?ψ/?x, then the Eqs.(12) and (13) become

    and the corresponding boundary conditions (14) become

    Now using the scaling group G of transformations, we get the scaling transformations as stated by Vishnu Ganesh et al.[12]

    2. Solution of flow field

    Now using the similarity transformations in Eq.(15), we get

    and the corresponding boundary conditions are

    where the primes denote the differentiation with respect toη.

    The exact solution to the differential Eq.(19) satisfying the boundary conditions (20) is obtained as

    wherem is the parameter associated with the nanoparticle volume fraction, the fluid density and the nanoparticle density as follow

    Thus the non-dimensional velocity components are

    The dimensional velocity components are

    The shear stress at the stretching sheet characterized by the skin friction coefficient Cf, is given by

    Using Eqs.(10), (18), (21), (22) and (24), the skin friction can be written as

    3. Solution for the thermal transport

    Substituting the similarity transformations (18) in(16), we get

    and the corresponding boundary conditions are

    Now defining the new variable

    Using Eqs.(21) and (29) in (27), the governing equation for temperature can be put in the form

    with the corresponding boundary conditions

    where

    The relation 4βB?/m2≤p2must be satisfied in order to have real values ofq .

    The solution of Eq.(30) with the corresponding boundary conditions in Eqs.(31) in terms ofηis obtained as

    Dimensionless wall temperature gradient θ′(0) is obtained as

    whereM is the hypergeometric function (Anjali devi and Ganga[17]) defined as following

    The quantity of practical interest, in this section the Nusselt number Nuxis defined as

    Using (10) and (18) we obtain the following Nusselt number

    4. Numerical method for solution

    The nonlinear coupled differential Eqs.(19) and(27) along with the boundary conditions (20) and (28)form a two point boundary value problem and is solved using shooting technique together with fourth order Runge-Kutta integration scheme by converting it into an initial value problem. In this method we have to choose a suitable finite value ofη→∞, say η∞. We set following first order system:

    with the boundary conditions

    To solve (37) with (38) as an initial value problem we need the values of y3(0)i.e.,F(xiàn)′′(0)and y5(0)i.e.,θ′(0)but no such values are given. The initial guess values for F′′(0)and θ′(0)are chosen and the fourth order Runge-Kutta integration scheme is applied to obtain the solution. Then we compare the calculated values of F′(η)and θ (η)at n∞with the given boundary conditions F′(η∞)=0and θ (η∞)=0, and adjust the values of F′′(0)and θ′(0)using shooting iteration technique to give better approximation for the solution. The process is repeated until we get the results correct up to the desired accuracy of 10-9level, which fulfils the convergence criterion.

    Table 1 Comparison of results for the reduced Nusselt number -θ′(0)

    5. Results and discussion

    In order to get the clear insight of the physical problem, the present results are discussed with the help of graphical illustrations for Al2O3-water. The effects of nanoparticle volume fraction, magnetic field,space and temperature dependent internal heat generation/absorption on velocity field and thermal field are discussed for the nanoparticles Cu, Ag, Al2O3and TiO2when the base fluid is water. The magnetic parameter(Mn)is varied from 0 to 6 and the nanoparticle volume fraction (φ) is varied from 0 to 0.2. The Prandtl number is fixed as 6.2 for base fluid water. In order to validate the present analytical and numerical results, we have compared our results with those of Turkyilmazoglu[18]for rated heat transfer -θ′(0)in the absence of nanoparticle volume fraction, magnetic parameter and internal heat generation/absorption. The comparisons in the above cases are found to be in excellent agreement as shown in Table 1.

    Fig.2 Effect of Mn on velocity distribution F′(η)withφ= 0.2

    5.1 Effects of physical parameters on velocity field

    Figure 2 depicts the effect of magnetic parameter Mn on the transverse velocity F′(η). It can be seen that the increasing values of magnetic parameter decrease the momentum boundary layer thickness. This is due to the intense amount of magnetic field inside the boundary layer increases the Lorentz force which significantly opposes the flow in reverse direction. Thus the increasing values of magnetic parameter cause the velocity of the fluid to decrease.

    Fig.3 Velocity profiles for different types of nanofluids when φ=0.1,Mn=1

    Figure 3 illustrates the effect of various nanoparticles on the nanofluid velocity. It is obvious that the different nanofluid has different velocity and also the velocity of Titanium Oxide nanofluid is higher than those of Copper, Silver and Aluminium Oxide nanofluids. The velocity field of the nanofluid depends onthe density of the nanoparticles. The velocity of the Silver-water is very low compared with others. This is due to the fact the density of the Silver is much higher than that of Cu, Al2O3and TiO2.

