• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Navier slip on unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions*

    2015-12-01 02:12:20RUNDORALazarusMAKINDEOluwoleDanielDepartmentofMathematicsandAppliedMathematicsUniversityofLimpopoTurfloopCampusSouthAfricamaillazarusrundoraulaczaFacultyofMilitaryScienceStellenboschUniversitySaldanhaSouthAfrica

    RUNDORA Lazarus, MAKINDE Oluwole Daniel. Department of Mathematics and Applied Mathematics, University of Limpopo, Turfloop Campus, South Africa,E-mail: lazarus.rundora@ul.ac.za. Faculty of Military Science, Stellenbosch University, Saldanha, South Africa

    Effects of Navier slip on unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions*

    RUNDORA Lazarus1, MAKINDE Oluwole Daniel2
    1. Department of Mathematics and Applied Mathematics, University of Limpopo, Turfloop Campus, South Africa,E-mail: lazarus.rundora@ul.ac.za
    2. Faculty of Military Science, Stellenbosch University, Saldanha, South Africa

    (Received December 22, 2013, Revised October 12, 2015)

    A study on the effects of Navier slip, in conjunction with other flow parameters, on unsteady flow of reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary conditions is presented. The channel walls are assumed to be subjected to asymmetric convective heat exchange with the ambient, and exothermic chemical reactions take place within the flow system. The heat exchange with the ambient obeys Newton's law of cooling. The coupled equations, arising from the law of conservation of momentum and the first law of thermodynamics, then the derived system are nondimensionalised and solved using a semi-implicit finite difference scheme. The lower wall slip parameter is observed to increase the fluid velocity profiles, whereas the upper wall slip parameter retards them because of backflow at the upper channel wall. Heat production in the fluid is seen to increase with the slip parameters. The wall shear stress increases with the slip parameters while the wall heat transfer rate is largely unaltered by the lower wall slip parameter but marginally increased by the upper wall slip parameter.

    Navier slip, saturated porous medium, third-grade fluid, temperature dependent viscosity, convective boundary conditions

    Introduction0F

    The majority of fluids encountered in industrial applications are non-Newtonian in character. Non-Newtonian is a generic term that incorporates a variety of phenomena which are highly complex and require sophisticated mathematical modelling techniques for proper description[1]. Examples of such fluids are geological materials, liquid foams, polymeric fluids,slurries, drilling mud, clay coatings, elastomers, emulsions, hydrocarbon oils and a variety of food products[2]. Theoretical consideration of the flow of such fluids in porous media has received considerable attention in recent years, and it is reasonable to pin down the interest on the wide range of scientific, technological and engineering applications as well as the theoretical complexity of the mathematical problems that arise[3]. Fluids of the differential type of third grade are an example amongst the fluids referred to[4,5].

    Although several studies involving heat and mass transfer in non-Newtonian third grade fluids have been conducted[6-8]a systematic and rational treatment of the thermodynamics of the problem with respect to the combined effects of porous media, unsteadiness,temperature dependent viscosity and asymmetric convective boundary conditions on the flow system was only carried out recently in Ref.[2]. As it has become almost the norm and tradition, the so-called no-slip boundary condition, namely the fluid velocity relative to the solid is zero on the fluid-solid interface[9], has been assumed in many such researches including in Ref.[2]. Indeed this has become a common practice despite the fact that the no-slip condition is a hypothesis rather than a condition deduced from any principle. It is due to this fact that its validity has been continuously debated in scientific literature[10]. Evidences of slip of a fluid on a solid surface were reported by many authors[11,12]. The importance of studies involving flow and heat transfer in channels with wall slipin improving the design and operation of many industrial and engineering devices cannot be overlooked.

    The present work seeks to extend the problem in Ref.[2] by investigating the effects of Navier slip on unsteady flow of a reactive temperature-dependent viscosity third grade fluid through a porous saturated medium w ith asymmetric convective boundary conditions. The mathematical formulation of the problem is given in the second section. We implement, in the third section, a semi-implicit finite difference scheme in pursuit of the solution to the problem. In the fourth section, graphical simulations are presented and analyzed quantitatively and qualitatively w ith respect to the many parameters deriving the system.

    Fig.1 Schematic diagram of the problem

    1. Mathematical formulation

    Consider an unsteady flow of an incompressible,third-grade, variable viscosity, reactive fluid through a channel filled w ith a homogeneous and isotropic porous medium as depicted in Fig.1. The plate surfaces are assumed to be subjected to asymmetric convective heat exchange w ith the surrounding medium as a result of unequal heat transfer coefficients. The fluid motion is induced by an applied axial non-constant pressure. Follow ing[4,5,13-17], and neglecting the reacting viscous fluid consumption, the governing equations for the momentum and heat balance can be w ritten as:

