• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis*

    2015-12-01 02:12:25ABDELMABOUDMEKHEIMERKhMOHAMEDMohamedMathematicsDepartmentFacultyofScienceandArtsKhulaisUniversityOfJeddahSaudiArabia2MathematicsDepartmentFacultyofScienceAlAzharUniversityAssiutBranchAssiutEgyptmailyassmathyahoocom3Math

    ABD ELMABOUD Y., MEKHEIMER Kh. S., MOHAMED Mohamed S.1. Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Saudi Arabia2. Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt,E-mail: yass_math@yahoo.com3. Mathematics Department, Faculty of Science, Taif University Hawia, P.O. Box 888, Taif, Saudi Arabia4. Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt

    Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis*

    ABD ELMABOUD Y.1,2, MEKHEIMER Kh. S.3,4, MOHAMED Mohamed S.3,4
    1. Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Saudi Arabia
    2. Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt,E-mail: yass_math@yahoo.com
    3. Mathematics Department, Faculty of Science, Taif University Hawia, P.O. Box 888, Taif, Saudi Arabia
    4. Mathematics Department, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt

    (Received August 31, 2014, Revised Ocotober 27, 2014)

    An analysis has been achieved to study the natural convection of a non-Newtonian fluid (namely a Carreau fluid) in a vertical channel with rhythmically contracting walls. The Navier-Stokes and the energy equations are reduced to a system of nonlinear PDE by using the long wavelength approximation. The optimal homotopy analysis method (OHAM) is introduced to obtain the exact solutions for velocity and temperature fields. The convergence of the obtained OHAM solution is discussed explicitly. Numerical calculations are carried out for the pressure rise and the features of the flow and temperature characteristics are analyzed by plotting graphs and discussed in detail.

    homotopy analysis method (HAM), peristaltic transport, carreau fluid, heat transfer, natural convection flow

    Introduction0F

    Peristaltic transport is a physical mechanism for the flow induced by the traveling wave. This mechanism is found in the body of living creatures, and it frequently occurs in organs such as ureter, intestines and arterioles (small arteries). The mechanism of peristaltic transport has also been found in the industrial. There are many industrial applications such as sanitary fluid transport, blood pumps in heart lung machine and transport of corrosive fluids where the contact of the fluid with the machinery parts is prohibited. The first attempt was done by Latham[1]. Following this experimental work, Barton and Raynor[2]established a mathematical model for homogeneous fluids in a channel idealized under the assumption of inertia due to an infinite train of peristaltic waves. Shapiro et al.[3]used infinite wavelength instead of the small-amplitude assumption. Recently, a considerable attention has been devoted to the problem of peristaltic transport with Newtonian or non-Newtonian fluid in channel or a tube[4-6].

    In recent years, the study of non-Newtonian fluids especially with peristaltic transport[7,8]has obtained great importance, because this class of fluid simulates the fluid found in living creatures. In this paper, we choose rheological constitutive equation of Carreau fluid. The Carreau model has a four parameter beside helpful properties of a truncated power law model that does not have a discontinuous first derivative. It possesses a shear thinning (i.e. the viscosity reduces by increasing shear rate). El Shehawy et al.[9]investigated peristaltic transport of Carreau fluid through non-uniform channel. Recently, some contributions are made to the study of Carreau fluid with the effect of magnetic field[10,11].

    The study of the heat transfer problems draws the attention of researchers especially in biology, because the transport of heat plays a vital role in life processes. In convection, heat transport occurs in a fluid with a combination of molecular diffusion and the fluid's bulk motion or flow. Natural convection is a type of heat transfer wherein non-human forces influence thecooling and heating of fluids. The interaction between peristalsis and heat transfer has been investigated recently, Mekheimer and Abd elmaboud[12]studied the influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus. Srinivas and Kothandapani[13]have investigated the peristaltic transport in an asymmetric channel with heat transfer. Mekheimer et al.[14]discussed the effect of heat transfer on the peristaltic flow of a Newtonian fluid through a porous space in a vertical asymmetric channel.

    The common perturbation methods have some limitations, and also depended on the existence of a small parameter. Recently, many different methods have been introduced to eliminate the small parameter;one of these methods is called the homotopy analysis method (HAM). The homotopy analysis method(HAM) is a new analytical technique, which has attracted special attention of researchers as it is both flexible in applying and give sufficiently accurate results with modest effort. This method has been first introduced in 1992 by Liao[15-17]. Recently, many authors[18,19]have been using HAM in a wide variety of scientific and engineering applications to solve different types of differential equations: linear and nonlinear, homogeneous and non-homogeneous.

    With the above discussion in mind, the goal of this investigation is to study the effect of heat transfer on peristaltic flow of a Carreau fluid in a two-dimensional vertical channel. The governing equations are modeled and then solved using the HAM. The analysis for the stream function, the axial pressure gradient,the pressure rise and the heat transfer across the channel have been discussed for various values of the problem parameters. Also, the pumping characteristics and the trapping phenomena are discussed in detail. Finally, the main conclusions are summarized in the last section.