    Fig.4 Effects of space dependent heat generation/absorbtion(A?)on temperature distribution θ( η)with φ=0.2,Mn =0.2,B?=0.2and Pr=6.2

    Fig.5 Effects of temperature dependent heat generation/absorbtion(B?)on temperature distribution θ( η)withφ= 0.2,Mn =2,A?=0.2and Pr=6.2

    Fig.6 Effect of φ on temperature distribution θ( η)with space and temperature dependent heat generation/absorbtion,Mn =2and Pr=6.2

    5.2 Effects of physical parameters on thermal field

    Figures 4 and 5 display the effect of space and temperature dependent internal heat generation/absorption on the temperature field. It is clear that the increasing values of A?(>0)and B?(>0)lead to increase the thermal boundary layer thickness. This is expected since the presence of heat source (A?>0(Fig.4) and B?>0(Fig.5)) in the boundary layer generates energy which causes the temperature of the nanofluid to increase. This increase in the temperature produces an increase in the flow field due to the presence of nanoparticles. Heat sink (A?<0(Fig.4) and B?<0(Fig.5)) has an opposite effect which is cooling of the fluid, reducing the temperature in the boundary layer.

    Fig.7 Effect ofMn on temperature distributionθspace and temperature dependent heat generation/absorbtion,φ= 0.2 and Pr=6.2

    Fig.8 Effect ofPr on temperature distribution θ (η)space and temperature dependent heat generation/absorbtion,φ=0.2 and Mn=2

    Figure 6 shows the effect of nanoparticle volume fraction (φ) with non uniform heat source/sink(A?,B?)on the temperature field. It is clear that the increasing values of nanoparticle volume fraction increase the thermal boundary layer thickness. Also it is noted that the same values of nanoparticle volume fraction has different effect on temperature in the presence of heat source/sink. In the presence of heat source(A?>0,B?>0), the additional energy is generated in the boundary layer. The temperature increases withthe nanoparticle volume fraction. But in the case of heat sink (A?<0,B?<0) an amount of energy is observed from the boundary layer and the temperature get decreased.

    Figures 7 and 8 reveal the effect of magnetic parameter(Mn)and Prandtl number(Pr)on thermal field. The increasing values ofMn cause the fluid to become warmer and therefore increase the temperature. The presence of magnetic field always increases the thermal boundary layer thickness. The increasing values of Prandtl number decrease the thermal field. Base fluids with lower Prandtl number have higher thermal conductivities (and thicker thermal boundary layer structures) so that heat can diffuse from the sheet faster than for fluids of higherPr (thinner boundary layers). Hence Prandtl number can be used to increase the rate of cooling in conducting nanofluid flows. For the same values ofMnandPr the temperature increases or decreases according to the presence of heat source and sink.

    Fig.9 Temperature profiles for different types of nanofluids when Pr =6.2,φ=0.2,Mn =2and A?=B?=0.2

    Fig.10 Effect of the nano particle volume fractionφ on local skin friction coefficient

    Figure 9 is plotted to get a clear idea about the nanoparticles on thermal field when the base fluid is water. This figure illustrates the effect of thermal conductivity of the nanoparticles on nanofluid thermal field. The temperature of the nanofluid with high thermal conductivity nanoparticles is higher than that of the nanofluid with low thermal conductivity nanoparticles. From Fig.9 it is clear that the thermal field is higher for Ag-water.

    5.3 Effects on local skin friction coefficient and reduced Nusselt number

    Figure 10 shows the variations of local skin friction coefficient versus the magnetic parameterMn for selected values of the nanoparticles volume parameter in the case of Al2O3-water. It is noticed that the change in the local skin friction to be higher for large values of φ when the value ofMnis small and for large value ofMn , it is observed that the local skin friction decreases as φ increases. The values of reduced Nusselt number are presented in Table 2 for various values of physical parameters. It can be seen that the reduced Nusselt number decreases with the parametersMn,φ,A?andB?. The increasing values of the Prandtl number increase the rate of heat transfer. The values of reduced Nusselt number are maximum for TiO2-water and are minimum for Ag-water. The reduced Nusselt number of Al2O3-water is greater than Ag-water. The rate of heat transfer is higher for TiO2-water than others. This shows that the rate of heat transfer is influenced by the thermal conductivity of the nanoparticles.