    The additional viscous dissipation term in Eq.(2) is due to Ref.[17] and is valid in the limit of very small and very large porous medium permeability. The appropriate initial and boundary conditions are

    here T is the absolute temperature,ρis the density, β0,β1are the lower and upper walls slip parameters, cpis the specific heat at constant pressure,t is the time,h1is the heat transfer coefficient at the lower plate,h2is the heat transfer coefficient at the upper plate,T0is the fluid initial temperature,Tais the ambient temperature,k is the thermal conductivity of the material,Q is the heat of reaction,A is the rate constant,E is the activation energy,R is the universal gas constant,C0is the initial concentration of the reactant species,a is the channel w idth,l is Planck's number,h is Boltzmann's constant,n is the vibration frequency,K is the porous medium permeability, α1and β3are the material coefficients,P is the modified pressure, and m is the numerical exponent such that m∈{-2,0,0.5}, where the three values represent numerical exponents for sensitised, Arrhenius and bimolecular kinetics respectively (see Refs.[16,18,19]). The temperature dependent viscosity(μ)can be expressed as

    where b is a viscosity variation parameter and μ0is the initial fluid dynam ic viscosity at temperature T0. We introduce the follow ing dimensionless variables into Eqs.(1)-(6),

    and obtain the following dimensionless governing equations:

    where λ represents the Frank-Kamenetskii parameter, n1,n2are the lower wall slip parameter and the upper wall slip parameter respectively,Pr is the Prandtl number,εis the activation energy parameter,δis the material parameter,γis the non-Newtonian parameter,G is the pressure gradient parameter,Dais the Darcy number,αis the variable viscosity parameter,?is the viscous heating parameter,θais the ambient temperature parameter,Sis the porous medium shape parameter,Bi1and Bi2are the Biot numbers at the lower and upper channel walls respectively. The skin friction (Cf)at the channel walls is given as

    where τw=μ(T)?u/?yis the shear stress evaluated at the wall y=0,a. The other dimensionless quantity of interest is the wall heat transfer rate(Nu)given by

    In the following section, Eqs.(8)-(14) are solved numerically using a semi-implicit finite difference scheme.

    2. Numerical solution

    Our numerical algorithm is based on the semiimplicit finite difference scheme[20-24]. Implicit terms are taken at the intermediate time level(N+ξ)where 0≤ξ≤1. The discretization of the governing equations is based on a linear Cartesian mesh and uniform grid on which finite differences are taken. We approximate both the second and first spatial derivatives with second-order central differences. The equations corresponding to the first and last grid points are modified to incorporate the boundary conditions. The semi-implicit scheme for the velocity component is

    In Eq.(15), it is understood that ?#/?t:=[#(N+1)-#(N)]/Δt. The equation for w(n+1)then becomes

    where

    with μ=exp(-αθ)and γ˙=wy. The solution procedure for w(n+1)thus reduces to inversion of tri-diagonal matrices, which is an advantage over a full implicit scheme. The semi-implicit integration scheme for the temperature equation is similar to that for the velocity component. Unmixed second partial derivatives of the temperature are treated implicitly:

    The equation for θ(N+1)thus becomes

    where r=ξΔt/Δy2. The solution procedure again reduces to inversion of tri-diagonal matrices. The schemes (16) and (18) were checked for consistency. For ξ=1, these are first order accurate in time but second-order accurate in space. The schemes in Ref.[22] have ξ=0.5which improves the accuracy in time to second order. Following the work in Refs.[23,24] we use ξ=1so that the choice of larger time steps is possible and still obtain convergence to the steady solutions.

    Fig.2 Transient and steady state velocity profiles

    Fig.3 Transient and steady state temperature profiles

    3. Results and discussion

    3.1 Transient and steady state solutions

    In Fig.2 and Fig.3 transient and steady state velocity and temperature profiles are displayed respectively. In both cases, there is a transient increase in profiles until steady state is reached. In Fig.2 negative velocity profiles signify backflow as a result of slip at the channel walls.

    Fig.4 Blow-up of fluid temperature for large λ

    Fig.5 Effects of the porous medium parameter,S, on velocity profiles

    3.2 Blow-up of solutions

    Figure 4 shows that if fluid temperature is not carefully monitored and controlled accordingly, it maynot be possible to obtain steady state profiles as depicted in Figs.2, 3. Figure 4 shows that failing to control particularly the reaction parameter λ, in conjunction with other parameter values, there will be blow-up of temperature soon after the value of λ surpasses a value of about 0.9. The consequences of this could be detrimental to life and property.

    Fig.6 Effects of the porous medium parameter,S , on temperature profiles

    3.3 Parameter dependence of solutions

    The present study is validated with the earlier result of Makinde et al.[2]in the absence of Navier slip at the channel walls i.e.,(n1=n2=0)and a perfect agreement is achieved for the velocity and temperature profiles (see Figs.13-16). Fig.5 and Fig.6 show the behaviour of the velocity and temperature profiles respectively as the porous medium parameter,S , is varied. The velocity profiles are observed to diminish rapidly with increasing values of porous medium parameter. An increase in the porous medium parameter values means that the pore spaces in the porous matrix are reduced and this has a dampening effect on the flow of the fluid particles. As the velocity is drastically reduced, the viscous heating source terms in the fluid temperature equation are reduced and fluid temperature also decreases as a result as shown in Fig.6.

    Fig.7 Effects of the temperature-dependent viscosity,α, on velocity profiles

    The effects of the temperature dependent viscosity parameter on velocity and temperature profiles is displayed in Fig.7 and Fig.8. As the temperature dependent viscosity parameter is increased, it reduces the fluid viscosity and this increases the rate of flow of the fluid particles as shown in Fig.7. Figure 8 shows that the temperature dependent viscosity parameter has no significant effect on the temperature profiles.