    Fig.1 The geometry of the walls surface

    1. Mathematical formulation

    Consider the peristaltic motion of a non-Newtonian fluid, modeled as a Carreau fluid in a twodimensional vertical channel, where 2a is the undeformed width of the channel and the channel is considered to be infinitely long,b represents the amplitude of the sinusoidal waves traveling along the channel at velocityc,λis the wavelength. A rectangular coordinate system is chosen for the channel with X along the centerline andY normal to it. The wall Y=-H( X, t)is maintained at temperatures T1and for the wall Y=H( X, t), Newtonian cooling law is applied considering T0as the temperature outside the region, obtaining -k(dT/dy)=γ(T-T0), wherekis the thermal conductivity andγis the heat transfer coefficient. Let (U, V)be the longitudinal and transverse velocity components, respectively. It is assumed that an infinite train of sinusoidal waves progresses along the walls in the Xdirection (see Fig.1). The equation of the channel wall is given by

    Introducing a wave frame (x, y)moving with velocity c away from fixed frame (X, Y)by the transformation

    The constitutive equation for a Carreau fluid is

    where τis the extra stress tensor,η∞is the infinite shear rate viscosity,η0is the zero shear rate viscosity, Γis the time constant,n is Power-law index andn is defined as

    whereΠis the second invariant of strain-rate tensor. Note that the above model reduces to Newtonian model for n =1or Γ=0. The equations of motion for a channel flow in a wave frame of reference are:

    whereρis the density,T is the temperature,kis the thermal conductivity,Cρis the specific heat at constant pressure,g is the acceleration due to gravity andαis the coefficient of thermal expansion of the fluid. The appropriate boundary conditions in a moving frame are:

    where β1is the slip coefficient having dimension of length. Consider the following non-dimensional variables:

    and the dimensionless parameters as follows:

    Reynolds number Re=cap/η0, wave number δ=a/λ, Prandtl number Pr=(cpη0)/k, Eckert number Ec=c2/[c(T-T)], Brickhman numberp10Br=PrEc , Grashof number Gr=[gα a3( T-1)ρ2]/, Weissenberg number We=cΓ/a, Biot number Bi=γa/ k, Slip parameter β=β1/λ.

    By using Eq.(10) (after dropping the bars) and the dimensionless parameters, we have:

    where

    Using the long wavelength approximation in Eqs.(12-19) and consider the terms free ofδonly, it follows that:

    The corresponding non-dimensional boundaryconditions are:

    2. Solution procedures

    Introducing the dimensionless stream function ψ(x, y)such that

    We find that Eq.(20) is satisfied identically. The compatibility equation, which governs the flow in terms of the stream, function ψ(x, y)after eliminating the pressure gradient from Eqs.(21) and (22), is

    and the energy Eq.(23) will be in the form

    The corresponding non-dimensional boundary conditions are:

    where

    qis the non-dimensional flow rate in the wave frame and the relation between the time-mean flowsand q in the fixed and wave frames is

    3. The HAM solution of the problem

    For HAM solutions of the governing Eqs.(26) and (27), we choose the initial approximations of ψ andθ(satisfy the boundary conditions) as follows:

    and the auxiliary linear operators are L(ψ)=d4ψ/1dy4and L(θ)=d2θ/dy2. These auxiliary linear ope-2rators satisfy:

    where c1,c2,c3,c4,c5,c6are constants. Introducing a non-zero auxiliary parameter?, we develop the zeroth-order deformation problems as follow:

    with the boundary conditions

    where the nonlinear operators,L1[ψ(y; p)]and L2[θ(y; p)]are defined as:

    whenp increases from 0 to 1,ψ(y; p)and θ(y; p) vary from ψ0(y)and θ0(y)to ψ(y)and θ(y)respectively. Using Taylor's theorem ψ(y; p)and θ(y; p)can be expanded in power series of pas follows:

    where

    a non-zero auxiliary parameter?is chosen in such a way that the series (40) and (41) are convergent at p =1. Suppose that the auxiliary parameter?is selected such that the series (40) and (41) are convergent at p =1. Then we have:

    Differentiating the zeroth-order deformation Eqs.(35) and (36),m times with respect topand then dividing them by m!and finally setting p=0, we have the following mth-order deformation problem:

    where

    are recurrence formulae, in which

    with the boundary conditions

    We use MATHEMATICA software to obtain the solution of these equations. The first deformations of the coupled solutions may be presented as follow:

    where

    The higher-order solutions of ψmand θmare too long to list here.

    To determine the auxiliary parameter?the so called ?-curves and optimization method are used. In the optimization method, the optimal convergence control parameters are fixed by demanding minimum of the square residual error integrated in the whole region. Let F( ?)denote the square residual error of the governing Eqs.(26)-(27) and express as

    whereψ,θare mentioned in Eqs.(43) and (44). The optimal value of?is given by solving a nonlinear algebraic equation

    The pressure rise Δpfor a channel of lengthL, in non-dimensional form, is given by

    The integral in Eq.(55), not integrable in closed form and is evaluated numerically using a digital computer.

    Fig.2?-curve for the stream function at 5th order approximation for different values of the Weissenberg numberWe

    Fig.3?-curve for the stream function at 5th order approximation for different values of the Power-law index n

    Fig.4?-curve for the temperature at 5th order approximation for different values of the Weissenberg numberWe

    Fig.5?-curve for the temperature at 5th order approximation for different values of the Power-law indexn

    Table 1 The optimal values of?at 5th order approximation for the stream function at the fixed values of x =0.2,α=0.4,β=0.01,Bi =0.01,Br =0.5,Gr =0.5,Q=2

    4. Convergence of the solution

    It is noticed that the solutions (51) and (52) contain the auxiliary parameter? . As pointed out by Liao[16], the convergence region and rate of approximations given by the HAM are strongly dependent upon?. For fixed values of the parameters x =0.2, α=0.4,β=0.01,Bi =0.01,Br =0.5,Gr =0.5, Q =2and n=0.398and with two different values of Weissenberg numberWe (namely,We =0and We =0.2) and x =0.2,α=0.4,β=0.01,Bi =0.01, Br =0.5,Gr =0.5,Q =2and We=0.2with two different values of power-law indexn (namely,n= 0.398 and n =1) the range for admissible values of? for the stream function is -1.3≤?≤-0.7and for temperature is -1.25≤?≤-0.8(see Figs.2-5). Also, the optimal values of?for different parameters are givened in Tables 1 and 2.