    6. Conclusions

    An analysis has been carried out to study the effects of space and temperature dependent internal heat generation/absorption on the boundary layer flow of a water based nanofluid with various nanoparticles such as Cu, Ag, Al2O3and TiO2over a stretching sheet in the presence of magnetic field. The momentum and heat transfer equations are solved both analytically and numerically after converted into nonlinear ordinary differential equations by means of scaling transformations and the following results are obtained:

    (1) The presence of the magnetic field decreases the velocity field. The velocity field is influenced by the density of the nanoparticles and the temperature of the nanofluid is influenced by the thermal conductivity of the nanoparticles.

    (2) The increasing values of magnetic parameter increase the thermal field and the increasing values of Prandtl number shows an opposite effect on thermal field.

    (3) The thermal field of nanofluid increases in the presence of space and temperature dependent heat source and decreases in the presence of heat sink.

    (4) The local skin friction increases asMn increases with φ for small values ofMn, while for large values ofMn the local skin friction decreases as φ increases.

    Table 2 Values of -θ′(0)for various values of governing parameters

    (5) The reduced Nusselt number increases with the increasing values of magnetic parameter, non uniform heat sink parameter and nanoparticle volume fraction parameter and decreases with the increasing values of Prandtl number.

    (6) The values of Nusselt number is maximum for TiO2-water and is minimum for Ag-water. The Nusselt number of Al2O3-water is greater than that of Ag-water. The rate of heat transfer is higher for TiO2than for others. This shows that the rate of heat transfer is influenced by the thermal conductivity of the nanoparticles.

    Acknowledgements

    The authors wish to express their sincere thanks to the honourable referees and the editor for their valuable comments and suggestions to improve the quality of the paper. One of the authors (N.V.G) gratefully acknowledges the financial support of Rajiv Gandhi National Fellowship (RGNF), UGC, New Delhi, India for pursuing this work (Grant No. F1-17.1/2012-13/RGNF-2012-13-SC-TAM-16936).

    [1] WONG K. F. V., LEON O. D. Applications of nanofluids: Current and future[J]. Advances in Mechanical Engineering, 2010, 2(2): 1652-1660.

    [2] DAS S. K., CHOI S. U. S. and LI S. et al. Nanofluids:Science and technology[M]. Hoboken, New Jersey,USA: Wiley, 2007.

    [3] KAKAC S., PRAMUANJAROENKIJ A. Review of convective heat transfer enhancement with nano fluids[J]. International Journal of Heat and Mass Transfer, 2009, 52(13): 3187-3196.

    [4] WANG X., MUJUMDAR A. S. A review of nano fluids-Part 1: Theoretical and numerical investigations[J]. Brazilian Journal of Chemical Engineering, 2008,25(4): 613-630.

    [5] WANG X., MUJUMDAR A. S. A review of nano fluids-Part 2: Experiments and applications[J]. Brazilian Journal of Chemical Engineering, 2008,25(4): 631-648.

    [6] KHAN W. A., POP I. Boundary layer flow of a nanofluid past a stretching sheet[J]. International Journal of Heat and Mass Transfer, 2010, 53(11): 2477-2483.

    [7] KUZNETSOV A. V., NIELD D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences,2010, 49(2): 243-247.

    [8] AMINOSSADATI S. M., RAISI A. and GHASEMI B. Effects of magnetic field on nanofluid forced convection in a partially heated microchannel[J]. International Journal of Non-Linear Mechanics, 2011, 46(10):1373-1382.

    [9] GHASEMI B., AMINOSSADATI S. M. and RAISI A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure[J]. International Journal of Thermal Sciences, 2011, 50(9): 1748-1756.

    [10] MAHMOUDI A. H., POP I. and SHAHI M. Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid[J]. International Journal of Thermal Sciences, 2012, 59(2): 126-140.

    [11] HAMAD M. A. A. Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field[J]. International Communications in Heat and Mass Transfer, 2011,38(4): 487-492.

    [12] VISHNU GANESH N., GANGA B. and ABDUL HAKEEM A. K. Lie symmetry group analysis of magnetic field effects on free convective flow of a nanofluid over a semi-infinite stretching sheet[J]. Journal of the Egyptian Mathematical Society, 2014, 22(2): 304-310.