    Fig.8 Effects of the temperature-dependent viscosity,α, on temperature profiles

    Fig.9 Effects of the non-Newtonian parameter,γ, on velocity profiles

    Fig.10 Effects of the non-Newtonian parameter,γ, on temperature profiles

    The effect of increasing the non-Newtonian parameter,γ, is to increase the non-Newtonian properties of the fluid, and these characteristics (such as viscoelasticity) bring resistance to the rate of flow of the fluid. Velocity profiles, as in Fig.9, are seen to retard as a result. The effects on temperature profiles, as seen in Fig.10 are less noticeable.

    Fig.11 Effects of the reaction parameter,λ, on velocity profiles

    Fig.12 Effects of the reaction parameter,λ, on temperature profiles

    The Frank-Kamenetskii parameter,λ, measures the reaction rate of the chemical reaction in the process. Since, as pointed out earlier, the reaction is exothermic, increasing λ will inevitably result in an increase in the temperature of the fluid. This is seen in Fig.12. As pointed out earlier (Fig.2), if this parameter is not carefully controlled chemical explosions will be difficult to combat. As Fig.11 shows, the coupling effect means that the velocity profiles are also increased,albeit at a lower scale, by increased reaction rate.

    Fig.13 Effects of the lower wall slip parameter,n1, on velocity profiles

    Figures 13-16 show the effects of the channel wall slip parameters on the fluid velocity profiles as well as the fluid temperature profiles. The effect of increasing the lower wall slip parameter,n1, on the velocity field is depicted by Fig.13. Fluid velocity is seen to increase with an increase in the lower wall slip parameter. On the contrary, the upper wall slip parameter n2is observed to retard fluid velocity as shown in Fig.15. Significant backflow at the upper wall which is as a result of slip at the wall is the cause of this drop in velocity. The backflow also renders rapid mixing of the fluid particles, and this results in significant friction that induces raise in the fluid temperature as observed in Fig.14 and Fig.16.

    Fig.14 Effects of the lower wall slip parameter,n1, on temperature profiles

    Fig.15 Effects of the upper wall slip parameter,n2, on velocity profiles

    Fig.16 Effects of the upper wall slip parameter,n2, on temperature profiles

    Fig.17 Effects of the parameterm on fluid temperature profiles

    Fig.18 Effects of the activation energy parameter,ε, on fluid temperature profiles:m=0.5

    Fig.19 Effects of the activation energy parameter,ε, on fluid temperature:m=0

    The numerical exponent m=0.5means that the type of exothermic chemical reaction is bimolecular, m=0means that the type of reaction is Arrhenius and m=-2means that the reaction is sensitised. Figure 17 shows that most heat is generated under a bimolecular type of exothermic chemical reaction and the least heat is generated when the reaction is one of sensitised type. Figure 18 shows that the effect of an increase in the activation energy parameter, when m=0.5, is also to increase the heat of the reaction. However when m =0and m=-2(Fig.19, Fig.20 respectively) the activation energy parameter,ε, induces effects that are exactly opposite that depicted when m=0.5. As explained in Ref.[2], this is due to the fact that in the temperature equation, when m≤0, the function (1+εθ)mexp[θ/(1+εθ)] decreases with increasingε.

    Fig.20 Effects of the activation energy parameter,ε, on fluid temperature:m=-2

    Fig.21 Effects of the Biot number Bi2on fluid temperature profiles

    Fig.22 Effects of the Prandtl number,Pr , on fluid temperature profiles

    Fluid temperature is observed to decrease significantly with an increase in the Biot number as well as an increase in the Prandtl number. It is important to note that in the limit of Bi1→0and Bi2→0, the channel walls are insulated with no heat loss while thecase of Bi1→∞and Bi2→∞correspond to a scenario where both the ambient temperature and that of the fluid at the wall are the same. Moreover, as the parameter values of Bi1and Bi2increase, the convective heat loss to the ambient from both walls increase,leading to a decrease in the fluid temperature. Hence,an increase in the Biot number signifies higher degrees of convective cooling at the channel walls and this induces a significant temperature drop in the bulk of the fluid. Figure 21 illustrates this phenomenon. A similar trend is observed in Fig.22 where fluid temperature drops with increasing Prandtl numbers. Higher Prandtl numbers generally signify a decrease in fluid thermal conductivity. Figure 23 shows the fluid temperature growing with the viscous heating parameter?.

    Fig.23 Effects of the viscous heating parameter,?, on fluid temperature profiles

    Of engineering importance are the two quantities namely, the wall shear stress (skin friction) and the wall heat transfer rate (Nusselt number). Figure 24. displays graphs showing variation of the wall shear stress with the reaction parameter λ and the variable viscosity parameter, the non-Newtonian parameter,the lower wall slip parameter and the upper wall slip parameter. The figures are plotted up to the solution blow-up values of the Frank-Kamenestkii parameter λ. Skin friction is observed to diminish with increasing values of the temperature dependent viscosity parameter and the non-Newtonian parameter. On the other hand skin friction is noted to increase with increasing wall slip parameters.

    Figure 25 illustrates variation of the wall heat transfer rate, up to blow-up values of λ, withλ and the variable viscosity parameter, the non-Newtonian parameter, the wall slip parameters and the porous medium parameter. While the wall heat transfer rate is largely unaltered by the variable viscosity parameter,the non-Newtonian parameter, the lower wall slip parameter and the porous medium parameter, the upper wall slip parameter marginally increases it. It is reasonable to tie this observation with the observed backflow at the upper wall that tend to rigorously mix fluid particles resulting in increased heat production at the wall.