    Table 2 The optimal values of ?at 5th order approximation for the temperature at the fixed values of x= 0.2,α=0.4,β=0.01,Bi =0.01,Br =0.5,Gr =0.5,Q=2

    5. Numerical results and discussion

    This section is divided into three subsections. In the first subsection, the effects of various parameters on the pumping characteristics are investigated. The heat characteristics are discussed in the second subsection. The trapping phenomenon is illustrated in the last subsection.

    Fig.6 The velocity distributionu , across the channel with different values of βandGrat x =0.2,We =0.3,n =0.398,Bi =0.1,Q =2,Br =1and φ=0.4

    5.1 Distribution of velocity

    For different values of Grashof numberGr , slip parameterβ, Weissenberg numberWe , Biot number Bi , and the Power-law indexn, Figs.6-9 present the distribution of axial velocity. Figure 6 shows the effect of Grashof numberGr and slip parameterβonthe velocity through the channel with other parameters fixed. It is clear that the velocity profile distributes symmetrically about the center of the channel when Gr =0and β=0, because there is no natural convection and no slip velocity on the walls of the channel. However, with the values ofGrandβelevating, we notice that the velocity is less or large than -1 on the walls (slip condition) and the velocity decreases from near the wall y=hto the center of the channel, but it increases in the other half for increasingGr . Figures 7 and 8 reveal that the magnitude of the axial velocity is large in a Newtonian fluid (We =0or n=1) compared with a non-Newtonian fluid. However, the forward flow region is predominant here since the time averaged flow rate is positive. The effect of Biot numberBi on the axial velocity is shown in Fig.9. It is evident that near the wall y=hthe magnitude of axial velocity is enhanced by increasing the Biot numberBi , because the convection process offers much buoyancy force which leads to the increase in the magnitude of axial velocity. But in the other half of the channel the convection process offers little resistance to the flow therefore the magnitude of axial velocity diminishes.

    Fig.7 The velocity distribution u, across the channel with different values of We at x =0.2,Gr =0,β=0.01,n =0.398,Bi =0.4,Q =2,Br =1and φ=0.4

    Fig.8 The velocity distributionu , across the channel with different values ofn at x =0.2,Gr =0,β=0,We =0.4,Bi =0.3,Q =2,Br =1and φ=0.4

    Fig.9 The velocity distribution u, across the channel with different values of Bi at x =0.2,Gr =1,β=0,n =0.398,We =0.4,Q =2,Br =1and φ=0.4

    Fig.10 Variation of pressure rise Δpover the length versus Q with different values of We at Gr =1,β=0.01,n =0.398,Bi =0.01,Br =1and φ=0.4

    Fig.11 Variation of pressure rise over the length versusQ with different values of n at Gr =2,β=0.01,We =0.3,Bi =0.01,Br =1and φ=0.4

    5.2 Pumping characteristics

    In this subsection, we aim to study the influence of the apparent parameters on the different pumping regions. To discuss this phenomenon we prepared Figs.10-12. For our study of the peristaltic transport of a non-Newtonian fluid, the relationship between the pressure rise and the flow rate is found to be nonlinear. Moreover, for a Newtonian fluid (We =0orn=1) the flow rate averaged over one wave varies linearly with the pressure rise as shown in Figs.10 and 11. Plots in Figs.10 and 11 indicate that the peristaltic pumping region (Δp>0 and Q>0) enhances in a New tonian fluid (We =0 or n=1) and become little in a non-New tonian fluid, that is because the shear thickening appears in the non-New tonian fluid. The effect of Grashof number Gr and the Biot number Bi on the pressure rise Δp is illustrated in Fig.12. It is clear that the peristaltic pumping region increases by increasing the Grashof number Gr while it decreases by increasing the Biot number Bi . Moreover, the rate of the reduce in the peristaltic pumping by the effect of the Biot number Bi in the case of the low values of Grashof number Gr is small, compared w ith the large values of Grashof number Gr.

    Fig.12 Variation of pressure rise Δp over the length versus Q w ith different values of Gr and Bi at n =0.398,β=0.01,We =0.2,Br =1 and φ=0.4

    Fig.13 Temperature distribution θversus y for different values of We at x =0.2,Gr =1,β=0.01,n= 0.398,Br =0.2,Br =1,Q =2 and φ=0.4

    5.3 Heat characteristics

    A ll figures representing the temperature are plotted at the cross section of the channel (i.e,x=0.2). To study the behavior of emerging parameters in the temperature distribution some figures (Figs.13-15)have been displayed. It may be observed from Figs.13 and 14 that at a fixed cross section of the channel the temperature distribution is higher in the case of the New tonian fluid (We =0 or n=1) compared w ith a non-New tonian fluid. This behavior is related to the thermal properties of the non-New tonian fluids. The effects of Grashof number Gr and the Biot number Bi on the temperature distribution are shown in Fig.15. It is clear that the temperature distribution increases through the channel by increasing the Biot number Bi while it increases near the wall y=h by increasing the Grashof number Gr but away from this wall the temperature decreases.