    [13] VISHNU GANESH N., ABDUL HAKEEM A. K. and JAYAPRAKASH R. et al. Analytical and numerical studies on hydromagnetic flow of water based metal nanofuids over a stretching sheet with thermal radiation effect[J]. Journal of Nanofluids, 2014, 3(2):154-161.

    [14] VAJRAVELU K., PRASAD K. V. and LEE J. et al. Convective heat transfer in the flow of viscous Agwater and Cu-water nanofluids over a stretching surface[J]. International Journal of Thermal Sciences,2011, 50(5): 843-851.

    [15] ABO-ELDAHAB E. M., EL AZIZ M. A. Blowing/suction effect on hydro magnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption[J]. International Journal of Thermal Sciences, 2004, 43(7):709-719.

    [16] ABDUL HAKEEM A. K., VISHNU GANESH N. and GANGA B. Effect of heat radiation in a Walter's liquid B fluid over a stretching sheet with non-uniform heat source/sink and elastic deformation[J]. Journal of King Saud University-Engineering Sciences, 2013, 26(2):168-175.

    [17] ANJALI DEVI S. P., GANGA B. Viscous dissipation effects on nonlinear MHD flow in a porous medium over a stretching porous surface[J]. International Journal of Applied Mathematics and Mechanics, 2009,5(7): 45-59.

    [18] TURKYILMAZOGLU M. Analytic heat and mass transfer of the mixed hydrodynamic/thermal slip MHD viscous flow over a stretching sheet[J]. International Journal of Mechanical Sciences, 2011, 53(10): 886-896.

