• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simulations of ice jam thickness distribution in the transverse direction*

    2014-06-01 12:30:01WANGJun王軍SHIFayi施發(fā)義CHENPangpang陳胖胖
    關(guān)鍵詞:王軍

    WANG Jun (王軍), SHI Fa-yi (施發(fā)義), CHEN Pang-pang (陳胖胖)

    School of Civil Engineering, Hefei University of Technology, Hefei 230009, China,

    E-mail: junwanghfut@126.com

    WU Peng, SUI Jueyi

    Environmental Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada

    Simulations of ice jam thickness distribution in the transverse direction*

    WANG Jun (王軍), SHI Fa-yi (施發(fā)義), CHEN Pang-pang (陳胖胖)

    School of Civil Engineering, Hefei University of Technology, Hefei 230009, China,

    E-mail: junwanghfut@126.com

    WU Peng, SUI Jueyi

    Environmental Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada

    (Received November 14, 2013, Revised July 2, 2014)

    River ice often forms in the cold regions of northern hemisphere which can lead to ice jams (or ice dams). Water level can be significantly raised due to ice jams. As a consequence, disastrous ice flooding may be resulted, such as the ice jam flooding in the Nechako River in Prince George in winter 2007-2008. In the present study, the equations describing the ice jam thickness in the transverse direction are derived. The impact of the secondary vortex is considered while the cohesive force within ice cubes is neglected in the model. The relationship between the parameter β and the total water depth is established based on the assumption that all other variables except the velocities are kept constant on the same cross section. By using the parameter β and the developed equations, the ice jam thickness in the transverse direction can be predicted. The developed model is used to simulate the ice jam thickness in the transverse direction at the Hequ Reach of the Yellow River in China. The simulated ice jam thicknesses agree well with the field measurements on different cross sections.

    ice jam thickness, secondary vortex, cohesive force, transverse distribution

    Introduction

    The ice jam is an important issue for rivers and it can lead to ice flooding with major social, economic impacts in cold regions. The ice jam alters the hydraulics of an open channel by imposing extra boundaries, and increasing the roughness coefficient as compared to the ice free case[1], resulting in a significant rise of the water level. With the formation of the ice jam, some extreme flood events may occur, with a huge damage to the property and infrastructure. For example, the ice jam is a major cause of flooding in Canada. In Alberta, Canada, the ice jam flooding is an annual concern for the provincial government, while in the province of New Brunswick, Canada, St John River is characterized by repeated ice jam floodings (Environment Canada, 2013). In Asia, the ice jam is also a source of floodings in central and northern regions of China. For example, the break-up of Yellow River is an annual event across China for a long time[2].

    Although the ice jam is important for the flood control but it is very difficult to be predicted and measured. Very limited data are available about the ice jam formation and river breakup. Healy and Hicks[3]provided some experimental data for the ice jam formation. With respect to Canadian rivers, Beltaos et al.[4-6]investigated the formation and release of ice jams, and reviewed some models. Beltaos[7]pointed out some potential problems in the study of ice jams. A research group led by Dr. Hicks[8,9]has been continuously working on the monitoring ice jams and acquiring related data in the last few years. She also made an excellent review on the river ice problems around the world[10]. However, the dynamic evolution of the ice jam involves various parameters, related with hydraulic, thermal and boundary conditions. A precise prediction of ice jams is difficult, if not impossible.

    1. Model and simulation of thickness distribution

    1.1Assumptions and basic equations of the model

    Ice jams are formed by ice blocks and frazils accumulated under the ice cover. The size of the ice particles normally varies widely and is much smaller as compared to the width of rivers. So, in the simulation of the thickness of ice jams, the continuous assumption is valid[22]. Beltaos[21]derived the 1-D ice thickenss equations based on the continuous assumption and the static equilibrium of ice jams. However, since the force distribution in the transverse direction is not considered in the derivation, his model for determining the ice jam thickness is limited to the calculation of the jam thickness in a prismatic rectangular channel. Many field observations indicate that the thickness of the ice jam in the transverse direction varies significantly from the riverbank to the main channel. Obviously, the model developed by Beltaos cannot be used to predict the transverse thickness distribution on each cross section.