    Fig.14 Tem perature distribution θversus y for different values of We at x =0.2,Gr =1,β=0.01,n= 0.398,Bi =0.2,Br =1,Q =2 and φ=0.4

    Fig.15 Tem perature distribution θversus y for different values of Bi and Gr at x =0.2,β=0.01,We= 0.2,n =0.398,Br =1,Q =2 and φ=0.4

    5.4 Stream lines and fluid trapping

    It is well known that, one of the significant features of peristaltic transport is the phenomenon of trapping. It occurs when stream lines on the central line are split to enclose a bolus of fluid particles circulating along closed stream lines in the wave frame of reference. The trapped bolus moves w ith a speed equal to that of the wave. Figure 16 is an illustration of the stream lines for different values of Weissenberg number(We).Two different areas of trapped bolus appearing abo ut the ce nter, but they are different in number and size.As Weissenberg number(We),increases (non-Newtonian fluid) some sort of rigidity appears and the number of bolus decreases. Streamlines for different Grashof numberGr and Biot numberBi are depicted in Figs.17 and 18. These figures indicate that occurrence and number of trapping is strongly influenced by the value of the Grashof number Gr and Biot numberBi.

    Fig.16 Streamlines for different values ofWe The other parameters chosen are φ=0.4,Q =2,Br =1,Bi =0.3,β=0.01,Gr =1and n =0.398where y∈[-h, h]

    Fig.17 Streamlines for different values of GrThe other parameters chosen are φ=0.4,Q =2,Br =1,Bi =0.3,β=0.01,We =0.2 and n =0.398 where y∈[-h, h]

    Fig.18 Streamlines for different values ofBi the other parameters chosen are φ=0.4,Q =2,Br =1,Gr =1,β=0.01,We =0.2and n =0.398where y∈[-h,h]

    6. Concluding remarks

    The present paper deals with the peristaltic motion of a non-Newtonian fluid (namely a Carreau fluid)through a vertical channel. Thus the present investigation bears the potential of significant application in biomedical engineering and technology. The system of governing equations is reduced to a system of nonlinear PDE by using the long wavelength approximation. A homotopy analysis method (HAM) is used to obtain the solutions for velocity and temperature fields. The convergence region and the optimal values of the auxiliary parameter are discussed explicitly. The present study reveals that the velocity profiles distributes symmetrically about the center of the channel when there is no natural convection and also no slip velocity on the walls of the channel. The region of peristaltic flow advances, if the value of the Grashof number is raised. Moreover, the present study shows that in anon-Newtonian fluid the peristaltic pumping has small effect compared with Newtonian fluid. The region of retrograde flow (the upper left-hand quadrant denotes the region of retrograde pumping (or backward pumping) where Q<0and Δp>0) depreciate at a faster rate, if the values of(We)are raised.

    [1] LATHAM T. W. Fluid motion in a peristaltic pump[D]. Master Thesis, Cambridge, MA, USA: Massachusetts Institute of Technology, 1966.

    [2] BARTON C., RAYNOR S. Peristaltic flow in tubes[J]. Bulletin of Mathematical Biophysics, 1968, 30(4):663-680.

    [3] SHAPIRO A. H., JAFFRIN M. Y. and WEINBERG S. L. peristaltic pumping with long wavelengths at low Reynoleds number[J]. Journal of Fluid Mechanics,1969, 37: 799-825.

    [4] ABD ELMABOUD Y. Thermomicropolar fluid flow in a porous channel with peristalsis[J]. Journal of Porous Media, 2011, 14(11): 1033-1045.

    [5] ABD ELMABOUD Y., MEKHEIMER Kh. S. Nonlinear peristaltic transport of a second-order fluid through a porous medium[J]. Applied Mathematical Modelling, 2011, 35(6): 2695-2710.

    [6] YLDRM A., SEZER S. A. Effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel[J]. Mathematical and Computer Modelling, 2010, 52(3): 618-625.

    [7] HAYAT T., ASFAR A. and KHANA M. et al. Peristaltic transport of a third order fluid under the effect of a magnetic field[J]. Computers and Mathematics with Applications, 2007, 53(7): 1074-1087.

    [8] HAYAT T., ALI N. On mechanism of peristaltic flows for power-law fluids[J]. Physica A: Statistical Mechanics and Its Applications, 2006, 371(2): 188-194.

    [9] ELSHEHAWEY E. F., EL MISERY A. M. and HAKEEM A. A. Peristaltic motion of generalized Newtonian fluid in a non-uniform channel[J]. Journal of the Physical Society of Japan, 1998, 67(2): 434-440.

    [10] HAYAT T., SALEEM N. and ASGHAR S. et al. Influence of induced magnetic field and heat transfer on peristaltic transport of a carreau fluid[J]. Communications in Nonlinear Science and Numerical Simula- tion, 2011, 16(9): 3559-3577.

    [11] HAYAT T., SALEEM N. and ALI N. Effect of induced magnetic field on peristaltic transport of a Carreau fluid[J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(9): 2407-2423.

    [12] MEKHEIMER Kh. S., ABD ELMABOUD Y. The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annlus: Application of endoscope[J]. Physics Letters A, 2008,372(10): 1657-1665.

    [13] SRINIVAS S., KOTHANDAPANI M. Peristaltic transport in an asymmetric channel with heat transfer-A note[J]. International Communications in Heat and Mass Transfer, 2008, 35(4): 514-522.