    * Biography: GANGA B. (1979-), Female, Ph. D.,Assistant Professor

    ABDUL HAKEEM A. K.,E-mail: abdulhakeem6@gmail.com

    亚洲av.av天堂| 久久久久性生活片| 大型黄色视频在线免费观看| 国产不卡一卡二| 2021天堂中文幕一二区在线观| ponron亚洲| 亚洲精品亚洲一区二区| 久久久午夜欧美精品| 国产一区二区三区av在线 | 永久网站在线| 欧美极品一区二区三区四区| 亚洲国产精品久久男人天堂| 国产激情偷乱视频一区二区| 国产精品1区2区在线观看.| 永久网站在线| 免费高清视频大片| 成人av在线播放网站| 国产成人a区在线观看| 国产老妇女一区| 精品国产三级普通话版| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 成人永久免费在线观看视频| 亚洲精品在线观看二区| 国产精品爽爽va在线观看网站| 国产淫片久久久久久久久| 国产大屁股一区二区在线视频| 白带黄色成豆腐渣| 国产蜜桃级精品一区二区三区| 99国产精品一区二区蜜桃av| 直男gayav资源| 大香蕉久久网| 成人国产麻豆网| 欧美日韩乱码在线| 精品久久久久久成人av| 国产黄片美女视频| 九九久久精品国产亚洲av麻豆| 女人十人毛片免费观看3o分钟| 一进一出抽搐动态| 免费黄网站久久成人精品| 99国产精品一区二区蜜桃av| 天美传媒精品一区二区| 国产v大片淫在线免费观看| 亚洲精华国产精华液的使用体验 | 亚洲精品色激情综合| 99riav亚洲国产免费| 日本在线视频免费播放| 国产极品精品免费视频能看的| 久久人人精品亚洲av| 夜夜看夜夜爽夜夜摸| 亚洲国产高清在线一区二区三| 精品久久久久久久久久免费视频| 99久久精品一区二区三区| 亚洲成a人片在线一区二区| 国内精品美女久久久久久| 亚洲欧美精品自产自拍| 国产午夜精品久久久久久一区二区三区 | 美女 人体艺术 gogo| 午夜爱爱视频在线播放| 韩国av在线不卡| 精品久久久久久久久久久久久| 国产在线男女| 三级经典国产精品| 欧美+亚洲+日韩+国产| 日韩欧美一区二区三区在线观看| .国产精品久久| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产av玫瑰| 99久国产av精品国产电影| 黄色欧美视频在线观看| 最好的美女福利视频网| 欧美在线一区亚洲| 观看免费一级毛片| 又粗又爽又猛毛片免费看| 久久久久久久午夜电影| 极品教师在线视频| 国产视频一区二区在线看| 免费电影在线观看免费观看| 一进一出抽搐动态| 大香蕉久久网| 波多野结衣高清作品| 午夜精品在线福利| 亚洲精华国产精华液的使用体验 | 校园人妻丝袜中文字幕| 亚洲久久久久久中文字幕| av福利片在线观看| 99在线人妻在线中文字幕| 午夜爱爱视频在线播放| 日韩国内少妇激情av| 最新中文字幕久久久久| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3| 亚洲中文字幕一区二区三区有码在线看| 精品午夜福利在线看| 麻豆国产av国片精品| 青春草视频在线免费观看| 午夜福利高清视频| 国产黄色小视频在线观看| 色av中文字幕| 精品一区二区三区人妻视频| 国产精品精品国产色婷婷| 性欧美人与动物交配| 国产精品国产高清国产av| 精华霜和精华液先用哪个| 亚洲国产精品成人综合色| 高清毛片免费看| 你懂的网址亚洲精品在线观看 | avwww免费| 亚洲av熟女| 国产日本99.免费观看| 欧美3d第一页| 人妻丰满熟妇av一区二区三区| 免费一级毛片在线播放高清视频| 国产精品伦人一区二区| 亚洲精品乱码久久久v下载方式| 亚洲美女搞黄在线观看 | 久久久久久久午夜电影| 男女之事视频高清在线观看| 人妻少妇偷人精品九色| 成年av动漫网址| 欧美日韩国产亚洲二区| 国产高清视频在线播放一区| 亚洲欧美成人综合另类久久久 | 欧美不卡视频在线免费观看| 日本 av在线| 99riav亚洲国产免费| 欧美最黄视频在线播放免费| 美女大奶头视频| 亚洲欧美日韩卡通动漫| 亚洲在线观看片| 亚洲成人久久性| 国产三级中文精品| av在线播放精品| av国产免费在线观看| 欧美一区二区精品小视频在线| 久久婷婷人人爽人人干人人爱| 国产精品精品国产色婷婷| 久久天躁狠狠躁夜夜2o2o| 国产中年淑女户外野战色| 国产中年淑女户外野战色| 精品国内亚洲2022精品成人| 