    Fig.1 Stresses on an element of an ice jam cube[21]

    In Fig.1, one finite element of ice cube is separated and analyzed, in which, x is the direction of the flow (or the longitudinal direction), y is the vertical direction normal to the water surface and z is in the transverse direction. Following Beltaos’[21]analysis of the 1-D thickness, the following equations for the balance of an ice jam can be derived.

    where s'x, s'yand s'zare the normal pressure in x, y and z directions, respectively, which also include the static pressure, τx'y, τ'yz, τx'zare the shear stresses, γ' is the specific gravity of ice, equal to ρig(1-pJ) when the ice body is above the water surface, and equal to ρig(1-pJ)+ρgpJwhen the ice body is under the water surface, ρ is the mass density of water, ρiis the mass density of ice, pJis the porosity of the ice jam, which is a constant with a value of 0.4.

    These three equations are integrated in x, y and z directions, respectively, and the following equations are obtained. However, since the channel cross section is normally not rectangular, the secondary vortex in the transverse direction also needs to be considered in the equations.

    in which, τiand τjcan be calculated as where k0=tanφ, equal to 1.14[21], φ is the inner friction slope of ice cubes, k1is the coefficient of the lateral trust, which is equal to 0.28 here[21], Kxis a coefficient and is assumed to be equal to the passive earth pressure, 6.3[21]and γe=0.5si(1-si)(1-pJ)ρg.

    According to Beltaos[21], compared to the inner friction stress, the cohesive stress can be neglected, which means that Ci=0. Based on this assumption and combining Eqs.(2) and (4), the following equation can be obtained.

    Equation (5) can then be solved as follows

    Equation (8) describes the thickness distribution of the ice jam in the transverse direction. Compared to previous studies, the secondary vortex is considered in this equation which is crucial for the determination of the thickness of the ice jam in the transverse direction.

    1.2Analysis of variables

    On the same cross section, the hydraulic S is assumed to be constant, so the value of α can also betreated as a constant in the analysis. From Eq.(8), it can seen that under the same thermal condition, the difference in the thickness of the ice jam on the same cross section is mainly determined by the variable β. The ratio of β at different time scales is

    Table 1 Hydraulic parameters used in the calculation

    Combining Eq.(3) with Eq.(9), we obtain

    Based on the analysis of Wu[24], we come to the following relationship.

    Fig.2 Hequ Reach of the Yellow River, China

    On the same cross section, under the same thermal condition, all variables except the velocity have very little fluctuations, and they can be considered as constant. For wide and shallow rivers, we have Hi≈h/2, V2=4ghSw/f0, f0is the composite friction coefficient, equal to 0.25 according to the field data. Equation (12) is derived by combining Eqs.(10) and (11). The values of some related parameters for the calculation are shown in Table 1.

    where hi1, hi2are the total water depth on the same cross section.

    Table 2 Calculated β values on different dates on Longkou cross section 1

    Table 3 Calculated β values on different dates on Yingzhantan cross section 2

    It can be noted from Eq.(12) that the value of β is directly related with the total water depth. In rigid winter times, the flow conditions can be significantly different as compared to the free surface. It is extremely hard to measure the velocity under the ice jam. On the other hand, the water depth measurement is easier compared to the velocity measurement. So by using Eqs.(8) and (12), the ice jam thickness on the transverse direction can be calculated based on the field data.