    Fig.24 Variation with λ and α,γ,n1,n2of the wall shear stress

    Fig.25 Variation with λ andα,γ,n1,n2,Sof the wall heat transfer rate

    Table 1 displays thermal critical values of the reaction parameter λ for various parameter variations. It is important to do this exercise as, depending on other flow parameters, values of the reaction parameter above a certain threshhold leads to blow up of solutions. It is therefore a safety precaution to know in advance the blow up values of λ in relation to other parameter values. We particularly note from the table that increasing the Biot number increases the blow up value of the reaction parameter. However the general trend that is noted is that the blow up values of the reaction parameter are not affected by slight changes in most parameter values.

    4. Conclusion

    We computationally investigate the effects of Navier slip on unsteady flow of a reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary conditions. It has been concluded that the lower wall slip parameter increases the fluid velocity profiles, whereas because of backflow at the upper channel wall, the upper wall slip parameter retards them. Heat production in the fluid increases with the magnitude of the slip parameters. This is also the case with the wall shear stress. The wall heat transfer rate is largely unaltered by the lower wall slip parameter but marginally increased by the upper wall slip parameter. Our results will no doubt be of significant interest in the area of petroleum exploration and refinery. Petroleum is very reactive and non-Newtonian in nature. Its reservoir can be found within porous rocks, such as sandstonewhile the refinery is made up of several pipes with porous matrix. Moreover, both exploration and refining process of petroleum involve slip flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium.

    Table 1 Thermal criticality values of λ for different parameter values

    [1] SOCHI T. Non-Newtonian flow in porous media[J]. Polymer, 2010, 51(22): 5007-5023.

    [2] MAKINDE O. D., CHINYOKA T. and RUNDORA L. Unsteady flow of a reactive variable viscosity non-Newtonian fluid through a porous saturated medium with asymmetric convective boundary conditions[J]. Computers and Mathematics with Applications,2011, 62(9): 3343-3352.

    [3] RUNDORA L. Laminar flow in a channel filled with saturated porous media[D]. Doctoral Thesis, Cape Town, South Africa: Cape Peninsula University of Technology, 2013.

    [4] RAJAGOPAL K. R. On boundary conditions for fluids of the differential type: Navier-Stokes equations and related non-linear problems[M]. New York, USA:Plenum Press, 1995, 273.

    [5] FOSDICK R. L., RAJAGOPAL K. R. Thermodynamics and stability of fluids of third grade[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1980, 369(1738): 351-377.

    [6] SIDDIQUI A. M., MAHMOOD R. and GHORI Q. K. Thin film flow of a third grade fluid on a moving belt by He's homotopy perturbation method[J]. International Journal of Nonlinear Sciences and Numerical Simulation, 2006, 7(1): 1-8.

    [7] MASSOUDI M., CHRISTE I. Effects of variable viscosity and viscous dissipation on the flow of a third grade fluid in a pipe[J]. International Journal of Non-Linear Mechanics, 1995, 30(5): 687-699.

    [8] YüRüSOY M., PAKDEMIRLI M. Approximate analytical solutions for the flow of a third grade fluid in a pipe[J]. International Journal of Non-Linear Mechanics, 2002, 37(2): 187-195.

    [9] SCHLICHTING H. Boundary layer theory[M]. New York, USA: McGraw-Hill, 1968.

    [10] MAKINDE O. D., CHINYOKA T. MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition[J]. Computers and Mathematics with Applications,2010, 60(3): 660-669.

    [11] MATHEWS M. T., HILL J. M. Newtonian flow with nonlinear Navier boundary condition[J]. Acta Mechanica, 2007, 191(3-4): 195-217.

    [12] ZHU Y. X., GRANICK S. Rate-dependent slip of Newtonian liquid at smooth surfaces[J]. Physical Review Letters, 2001, 87(9): 096105.

    [13] BRINKMAN H. C. On the permeability of media consisting of closely packed porous particles[J]. Applied Scientific Research, 1949, 1(1): 81-86.

    [14] TRUESDELL C., NOLL W. The non-linear field theories of mechanics (FLUGGE S. Eds. Handbuch der physik)[M]. Berlin, Germany: Springer, 1965, 111: 3.

    [15] SOM S. K., MONDAL S. S., DASH S. K. Energy and energy balance in the process of pulverized coal combustion in a tubular combustor[J]. Journal of Heat Transfer, 2005, 127(12): 1322-1333.

    [16] FRANK-KAMENETSKII D. A. Diffusion and heat transfer in a chemical kinetics[M]. New York, USA:Plenum Press, 1969.

    [17] AL-HADHRAMI A. K., ELLIOTT L. and INGHAM D. B. A new model for viscous dissipation in porous media across a range of permeability values[J]. Transport in porous media, 2003, 53(1): 117-122.

    [18] MAKINDE O. D. Thermal ignition in a reactive viscous flow through through a channel filled with a porous medium[J]. Journal of Heat Transfer, 2006, 128(6): 601-604.

    [19] MAKINDE O. D. Thermal stability of a reactive viscous flow through a porous-saturated channel with convective boundary conditions[J]. Applied Thermal Engineering, 2009, 29(8): 1773-1777.

    [20] MAKINDE O. D., CHINYOKA T. Numerical investigation of transient heat transfer to hydromagnetic channel flow with radiative heat and convective cooling[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 3919-3930.