在线观看66精品国产| 日本黄色视频三级网站网址| 在线观看一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲av免费高清在线观看| 精品99又大又爽又粗少妇毛片| 在线播放无遮挡| 22中文网久久字幕| 久久亚洲精品不卡| 亚洲va在线va天堂va国产| 午夜精品一区二区三区免费看| 亚洲精品在线观看二区| 亚洲精品影视一区二区三区av| 国内精品久久久久精免费| 神马国产精品三级电影在线观看| 亚洲av熟女| 久久久久久久亚洲中文字幕| 精品人妻视频免费看| 亚洲高清免费不卡视频| av在线亚洲专区| 国产成人91sexporn| 国产真实乱freesex| 尾随美女入室| 精品人妻视频免费看| 久久久久久九九精品二区国产| 国产精品精品国产色婷婷| 国产精品,欧美在线| 超碰av人人做人人爽久久| 精品欧美国产一区二区三| 别揉我奶头 嗯啊视频| 天天一区二区日本电影三级| 人人妻人人澡欧美一区二区| 国产黄a三级三级三级人| 亚洲va在线va天堂va国产| 欧美3d第一页| 伦精品一区二区三区| 神马国产精品三级电影在线观看| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 淫妇啪啪啪对白视频| 成人亚洲欧美一区二区av| 黄片wwwwww| 日韩av在线大香蕉| 麻豆av噜噜一区二区三区| 国产成人a区在线观看| 婷婷精品国产亚洲av在线| 九色成人免费人妻av| 女人被狂操c到高潮| 99视频精品全部免费 在线| 99久久精品热视频| 狂野欧美白嫩少妇大欣赏| 黄色一级大片看看| 国国产精品蜜臀av免费| 亚洲av不卡在线观看| 免费在线观看影片大全网站| 毛片一级片免费看久久久久| 联通29元200g的流量卡| 菩萨蛮人人尽说江南好唐韦庄 | 变态另类成人亚洲欧美熟女| 欧美性感艳星| 99热精品在线国产| 久久久久久伊人网av| 在线免费观看不下载黄p国产| 精品福利观看| 国产精品女同一区二区软件| 人妻丰满熟妇av一区二区三区| 美女免费视频网站| 国产欧美日韩一区二区精品| 成年女人毛片免费观看观看9| 国内精品久久久久精免费| 精品99又大又爽又粗少妇毛片| 欧美日韩一区二区视频在线观看视频在线 | 99国产精品一区二区蜜桃av| 久久久久国内视频| 久久精品国产鲁丝片午夜精品| 国产高清不卡午夜福利| 一进一出好大好爽视频| 禁无遮挡网站| 精品久久久久久久久久免费视频| 12—13女人毛片做爰片一| 波多野结衣高清作品| 别揉我奶头~嗯~啊~动态视频| 国产探花在线观看一区二区| 国产乱人视频| 久久久精品欧美日韩精品| 麻豆av噜噜一区二区三区| 欧美绝顶高潮抽搐喷水| 免费看a级黄色片| 黄色视频,在线免费观看| 老司机影院成人| 日韩成人伦理影院| 久久精品影院6| 晚上一个人看的免费电影| 91久久精品电影网| 久久久久九九精品影院| 国产白丝娇喘喷水9色精品| 成人特级av手机在线观看| 九九热线精品视视频播放| 亚洲国产精品国产精品| 精品久久久久久久久亚洲| 在线国产一区二区在线| 欧美激情久久久久久爽电影| 日韩欧美精品免费久久| 久久中文看片网| 日本欧美国产在线视频| 日本三级黄在线观看| 伊人久久精品亚洲午夜| 亚洲中文日韩欧美视频| 少妇熟女aⅴ在线视频| 你懂的网址亚洲精品在线观看 | 激情 狠狠 欧美| 美女黄网站色视频| 午夜免费激情av| 亚洲婷婷狠狠爱综合网| 精品欧美国产一区二区三| av女优亚洲男人天堂| av卡一久久| 性色avwww在线观看| 性欧美人与动物交配| 欧美另类亚洲清纯唯美| 淫妇啪啪啪对白视频| 国内少妇人妻偷人精品xxx网站| 亚洲av免费在线观看| 久久午夜福利片| 成人美女网站在线观看视频| 男女啪啪激烈高潮av片| 欧美性猛交╳xxx乱大交人| 亚洲一区高清亚洲精品| 国产精品国产高清国产av| 久久中文看片网| 熟女人妻精品中文字幕| 尾随美女入室| 男女下面进入的视频免费午夜| 成人无遮挡网站| 天堂网av新在线| 人人妻,人人澡人人爽秒播| 99九九线精品视频在线观看视频| 亚洲av电影不卡..