    [14] MEKHEIMER Kh. S., HUSSENY S. Z. A. and ABD ELMABOUD Y. Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel[J]. Numerical Methods for Partial Differential Equations, 2010, 26(4): 747-770.

    [15] LIAO Shi-jun. The proposed homotopy analysis technique for the solution of nonlinear problems[D]. Doctoral Thesis, Shanghai, China: Shanghai Jiao Tong University, 1992(in Chinese).

    [16] LIAO S. Beyond perturbation: Introduction to the homotopy analysis method[M]. Boca Raton, USA:Chapman and Hall/CRC Press, 2003.

    [17] LIAO S. Homotopy analysis method in nonlinear differential equations[M]. Heidelberg, Germany: Springer and Beijing, China: Higher Education Press, 2012.

    [18] ESMAEILPOUR M., DOMAIRRY G. and SADOUGHI N. et al. Homotopy analysis method for the heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with a porous wall[J]. Communications in Nonlinear Science and Numerical Simulations, 2010, 15(9):2424-2430.

    [19] XU H., LIAO S. and YOU X. Analysis of nonlinear fractional partial differential equations with the homotopy analysis method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4):1152-1156.

    * Biography: ABD ELMABOUD Y. (1976-), Male, Ph. D.,Associate Professor

    日本av免费视频播放| 2021少妇久久久久久久久久久| 久久久久精品国产欧美久久久 | 久久人人爽人人片av| 啦啦啦啦在线视频资源| 91成人精品电影| 久久久精品免费免费高清| 精品少妇黑人巨大在线播放| 久久人妻熟女aⅴ| 中文天堂在线官网| 欧美日韩一区二区视频在线观看视频在线| 狠狠婷婷综合久久久久久88av| 久久国产精品男人的天堂亚洲| 97在线人人人人妻| 久久久久久久国产电影| 亚洲国产毛片av蜜桃av| 一二三四在线观看免费中文在| 午夜福利视频精品| 亚洲国产精品一区三区| 在线观看三级黄色| 观看av在线不卡| 色精品久久人妻99蜜桃| 免费观看人在逋| 亚洲国产日韩一区二区| 免费看不卡的av| av在线老鸭窝| 久久人人97超碰香蕉20202| 热re99久久精品国产66热6| 曰老女人黄片| 一本久久精品| 丝袜美足系列| 女人爽到高潮嗷嗷叫在线视频| 18禁裸乳无遮挡动漫免费视频| 制服诱惑二区| 99久久精品国产亚洲精品| 中文精品一卡2卡3卡4更新| 在线观看国产h片| 男男h啪啪无遮挡| 国产片特级美女逼逼视频| 国产精品一二三区在线看| 国产在线一区二区三区精| 美女中出高潮动态图| 91精品三级在线观看| 99精国产麻豆久久婷婷| 伊人亚洲综合成人网| 如日韩欧美国产精品一区二区三区| 最新在线观看一区二区三区 | 天天操日日干夜夜撸| 19禁男女啪啪无遮挡网站| 国产精品av久久久久免费| 麻豆av在线久日| 色婷婷av一区二区三区视频| 黄色怎么调成土黄色| 亚洲精品国产av成人精品| 一级a爱视频在线免费观看| 亚洲av综合色区一区| 精品亚洲成a人片在线观看| 精品一品国产午夜福利视频| 亚洲精品美女久久久久99蜜臀 | 大话2 男鬼变身卡| 久久国产精品大桥未久av| 成人国产麻豆网| 久久97久久精品| 悠悠久久av| 宅男免费午夜| 亚洲av成人精品一二三区| 久久 成人 亚洲| 欧美日韩亚洲高清精品| 免费高清在线观看日韩| 色吧在线观看| 在线 av 中文字幕| 亚洲视频免费观看视频| 亚洲熟女精品中文字幕| 国产成人a∨麻豆精品| 成年av动漫网址| 高清视频免费观看一区二区| 视频区图区小说| 午夜福利视频精品| 国产精品久久久av美女十八| 男女边摸边吃奶| 久久久精品94久久精品| 最近2019中文字幕mv第一页| 人妻一区二区av| 国产精品成人在线| 成人漫画全彩无遮挡| 水蜜桃什么品种好| 