    [21] MAKINDE O. D., CHINYOKA T. Transient analysis of pollutant dispersion in a cylindrical pipe with nonlinear waste discharge concentration[J]. Computers and Mathematics with Applications, 2010, 60(3): 642-652.

    [22] CHINYOKA T. Computational dynamics of a thermally decomposable viscoelastic lubricant under shear[J]. Journal of Fluids Engineering, 2008, 130(12):121201.

    [23] CHINYOKA T. Poiseuille flow of reactive Phan-Thien-Tanner liquids in 1D channel flow[J]. Journal of Heat Transfer, 2010, 132(11): 111701.

    [24] CHINYOKA T. Suction-injection control of shear banding in non-isothermal and exothermic channel flow of Johnson-Segalman liquids[J]. Journal of Fluids Engineering, 2011, 133(7): 071205.

    * Biography: RUNDORA Lazarus (1972-), Male,Ph. D., Senior Lecturer

    999久久久精品免费观看国产| 可以在线观看毛片的网站| 免费看十八禁软件| 国产精品九九99| 最好的美女福利视频网| 久久国产精品影院| 国产99久久九九免费精品| 国产成人啪精品午夜网站| 久99久视频精品免费| 亚洲黑人精品在线| 哪里可以看免费的av片| 国产精品一区二区精品视频观看| 狂野欧美激情性xxxx| 一个人免费在线观看的高清视频| 国产精品久久久久久精品电影| 亚洲专区中文字幕在线| 熟妇人妻久久中文字幕3abv| 欧美中文综合在线视频| 禁无遮挡网站| 国产精品爽爽va在线观看网站| av在线播放免费不卡| 麻豆久久精品国产亚洲av| 欧美日本视频| 精品久久久久久久久久久久久| 两人在一起打扑克的视频| 国产精品 国内视频| 99国产综合亚洲精品| avwww免费| 欧美又色又爽又黄视频| 动漫黄色视频在线观看| 欧美乱色亚洲激情| 国产激情欧美一区二区| www.精华液| 最新在线观看一区二区三区| 久久午夜亚洲精品久久| 欧美成人性av电影在线观看| 久久久国产精品麻豆| 成人av在线播放网站| 岛国视频午夜一区免费看| 美女黄网站色视频| 国产一区二区在线观看日韩 | 天天躁夜夜躁狠狠躁躁| 一区二区三区激情视频| 老汉色∧v一级毛片| 国产99白浆流出| av福利片在线观看| 91九色精品人成在线观看| 国产激情欧美一区二区| 怎么达到女性高潮| 夜夜躁狠狠躁天天躁| 欧洲精品卡2卡3卡4卡5卡区| 成年女人毛片免费观看观看9| 老司机午夜十八禁免费视频| 99精品久久久久人妻精品| 亚洲五月婷婷丁香| 又大又爽又粗| 18美女黄网站色大片免费观看| 黄色视频,在线免费观看| 午夜福利免费观看在线| 最近视频中文字幕2019在线8| 麻豆国产97在线/欧美 | 国产成人精品久久二区二区91| 国产一区二区三区在线臀色熟女| 欧美黑人欧美精品刺激| 国产免费av片在线观看野外av| 搡老岳熟女国产| 女人高潮潮喷娇喘18禁视频| 三级国产精品欧美在线观看 | 欧美乱码精品一区二区三区| 亚洲专区字幕在线| 91大片在线观看| 99热这里只有精品一区 | 黄色女人牲交| 国产av在哪里看| 老司机靠b影院| 岛国在线观看网站| 国产成+人综合+亚洲专区| 久久 成人 亚洲| 亚洲欧美日韩高清在线视频| 级片在线观看| 亚洲国产中文字幕在线视频| 99久久精品国产亚洲精品| 精品熟女少妇八av免费久了| 成年人黄色毛片网站| 久久久久国内视频| 最近最新中文字幕大全免费视频| 琪琪午夜伦伦电影理论片6080| 国产精品一及| 丁香欧美五月| 男人舔女人的私密视频| 亚洲熟女毛片儿| 国产精品乱码一区二三区的特点| 一本综合久久免费| 女人爽到高潮嗷嗷叫在线视频| 波多野结衣巨乳人妻| 可以在线观看毛片的网站| 日日夜夜操网爽| 精品国内亚洲2022精品成人| 精品国产乱子伦一区二区三区| 欧美大码av| 91大片在线观看| 国产高清videossex| 色尼玛亚洲综合影院| 亚洲avbb在线观看| 熟女少妇亚洲综合色aaa.| www国产在线视频色| 特大巨黑吊av在线直播| 亚洲avbb在线观看| www.