在线观看| 欧美三级亚洲精品| 激情 狠狠 欧美| 亚洲精品乱码久久久v下载方式| 大香蕉久久网| 精品人妻视频免费看| 少妇裸体淫交视频免费看高清| 黄色视频,在线免费观看| 国产黄色视频一区二区在线观看 | 久久鲁丝午夜福利片| 国内少妇人妻偷人精品xxx网站| 成人漫画全彩无遮挡| 精品久久久久久成人av| 久久精品91蜜桃| 九色成人免费人妻av| 色视频www国产| 一级黄色大片毛片| 亚洲内射少妇av| 97超级碰碰碰精品色视频在线观看| 成年版毛片免费区| 久久精品影院6| 亚洲欧美精品综合久久99| 亚洲av五月六月丁香网| 亚洲av免费在线观看| aaaaa片日本免费| 亚洲最大成人中文| 有码 亚洲区| 内地一区二区视频在线| 国产高潮美女av| 亚洲国产精品成人综合色| 人妻丰满熟妇av一区二区三区| 嫩草影视91久久| 中国美女看黄片| 看片在线看免费视频| 国产乱人视频| 亚洲精品成人久久久久久| 六月丁香七月| 美女被艹到高潮喷水动态| 婷婷色综合大香蕉| 99久久精品国产国产毛片| 欧美高清成人免费视频www| 男女下面进入的视频免费午夜| 日日摸夜夜添夜夜爱| 午夜精品在线福利| 三级男女做爰猛烈吃奶摸视频| 一夜夜www| 亚洲欧美成人精品一区二区| 久久久精品94久久精品| 中文字幕av在线有码专区| 亚洲av免费在线观看| 别揉我奶头 嗯啊视频| 久久精品久久久久久噜噜老黄 | 成人av在线播放网站| 国产极品精品免费视频能看的| 国模一区二区三区四区视频| 亚洲人成网站在线播放欧美日韩| av卡一久久| 色综合色国产| 毛片一级片免费看久久久久| .国产精品久久| 免费看美女性在线毛片视频| 成人永久免费在线观看视频| 男女之事视频高清在线观看| 亚洲国产精品合色在线| 夜夜爽天天搞| 波野结衣二区三区在线| 乱人视频在线观看| 99热精品在线国产| 色综合站精品国产| 久久久欧美国产精品| 国产精品日韩av在线免费观看| 成人综合一区亚洲| 国产一区二区亚洲精品在线观看| 亚洲丝袜综合中文字幕| 哪里可以看免费的av片| 波多野结衣巨乳人妻| 国国产精品蜜臀av免费| 97超碰精品成人国产| 日韩强制内射视频| av专区在线播放| 麻豆国产97在线/欧美| 成人一区二区视频在线观看| 色综合站精品国产| 尾随美女入室| 最近中文字幕高清免费大全6| 久久精品国产亚洲av涩爱 | 又爽又黄无遮挡网站| 国产av在哪里看| aaaaa片日本免费| 国产乱人视频| 国产精华一区二区三区| 亚洲不卡免费看| 人妻制服诱惑在线中文字幕| 国产单亲对白刺激| 亚洲最大成人手机在线| 欧美不卡视频在线免费观看| 成人三级黄色视频| 亚洲一级一片aⅴ在线观看| 麻豆国产av国片精品| 久久鲁丝午夜福利片| 亚洲熟妇熟女久久| 内地一区二区视频在线| 午夜福利在线在线| 日韩高清综合在线| 国产精品亚洲美女久久久| 深夜精品福利| 性欧美人与动物交配| 成人av一区二区三区在线看| 久久久久久久午夜电影| 色5月婷婷丁香| 波多野结衣高清作品| 免费观看精品视频网站| 九色成人免费人妻av| 日日摸夜夜添夜夜添小说| 久久久久久久午夜电影| 伦精品一区二区三区| 听说在线观看完整版免费高清| 国产亚洲精品综合一区在线观看| 哪里可以看免费的av片| 日韩在线高清观看一区二区三区| 精品免费久久久久久久清纯| 婷婷亚洲欧美| 日韩高清综合在线| 亚洲成人久久性| 亚洲人与动物交配视频| 波多野结衣高清无吗| 在线看三级毛片| 日韩欧美精品v在线| 99热6这里只有精品| 人人妻,人人澡人人爽秒播| 色视频www国产| 亚洲成人中文字幕在线播放| 欧美高清性xxxxhd video| 婷婷六月久久综合丁香| 午夜久久久久精精品| 日韩欧美一区二区三区在线观看| 天堂影院成人在线观看| 亚洲精品色激情综合| 大又大粗又爽又黄少妇毛片口| 九色成人免费人妻av| 亚洲人成网站在线观看播放| 国产黄色小视频在线观看| 大香蕉久久网| 男插女下体视频免费在线播放| 色哟哟哟哟哟哟| 在现免费观看毛片| 成年版毛片免费区| 国产亚洲av嫩草精品影院| 一区二区三区高清视频在线| 99热全是精品| 婷婷色综合大香蕉| 国产综合懂色| 国产黄a三级三级三级人| 亚洲人成网站在线观看播放| 日本a在线网址| 免费av不卡在线播放| 免费观看人在逋| 伦理电影大哥的女人| 最后的刺客免费高清国语| 亚洲一区二区三区色噜噜| 热99re8久久精品国产| 村上凉子中文字幕在线| 精品99又大又爽又粗少妇毛片| 亚洲av.av天堂| 久久久精品大字幕| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 国产黄色小视频在线观看| h日本视频在线播放| 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 欧美3d第一页| 免费av毛片视频| av在线老鸭窝| 日韩中字成人| 久久精品夜色国产| 亚洲五月天丁香| 99久久精品一区二区三区| 