黑人巨大精品欧美一区二区蜜桃| 丝袜美足系列| 国产av码专区亚洲av| 欧美在线黄色| 秋霞伦理黄片| 国产午夜精品一二区理论片| 考比视频在线观看| 国产熟女欧美一区二区| 肉色欧美久久久久久久蜜桃| 亚洲欧美一区二区三区黑人| 岛国毛片在线播放| 波野结衣二区三区在线| 亚洲激情五月婷婷啪啪| 18禁裸乳无遮挡动漫免费视频| 又大又黄又爽视频免费| 亚洲一码二码三码区别大吗| 黄片无遮挡物在线观看| 大码成人一级视频| 免费观看性生交大片5| 最近手机中文字幕大全| 少妇猛男粗大的猛烈进出视频| 久久久精品国产亚洲av高清涩受| 国产成人免费观看mmmm| 欧美精品一区二区免费开放| 只有这里有精品99| 婷婷色麻豆天堂久久| 日韩 欧美 亚洲 中文字幕| 飞空精品影院首页| avwww免费| 亚洲成av片中文字幕在线观看| 丁香六月天网| 搡老岳熟女国产| 在线天堂中文资源库| 亚洲欧美精品自产自拍| 丝袜人妻中文字幕| av网站免费在线观看视频| 日韩一卡2卡3卡4卡2021年| 9色porny在线观看| xxxhd国产人妻xxx| 精品少妇久久久久久888优播| 男女国产视频网站| 丰满少妇做爰视频| 悠悠久久av| 国产又色又爽无遮挡免| 亚洲欧美一区二区三区黑人| 最黄视频免费看| 亚洲精品国产一区二区精华液| 又大又爽又粗| 一个人免费看片子| 亚洲成人免费av在线播放| 国产不卡av网站在线观看| 伊人亚洲综合成人网| av片东京热男人的天堂| 免费观看性生交大片5| 麻豆乱淫一区二区| avwww免费| 亚洲av日韩在线播放| 欧美在线一区亚洲| bbb黄色大片| 综合色丁香网| 国产 精品1| 国产日韩欧美亚洲二区| 岛国毛片在线播放| 日本午夜av视频| 777米奇影视久久| 热re99久久国产66热| 国产精品国产三级国产专区5o| 搡老岳熟女国产| 国产在线视频一区二区| 大香蕉久久网| 久久天躁狠狠躁夜夜2o2o | 最近最新中文字幕免费大全7| 日本vs欧美在线观看视频| 精品久久久久久电影网| 91国产中文字幕| 十八禁人妻一区二区| 少妇人妻久久综合中文| 国产片内射在线| 国产人伦9x9x在线观看| xxxhd国产人妻xxx| 欧美中文综合在线视频| 欧美激情极品国产一区二区三区| 精品亚洲成a人片在线观看| 亚洲国产日韩一区二区| 在线观看三级黄色| 欧美日韩视频精品一区| 咕卡用的链子| 少妇猛男粗大的猛烈进出视频| 久久久久久久久免费视频了| 亚洲成国产人片在线观看| 国产一区亚洲一区在线观看| 久久99精品国语久久久| www日本在线高清视频| 国产 精品1| 日日啪夜夜爽| 人人妻人人澡人人爽人人夜夜| 成人黄色视频免费在线看| 男女国产视频网站| 国产片特级美女逼逼视频| 欧美97在线视频| 51午夜福利影视在线观看| 91精品国产国语对白视频| 一区二区av电影网| 69精品国产乱码久久久| 国产一区二区在线观看av| 日韩伦理黄色片| 国产亚洲欧美精品永久| 女人爽到高潮嗷嗷叫在线视频| 老熟女久久久| 国产乱人偷精品视频| 国产一级毛片在线| 国产日韩欧美亚洲二区| 不卡视频在线观看欧美| 免费观看av网站的网址| 91aial.com中文字幕在线观看| 亚洲精品乱久久久久久| 久久97久久精品| 亚洲精品美女久久久久99蜜臀 | h视频一区二区三区| 国产极品天堂在线| 日韩人妻精品一区2区三区| 国产免费视频播放在线视频| 一级毛片黄色毛片免费观看视频| 又大又爽又粗| 成人漫画全彩无遮挡| 一二三四中文在线观看免费高清| 不卡av一区二区三区| 亚洲国产精品成人久久小说| 亚洲四区av| 免费看av在线观看网站| 久久天堂一区二区三区四区| 在线精品无人区一区二区三| 国产成人精品久久久久久| 国产高清不卡午夜福利| 最新的欧美精品一区二区| 99久久精品国产亚洲精品| 激情五月婷婷亚洲| 国产亚洲欧美精品永久| 国产免费视频播放在线视频| 热99国产精品久久久久久7| 丝袜在线中文字幕| 午夜福利,免费看| 国产精品国产三级专区第一集| 欧美中文综合在线视频| 国产精品 欧美亚洲| 黑人欧美特级aaaaaa片| 欧美日韩av久久| 久久精品熟女亚洲av麻豆精品| 成年美女黄网站色视频大全免费| av又黄又爽大尺度在线免费看| 久久久久久久久免费视频了| 久久精品国产a三级三级三级| 欧美在线一区亚洲| 夜夜骑夜夜射夜夜干| 久久av网站| 国产精品亚洲av一区麻豆 | 叶爱在线成人免费视频播放| 久久青草综合色| 午夜福利乱码中文字幕| 久久久久视频综合| 韩国精品一区二区三区| 91aial.com中文字幕在线观看| 免费日韩欧美在线观看| 欧美日韩综合久久久久久| 久久久久人妻精品一区果冻| 一区二区日韩欧美中文字幕| 可以免费在线观看a视频的电影网站 | av在线老鸭窝| 久久久精品国产亚洲av高清涩受| 亚洲精品中文字幕在线视频| 亚洲av中文av极速乱| 毛片一级片免费看久久久久| 不卡视频在线观看欧美| 亚洲av电影在线观看一区二区三区| 日本91视频免费播放| 哪个播放器可以免费观看大片| 九色亚洲精品在线播放| 国产伦人伦偷精品视频| 亚洲成人手机| 欧美激情极品国产一区二区三区| 在线观看国产h片| 久久国产精品男人的天堂亚洲| 亚洲美女视频黄频| 国产欧美日韩一区二区三区在线| 亚洲精品,欧美精品| 久久久久网色| 亚洲国产精品一区二区三区在线| 精品卡一卡二卡四卡免费| 国产毛片在线视频| 啦啦啦在线观看免费高清www| 三上悠亚av全集在线观看| 亚洲精品久久久久久婷婷小说| 亚洲欧美清纯卡通| 精品人妻熟女毛片av久久网站| 日本猛色少妇xxxxx猛交久久| 亚洲少妇的诱惑av| 日韩精品有码人妻一区| 丝袜在线中文字幕| 日本av免费视频播放| 午夜激情av网站| 香蕉丝袜av| 国产免费视频播放在线视频| 久久av网站| www.