熟女人妻精品国产| 精品久久久久久久久久免费视频| 中文字幕高清在线视频| 久久精品国产综合久久久| 女人爽到高潮嗷嗷叫在线视频| 欧美不卡视频在线免费观看 | 丰满人妻一区二区三区视频av | 青草久久国产| av视频在线观看入口| 久久久久国内视频| 男人的好看免费观看在线视频 | 国产精品一区二区三区四区免费观看 | 国产精品免费一区二区三区在线| 国产精品一区二区三区四区久久| 丰满人妻一区二区三区视频av | www国产在线视频色| 国产欧美日韩一区二区精品| 一进一出抽搐动态| 精品久久蜜臀av无| 中文在线观看免费www的网站 | 欧美在线黄色| 国产精品久久久av美女十八| 国产成人系列免费观看| 日韩成人在线观看一区二区三区| 国产又色又爽无遮挡免费看| 美女午夜性视频免费| 成人三级黄色视频| 人人妻,人人澡人人爽秒播| 亚洲乱码一区二区免费版| 色噜噜av男人的天堂激情| 久久99热这里只有精品18| 精品国产美女av久久久久小说| 中文字幕人妻丝袜一区二区| 色综合站精品国产| 最近最新中文字幕大全免费视频| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看日本一区| 啦啦啦韩国在线观看视频| 脱女人内裤的视频| 又黄又粗又硬又大视频| 婷婷亚洲欧美| 在线观看免费视频日本深夜| 熟女电影av网| 欧美三级亚洲精品| 午夜免费成人在线视频| 美女午夜性视频免费| 国产免费av片在线观看野外av| 亚洲男人天堂网一区| 亚洲18禁久久av| 久久久久久大精品| 1024视频免费在线观看| 欧美日韩福利视频一区二区| √禁漫天堂资源中文www| 最新美女视频免费是黄的| 亚洲在线自拍视频| 高清在线国产一区| 人妻久久中文字幕网| 校园春色视频在线观看| 成人国语在线视频| 午夜福利成人在线免费观看| 亚洲男人的天堂狠狠| 久久久精品大字幕| 可以在线观看毛片的网站| 男男h啪啪无遮挡| 9191精品国产免费久久| 特级一级黄色大片| 精品不卡国产一区二区三区| 亚洲 欧美 日韩 在线 免费| 日韩免费av在线播放| 搡老岳熟女国产| 国产不卡一卡二| 日本精品一区二区三区蜜桃| 久久久国产精品麻豆| 久久精品综合一区二区三区| 亚洲无线在线观看| 中文字幕熟女人妻在线| 午夜亚洲福利在线播放| 一本久久中文字幕| 免费在线观看黄色视频的| 免费看日本二区| svipshipincom国产片| 国产又黄又爽又无遮挡在线| 婷婷丁香在线五月| 成熟少妇高潮喷水视频| 国产片内射在线| 国产探花在线观看一区二区| 亚洲成av人片在线播放无| 婷婷亚洲欧美| 国产99白浆流出| 亚洲欧美日韩无卡精品| 十八禁网站免费在线| 99国产综合亚洲精品| a在线观看视频网站| 精品一区二区三区四区五区乱码| 亚洲第一欧美日韩一区二区三区| 欧美丝袜亚洲另类 | 日韩免费av在线播放| 男人舔女人下体高潮全视频| 亚洲精品国产精品久久久不卡| 欧美zozozo另类| 国产日本99.免费观看| 观看免费一级毛片| 亚洲中文日韩欧美视频| 亚洲午夜精品一区,二区,三区| 亚洲全国av大片| 色噜噜av男人的天堂激情| 久久中文字幕人妻熟女| 久久久久九九精品影院| 久久久精品国产亚洲av高清涩受| √禁漫天堂资源中文www| 国产激情欧美一区二区| 久久久久免费精品人妻一区二区| 国语自产精品视频在线第100页| 全区人妻精品视频| 又粗又爽又猛毛片免费看| 国产三级在线视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲熟妇熟女久久| 老汉色av国产亚洲站长工具| 欧美日韩乱码在线| 黄色片一级片一级黄色片| 正在播放国产对白刺激| 日日爽夜夜爽网站| 欧美精品啪啪一区二区三区| 欧美三级亚洲精品| 国产精品一及| 视频区欧美日本亚洲| 色综合站精品国产| 亚洲国产欧美人成| 日韩大码丰满熟妇| 黄色丝袜av网址大全| 精品第一国产精品| 国产激情偷乱视频一区二区| 亚洲色图av天堂| 每晚都被弄得嗷嗷叫到高潮| 午夜影院日韩av| 亚洲精品美女久久久久99蜜臀| 精品免费久久久久久久清纯| 日韩大码丰满熟妇| 欧美丝袜亚洲另类 | www日本黄色视频网| 久久精品国产亚洲av香蕉五月| 亚洲熟妇熟女久久| 俺也久久电影网| 一进一出抽搐动态| 免费在线观看成人毛片| 日本三级黄在线观看| 日韩大尺度精品在线看网址| 特级一级黄色大片| 欧美又色又爽又黄视频| 久久中文看片网| 露出奶头的视频| 桃红色精品国产亚洲av| 欧美丝袜亚洲另类 | 免费高清视频大片| 国产精品 国内视频| 欧美极品一区二区三区四区| 国产av麻豆久久久久久久| 日韩国内少妇激情av| 国产一区二区三区视频了| 美女免费视频网站| 亚洲无线在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产一区二区精华液| 在线国产一区二区在线| 麻豆成人av在线观看| 国产亚洲精品第一综合不卡| 国产午夜精品久久久久久| 黄片大片在线免费观看| 日本在线视频免费播放| 中文字幕av在线有码专区| 三级男女做爰猛烈吃奶摸视频| 国产av在哪里看| 十八禁网站免费在线| 亚洲一码二码三码区别大吗| 