插逼视频在线观看| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 一级黄色大片毛片| 日日干狠狠操夜夜爽| 亚洲图色成人| 日本与韩国留学比较| 99在线视频只有这里精品首页| 在线天堂最新版资源| 中国美女看黄片| 亚洲经典国产精华液单| 日本a在线网址| 嫩草影院入口| 搞女人的毛片| 国产精品爽爽va在线观看网站| 日韩大尺度精品在线看网址| 日韩制服骚丝袜av| 色尼玛亚洲综合影院| 看非洲黑人一级黄片| 女人被狂操c到高潮| 成人av一区二区三区在线看| а√天堂www在线а√下载| 亚洲,欧美,日韩| 女生性感内裤真人,穿戴方法视频| av在线老鸭窝| 美女黄网站色视频| 亚洲天堂国产精品一区在线| 热99在线观看视频| 亚洲人成网站在线播| 日本色播在线视频| 成人二区视频| 亚洲精品成人久久久久久| 免费看日本二区| 精品一区二区免费观看| 大又大粗又爽又黄少妇毛片口| 超碰av人人做人人爽久久| 三级男女做爰猛烈吃奶摸视频| 人妻少妇偷人精品九色| 亚洲成人中文字幕在线播放| 亚洲在线观看片| 舔av片在线| 亚洲专区国产一区二区| 精品一区二区三区视频在线| 18禁黄网站禁片免费观看直播| 级片在线观看| 乱人视频在线观看| 国产精品亚洲一级av第二区| 在线免费观看不下载黄p国产| 日韩精品有码人妻一区| 啦啦啦观看免费观看视频高清| 精品午夜福利在线看| 成人综合一区亚洲| АⅤ资源中文在线天堂| 国产色婷婷99| 久久婷婷人人爽人人干人人爱| 亚洲国产精品国产精品| 久久久久久伊人网av| 国产综合懂色| 国产精品人妻久久久影院| 国产色爽女视频免费观看| 日韩欧美三级三区| 成人美女网站在线观看视频| 十八禁网站免费在线| 日日摸夜夜添夜夜添小说| 久久久精品欧美日韩精品| .国产精品久久| 热99re8久久精品国产| 搡女人真爽免费视频火全软件 | 亚洲成人久久性| 极品教师在线视频| 99在线人妻在线中文字幕| 国产午夜精品论理片| 亚洲精品久久国产高清桃花| 午夜福利在线在线| 国产综合懂色| 综合色丁香网| 国产精品一区二区性色av| 成年女人毛片免费观看观看9| 国产精品人妻久久久影院| 久久精品国产亚洲av涩爱 | 欧美最黄视频在线播放免费| 日日干狠狠操夜夜爽| 99久久久亚洲精品蜜臀av| 久久草成人影院| 免费不卡的大黄色大毛片视频在线观看 | 国产精品免费一区二区三区在线| 久久久久免费精品人妻一区二区| 国产精华一区二区三区| 日本色播在线视频| 亚洲丝袜综合中文字幕| 嫩草影院入口| 99国产极品粉嫩在线观看| 精品人妻一区二区三区麻豆 | 亚洲在线自拍视频| 最近中文字幕高清免费大全6| 1000部很黄的大片| 亚洲久久久久久中文字幕| 成人特级av手机在线观看| 国产爱豆传媒在线观看| 老司机福利观看| 国产精品三级大全| 亚洲专区国产一区二区| 桃色一区二区三区在线观看| 亚洲18禁久久av| 又黄又爽又免费观看的视频| 亚洲欧美中文字幕日韩二区| 九九久久精品国产亚洲av麻豆| 午夜日韩欧美国产| 最近手机中文字幕大全| 亚洲成人中文字幕在线播放| 日韩一区二区视频免费看| 久久午夜福利片| 日本与韩国留学比较| 成人美女网站在线观看视频| 99国产精品一区二区蜜桃av| 在线观看av片永久免费下载| 老司机福利观看| 一级毛片电影观看 | 国产高清三级在线| 欧美一区二区亚洲| 国产女主播在线喷水免费视频网站 | 男人舔奶头视频| 老女人水多毛片| 在线观看美女被高潮喷水网站| 成年女人看的毛片在线观看| 欧美极品一区二区三区四区| 国产一区二区亚洲精品在线观看| av天堂中文字幕网| 色视频www国产| 久久精品国产亚洲av香蕉五月| 国内精品久久久久精免费| 欧美一区二区亚洲| 成人av一区二区三区在线看| 日本在线视频免费播放| 激情 狠狠 欧美| 不卡一级毛片| 九九爱精品视频在线观看| АⅤ资源中文在线天堂| 伦精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 波多野结衣高清无吗| 国产精品一区二区免费欧美| 国产黄色小视频在线观看| 九九在线视频观看精品| 国产亚洲av嫩草精品影院| 亚洲欧美日韩无卡精品| 啦啦啦观看免费观看视频高清| 亚洲精品影视一区二区三区av| 久久人人精品亚洲av| 亚洲丝袜综合中文字幕| 性色avwww在线观看| 婷婷色综合大香蕉| 真人做人爱边吃奶动态| 男插女下体视频免费在线播放| 精品久久久久久久久亚洲| 啦啦啦韩国在线观看视频| 欧美一区二区国产精品久久精品| 日韩,欧美,国产一区二区三区 | 深夜a级毛片|