精华液| 少妇精品久久久久久久| bbb黄色大片| 免费看av在线观看网站| 街头女战士在线观看网站| 欧美精品亚洲一区二区| 国产成人精品久久二区二区91 | 久久久欧美国产精品| 极品人妻少妇av视频| 亚洲国产欧美日韩在线播放| 青草久久国产| 国产亚洲av高清不卡| 午夜福利网站1000一区二区三区| 亚洲欧美清纯卡通| 中文字幕另类日韩欧美亚洲嫩草| av电影中文网址| 亚洲中文av在线| 天堂8中文在线网| 午夜免费观看性视频| 成人国语在线视频| 新久久久久国产一级毛片| 国产熟女午夜一区二区三区| 天堂俺去俺来也www色官网| 亚洲精品aⅴ在线观看| 中文字幕精品免费在线观看视频| 色网站视频免费| 啦啦啦中文免费视频观看日本| 黄片小视频在线播放| 久久久国产一区二区| av在线老鸭窝| 国产一区亚洲一区在线观看| 国产日韩欧美在线精品| 各种免费的搞黄视频| 日韩制服丝袜自拍偷拍| 日本一区二区免费在线视频| 亚洲精品在线美女| 国产精品国产三级专区第一集| 亚洲欧美一区二区三区久久| 日韩视频在线欧美| 黄片小视频在线播放| 国产黄色免费在线视频| 午夜福利视频精品| 中文字幕亚洲精品专区| 天天操日日干夜夜撸| 国精品久久久久久国模美| 人妻 亚洲 视频| 亚洲一区二区三区欧美精品| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美日韩另类电影网站| 看十八女毛片水多多多| 欧美中文综合在线视频| 日韩中文字幕欧美一区二区 | 99久久人妻综合| 免费观看av网站的网址| 亚洲精品国产一区二区精华液| 婷婷色综合www| 国产在线一区二区三区精| 免费观看av网站的网址| 欧美日韩亚洲国产一区二区在线观看 | 日韩 欧美 亚洲 中文字幕| 波多野结衣一区麻豆| 不卡av一区二区三区| 91精品三级在线观看| av又黄又爽大尺度在线免费看| 性色av一级| 国产高清不卡午夜福利| 成人影院久久| av在线app专区| 国产极品天堂在线| 一级毛片我不卡| 国产毛片在线视频| 国产成人欧美在线观看 | 女性被躁到高潮视频| 黑丝袜美女国产一区| 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 别揉我奶头~嗯~啊~动态视频 | 国产精品三级大全| 精品午夜福利在线看| 成年人午夜在线观看视频| 伊人久久国产一区二区| 精品视频人人做人人爽| 香蕉国产在线看| 国产精品久久久久成人av| 久久久久精品人妻al黑| 久久99精品国语久久久| 久久精品国产亚洲av高清一级| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品古装| 高清黄色对白视频在线免费看| 欧美日韩视频高清一区二区三区二| 国产免费又黄又爽又色| 国产一区二区三区av在线| 女性被躁到高潮视频| 午夜福利免费观看在线| 男女边吃奶边做爰视频| 日韩制服丝袜自拍偷拍| av在线观看视频网站免费| 无限看片的www在线观看| 日本黄色日本黄色录像| 高清av免费在线| 蜜桃国产av成人99| 国产精品av久久久久免费| 欧美久久黑人一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲天堂av无毛| av电影中文网址| 亚洲精品美女久久av网站| 日本av手机在线免费观看| 啦啦啦 在线观看视频| 亚洲色图综合在线观看| 色94色欧美一区二区| av国产久精品久网站免费入址| 最近中文字幕2019免费版| 我要看黄色一级片免费的| 丝袜美腿诱惑在线| 下体分泌物呈黄色| 国产精品偷伦视频观看了| 国产无遮挡羞羞视频在线观看| 99香蕉大伊视频| 亚洲精品国产av蜜桃| 极品人妻少妇av视频| 日本91视频免费播放| xxx大片免费视频| 青春草视频在线免费观看| 国产精品欧美亚洲77777| 少妇被粗大的猛进出69影院| 久久久久久久精品精品| 夫妻性生交免费视频一级片| 日本爱情动作片www.