最新在线观看一区二区三区| 一级毛片女人18水好多| 老司机在亚洲福利影院| 国产精品影院久久| 天堂√8在线中文| 我要搜黄色片| 欧美日韩福利视频一区二区| 最新美女视频免费是黄的| 99国产精品一区二区三区| 伊人久久大香线蕉亚洲五| 国产免费av片在线观看野外av| 最近视频中文字幕2019在线8| 最近在线观看免费完整版| 久久伊人香网站| 日韩国内少妇激情av| 在线视频色国产色| 欧美日韩亚洲综合一区二区三区_| 成人av在线播放网站| 精品第一国产精品| 国产精品乱码一区二三区的特点| 亚洲全国av大片| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区蜜桃av| 女警被强在线播放| 亚洲欧美日韩高清在线视频| 久久国产精品影院| 亚洲成人中文字幕在线播放| 国产精品自产拍在线观看55亚洲| 午夜老司机福利片| 国产精品电影一区二区三区| 999久久久精品免费观看国产| 一进一出好大好爽视频| 夜夜爽天天搞| 欧美一级毛片孕妇| 老司机深夜福利视频在线观看| 午夜免费成人在线视频| 亚洲中文av在线| av福利片在线| 国产1区2区3区精品| 又粗又爽又猛毛片免费看| 国产精品九九99| 久久香蕉激情| 免费观看精品视频网站| 亚洲av五月六月丁香网| 国产不卡一卡二| 久久精品国产亚洲av高清一级| 国产麻豆成人av免费视频| 一区二区三区国产精品乱码| 久久婷婷成人综合色麻豆| 日本精品一区二区三区蜜桃| 禁无遮挡网站| 日本三级黄在线观看| 在线国产一区二区在线| 色哟哟哟哟哟哟| 免费观看精品视频网站| 免费在线观看视频国产中文字幕亚洲| 日韩免费av在线播放| 国产精品爽爽va在线观看网站| 欧美色欧美亚洲另类二区| 老司机深夜福利视频在线观看| 欧美午夜高清在线| 亚洲色图 男人天堂 中文字幕| 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 99re在线观看精品视频| 亚洲黑人精品在线| 可以免费在线观看a视频的电影网站| 精品高清国产在线一区| 国产爱豆传媒在线观看 | www.熟女人妻精品国产| 国产一级毛片七仙女欲春2| 亚洲精品色激情综合| 午夜精品在线福利| 麻豆一二三区av精品| 免费看a级黄色片| 欧美日韩乱码在线| 婷婷丁香在线五月| 在线观看66精品国产| 午夜免费观看网址| 亚洲欧美日韩高清专用| 黑人欧美特级aaaaaa片| 熟女电影av网| 久久香蕉国产精品| 欧美3d第一页| 成年版毛片免费区| 99精品欧美一区二区三区四区| 国产熟女午夜一区二区三区| 中文字幕av在线有码专区| 亚洲自拍偷在线| 国产黄色小视频在线观看| 亚洲国产中文字幕在线视频| 日韩中文字幕欧美一区二区| 国产午夜精品久久久久久| 国产视频内射| 久久久久国产精品人妻aⅴ院| 免费av毛片视频| 成人av在线播放网站| 女人爽到高潮嗷嗷叫在线视频| 国产一区在线观看成人免费| 久久久久国内视频| 日日爽夜夜爽网站| 嫩草影视91久久| 精品免费久久久久久久清纯| 高清在线国产一区| 久久婷婷成人综合色麻豆| 欧美zozozo另类| 黑人欧美特级aaaaaa片| 村上凉子中文字幕在线| 亚洲国产欧美一区二区综合| 亚洲av成人精品一区久久| 国产精品久久久久久亚洲av鲁大| 最近最新中文字幕大全免费视频| 午夜久久久久精精品| 老汉色∧v一级毛片| 久久久久久国产a免费观看| 又爽又黄无遮挡网站| 国产精品98久久久久久宅男小说| 亚洲男人天堂网一区| 老司机午夜十八禁免费视频| 手机成人av网站| 麻豆国产97在线/欧美 | www国产在线视频色| 欧美精品亚洲一区二区| 免费av毛片视频| 亚洲欧美激情综合另类| 亚洲熟女毛片儿| 极品教师在线免费播放| 91大片在线观看| 无遮挡黄片免费观看| 国产av又大| 国产激情久久老熟女| 免费在线观看影片大全网站| 亚洲九九香蕉| 两个人看的免费小视频| 久久久国产欧美日韩av| 久久久久九九精品影院| 香蕉久久夜色| 亚洲成人国产一区在线观看| 两人在一起打扑克的视频| 免费在线观看影片大全网站| 国产亚洲精品久久久久5区| 欧美一级a爱片免费观看看 | 亚洲成av人片免费观看| 亚洲va日本ⅴa欧美va伊人久久| 久久久水蜜桃国产精品网| 亚洲国产中文字幕在线视频| 男人舔奶头视频| 两性夫妻黄色片| 看免费av毛片| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 亚洲av中文字字幕乱码综合| 99re在线观看精品视频| 精品久久久久久久末码| 国产69精品久久久久777片 | 欧美一级毛片孕妇| 精品国产亚洲在线| 香蕉丝袜av| 观看免费一级毛片| 午夜免费成人在线视频| 国产精品久久久久久人妻精品电影| 中文字幕久久专区| 亚洲国产精品999在线| 久久久久国内视频| 天堂av国产一区二区熟女人妻 | 亚洲av日韩精品久久久久久密| 国产区一区二久久| 高潮久久久久久久久久久不卡| 99re在线观看精品视频| 精品免费久久久久久久清纯| 午夜老司机福利片| 午夜福利在线在线| 两个人视频免费观看高清| 窝窝影院91人妻| 大型黄色视频在线免费观看| 欧美成人一区二区免费高清观看 | 啦啦啦观看免费观看视频高清| 一区福利在线观看| 免费在线观看亚洲国产| 亚洲国产高清在线一区二区三| 一夜夜www| 免费观看精品视频网站| 男人舔女人下体高潮全视频| 99久久精品国产亚洲精品| 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 在线国产一区二区在线| 国产欧美日韩一区二区三| x7x7x7水蜜桃| 国产精品亚洲一级av第二区| 日韩欧美免费精品| 日本一本二区三区精品| 亚洲成人精品中文字幕电影| 日韩高清综合在线| 国产伦一二天堂av在线观看| 久久精品aⅴ一区二区三区四区| 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看| 变态另类丝袜制服| 99热这里只有精品一区 | 50天的宝宝边吃奶边哭怎么回事| 亚洲美女黄片视频| 一个人观看的视频www高清免费观看 | 亚洲精品在线美女| 久久久久久久精品吃奶| 啦啦啦韩国在线观看视频| 男人舔女人下体高潮全视频| 女警被强在线播放| 久热爱精品视频在线9| 国产精品自产拍在线观看55亚洲| 国产人伦9x9x在线观看| 午夜影院日韩av| 亚洲色图 男人天堂 中文字幕| 成年版毛片免费区| 嫩草影院精品99| 亚洲人成网站高清观看| 中文字幕人成人乱码亚洲影| 亚洲人成伊人成综合网2020| 欧美三级亚洲精品| 欧美成人性av电影在线观看| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 成人18禁高潮啪啪吃奶动态图| 一进一出好大好爽视频| 国内久久婷婷六月综合欲色啪| 女人高潮潮喷娇喘18禁视频| 一本一本综合久久| 国产乱人伦免费视频| 国产精品av久久久久免费| 人妻丰满熟妇av一区二区三区| 亚洲片人在线观看| 桃色一区二区三区在线观看| 我的老师免费观看完整版| 亚洲精华国产精华精| 老司机深夜福利视频在线观看| 亚洲精品国产精品久久久不卡| 伦理电影免费视频| 美女免费视频网站| 三级毛片av免费| 亚洲中文字幕日韩| 欧美在线一区亚洲| 欧美日本视频| 亚洲精品国产精品久久久不卡| 日韩欧美国产在线观看| 搡老岳熟女国产| 亚洲人成伊人成综合网2020| 我的老师免费观看完整版| 丝袜人妻中文字幕| 激情在线观看视频在线高清| 俄罗斯特黄特色一大片| 天堂av国产一区二区熟女人妻 | 亚洲欧美一区二区三区黑人| 看片在线看免费视频| 美女黄网站色视频| 日韩欧美在线二视频| 久久人人精品亚洲av| 国产麻豆成人av免费视频| 亚洲精品中文字幕在线视频| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 欧美成人性av电影在线观看| 欧美乱码精品一区二区三区| 亚洲精品国产精品久久久不卡| 九色国产91popny在线| 久久精品aⅴ一区二区三区四区| 精品久久蜜臀av无| 欧美日本亚洲视频在线播放| 久99久视频精品免费| 久久久久久免费高清国产稀缺| 这个男人来自地球电影免费观看| 曰老女人黄片| 亚洲av第一区精品v没综合| 在线观看舔阴道视频| 国产av不卡久久| 夜夜躁狠狠躁天天躁| 免费电影在线观看免费观看| svipshipincom国产片| 一a级毛片在线观看| 老司机福利观看| 国产高清激情床上av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩无卡精品| 国产亚洲欧美98| 国产精品影院久久| 久久久精品国产亚洲av高清涩受| 久久久久久九九精品二区国产 | 国产精品免费视频内射| 色播亚洲综合网| 日韩精品中文字幕看吧| cao死你这个sao货| www日本在线高清视频| 51午夜福利影视在线观看| 成人永久免费在线观看视频| 亚洲人成77777在线视频| 一级毛片精品| 久久久水蜜桃国产精品网| 中文字幕久久专区| www.999成人在线观看| 亚洲av成人精品一区久久| 99热只有精品国产| 国内精品久久久久精免费| 亚洲18禁久久av| 黄色a级毛片大全视频| 亚洲精品美女久久久久99蜜臀| 黑人欧美特级aaaaaa片| 88av欧美| 啦啦啦观看免费观看视频高清| 一二三四社区在线视频社区8| 亚洲欧美日韩高清在线视频| 国产欧美日韩精品亚洲av| 精品国内亚洲2022精品成人| 色综合站精品国产| 在线国产一区二区在线| 舔av片在线| netflix在线观看网站| 欧美性猛交╳xxx乱大交人| 国产亚洲精品综合一区在线观看 | 日韩大尺度精品在线看网址| 长腿黑丝高跟| 精品高清国产在线一区| 亚洲av电影在线进入| 女人爽到高潮嗷嗷叫在线视频| 91av网站免费观看| 少妇熟女aⅴ在线视频| 亚洲黑人精品在线| 国产精品免费视频内射| 99riav亚洲国产免费| 在线观看www视频免费| 一级作爱视频免费观看| 男人舔奶头视频| 性欧美人与动物交配| 日韩 欧美 亚洲 中文字幕|