在线观看| 久久久精品免费免费高清| 一边亲一边摸免费视频| 1024香蕉在线观看| 亚洲精品av麻豆狂野| 免费高清在线观看日韩| 精品卡一卡二卡四卡免费| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线不卡| 国产不卡av网站在线观看| 成人三级做爰电影| 免费黄频网站在线观看国产| xxx大片免费视频| 80岁老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 成人亚洲精品一区在线观看| 国产精品熟女久久久久浪| a级毛片在线看网站| 免费黄色在线免费观看| 别揉我奶头~嗯~啊~动态视频 | 丰满少妇做爰视频| 欧美激情高清一区二区三区 | 成人手机av| 欧美亚洲日本最大视频资源| 亚洲av成人精品一二三区| 免费黄频网站在线观看国产| 一级毛片电影观看| 亚洲精品美女久久av网站| 王馨瑶露胸无遮挡在线观看| 国产伦人伦偷精品视频| 亚洲欧美日韩另类电影网站| av福利片在线| 国产精品久久久av美女十八| 搡老乐熟女国产| 亚洲精品美女久久av网站| 精品国产国语对白av| 国产一区二区激情短视频 | 最近2019中文字幕mv第一页| 操出白浆在线播放| 欧美精品亚洲一区二区| 国产熟女欧美一区二区| 黄色毛片三级朝国网站| 精品人妻在线不人妻| 久久久久视频综合| 久久久久久人妻| 国产黄色免费在线视频| 曰老女人黄片| 欧美xxⅹ黑人| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| 国产日韩一区二区三区精品不卡| h视频一区二区三区| 在线观看三级黄色| 国产亚洲av片在线观看秒播厂| 亚洲色图 男人天堂 中文字幕| 一二三四在线观看免费中文在| 亚洲国产精品一区二区三区在线| 国产成人免费无遮挡视频| 精品少妇黑人巨大在线播放| 久久久久人妻精品一区果冻| 美女中出高潮动态图| 久久久久视频综合| 男女午夜视频在线观看| 哪个播放器可以免费观看大片| 一级黄片播放器| 久久久亚洲精品成人影院| 啦啦啦视频在线资源免费观看| 国产探花极品一区二区| 亚洲精品在线美女| 人成视频在线观看免费观看| 午夜福利影视在线免费观看| 免费观看av网站的网址| 久久久久网色| 精品免费久久久久久久清纯 | 99热网站在线观看| 亚洲图色成人| 99热网站在线观看| 国产亚洲av片在线观看秒播厂| 日韩中文字幕视频在线看片| 丝袜喷水一区| 啦啦啦在线观看免费高清www| 国产日韩欧美在线精品| 成年女人毛片免费观看观看9 | 纯流量卡能插随身wifi吗| 欧美日韩视频精品一区| 超碰97精品在线观看| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 少妇被粗大猛烈的视频| 18禁观看日本| 亚洲国产av影院在线观看| 亚洲精品一区蜜桃| 日韩制服骚丝袜av| 在线观看人妻少妇| 七月丁香在线播放| 亚洲国产精品国产精品| 国产麻豆69| 日韩中文字幕欧美一区二区 | 国产亚洲av片在线观看秒播厂| 777米奇影视久久| h视频一区二区三区| 久久午夜综合久久蜜桃| 国产又色又爽无遮挡免| 欧美日韩视频高清一区二区三区二| 黄色一级大片看看| 午夜91福利影院| 国产成人精品无人区| 女性被躁到高潮视频| 一级,二级,三级黄色视频| 少妇 在线观看| 免费观看a级毛片全部| www.自偷自拍.com| 操美女的视频在线观看| 国产成人系列免费观看| 日韩伦理黄色片| 黑人巨大精品欧美一区二区蜜桃| 成人国产av品久久久| 欧美激情 高清一区二区三区| 人人澡人人妻人| 精品酒店卫生间| 国产免费一区二区三区四区乱码| 国产成人精品久久久久久| 曰老女人黄片| 汤姆久久久久久久影院中文字幕| 国产一级毛片在线| 在线观看免费午夜福利视频| av线在线观看网站| 日本vs欧美在线观看视频| 免费黄频网站在线观看国产| 精品久久蜜臀av无| 波多野结衣av一区二区av| av网站在线播放免费| 午夜影院在线不卡| 最近最新中文字幕免费大全7| 女人被躁到高潮嗷嗷叫费观| 18在线观看网站| 欧美成人精品欧美一级黄| 婷婷色综合大香蕉| 自线自在国产av| 亚洲伊人久久精品综合| 国产亚洲精品第一综合不卡| 色综合欧美亚洲国产小说| 国产精品国产av在线观看| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久久久99蜜臀 | 好男人视频免费观看在线| 欧美激情高清一区二区三区 | 国产成人精品久久久久久| 在线 av 中文字幕| 日韩一本色道免费dvd| 久久人人爽人人片av| 亚洲精品久久久久久婷婷小说| 韩国高清视频一区二区三区| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜精品国产一区二区电影| 在线观看免费午夜福利视频| 在线亚洲精品国产二区图片欧美| 色婷婷av一区二区三区视频| 丝袜喷水一区| 大片电影免费在线观看免费| 赤兔流量卡办理| 欧美久久黑人一区二区| 国产一区二区三区综合在线观看| 日日爽夜夜爽网站| 亚洲精品美女久久av网站| 成人18禁高潮啪啪吃奶动态图| 久久久欧美国产精品| 丰满迷人的少妇在线观看| 蜜桃在线观看..| 久久久久久久精品精品| av有码第一页| 国产成人a∨麻豆精品| 人人妻人人澡人人爽人人夜夜| 亚洲综合精品二区| 免费高清在线观看日韩| 精品卡一卡二卡四卡免费| 欧美日韩亚洲综合一区二区三区_| 丝袜美足系列| 免费观看人在逋| 欧美 亚洲 国产 日韩一| 日韩一本色道免费dvd| 国产精品一二三区在线看| 欧美人与性动交α欧美精品济南到| 韩国精品一区二区三区| 色吧在线观看| av视频免费观看在线观看| 国产日韩一区二区三区精品不卡| 在线天堂中文资源库| 国产免费一区二区三区四区乱码| 一级毛片黄色毛片免费观看视频| 午夜激情av网站| 久久99精品国语久久久| 午夜精品国产一区二区电影| 极品人妻少妇av视频| 精品一区二区三卡|