    2. Model validations and result analysis

    The Hequ Reach of Yellow River is located in the middle reaches of the Yellow River, as shown in Fig.2. In winter from late November to early March next year, due to the cold air temperatures in the winter, an enormous amount of frazil ice is generated in the open channel upstream of the Hequ Reach. As a direct consequence, the Hequ Reach experienced over 100 d jamming each winter between 1982 and 1991[2,25]. During this period of 9 years, a great number of field measurements of the water level and the frazil jam thickness on several cross sections were made. In this study, the field data from these measurements are used to validate the developed model for the thickness distribution of the ice jam in the transverse direction.

    2.1The value of β

    By using the field data measured from 1985 to 1992, β can be calculated from Eq.(8). Then based on Eq.(12), the values of β at the approximate time scales under the same thermal conditions can be calculated. The field data from four cross sections are used to validate the proposed equation. Tables 2 through 5 show the calculation results of β on Longkou, Yingzhantan, Beiyuan and Nanyuan cross sections, respectively. However, due to the limitation of the field data, some of β values in Tables 2 through 5 cannot be obtained.

    2.2Result analysis

    By using the value of β acquired from Tables 2 through 5, several simulations of the thickness distribution of the ice jam in the transverse direction are conducted. The simulation results by using Eq.(8) are compared with the field measurements on different cross sections. Figures 3, 4, 5 and 6 show some simulation results from these simulations.

    From these figures, one can see that the calculated ice thickness values in the transverse direction agree in general well with the field measurements. However, at some measuring points on each cross section, the calculated jam thicknesses deviate from the field measurements, such as the simulation results for 26th February 1986 on Yingzhantan cross section (Fig.4) and 16th February 1991 on Nanyuan cross section (Fig.6). The possible reasons for deviations may be as follows: in the development of the equation fordeterminingβ, the thermal conditions are assumed to be the same across the simulated cross section. However in the field, the thermal conditions in the transverse direction on each cross section are not uniform although the variation is not great, since the flow velocity in the main channel is greater than that near the river bank.. Also, the field measurements were carried out from the left bank to the right bank (facing downstream), as noticed by the 5th author, and it took about 4 h to complete measurements for each cross section. During this 4 h period, the thermal conditions for both the ice jam and the flowing water might not be the same.

    Table 4 Calculatedβvalue on different dates on Beiyuan cross section 3

    Table 5 Calculated β value on different dates on Nanyuan cross section 4

    Fig.3 The calculated thicknesses distribution of ice jam compared to field measurements on the Longkou cross section 1 (S=1.52× 10-3)w

    Fig.4 The calculated thicknesses distribution of ice jam compared to field measurements on the Yingzhantan cross section 2 (Sw=10-3)

    Fig.5 The calculated thicknesses distribution of ice jam compared to field measurements on the Beiyuan cross section 3 (Sw=10-3)

    Fig.6 The calculated thicknesses distribution of ice jam compared to field measurements on the Nanyuan cross section 4 (Sw=0.32× 10-3)

    In overall, the simulated thickness distributions of the ice jam in the transverse direction on each crosssection agree well with the field measurements. The developed model can be used to determine the thickness distribution of ice jams at the Hequ Reach of the Yellow River, and we do hope that this model can be applied to other rivers. This model could be served as a step stone for the development of a 3-D hydrodynamics model for simulating the ice jam process.

    3. Conclusion

    Based on the static equilibrium of an ice jam, a model is developed to determine the thickness distribution of ice jams in the transverse direction. The secondary vortex is considered in this model. On the same cross section, the difference of the ice jam thickness can be attributed to value β, which can be determined by using the water depth on the cross section. It is reasonable to assume that the thermal conditions are constant on the same cross section. The impact of variable β on the thickness distribution under similar thermal conditions is discussed. From the comparison between the field data and the calculated results, a good agreement is seen on all the four cross sections, except at some points with some deviations. It is concluded that the equation can be used to predict the thickness distribution of ice jams in the transverse direction.

    Acknowledgement

    The authors gratefully acknowledgement the help from the Foundation and staff from Hefei University of Technology.

    [1] SHEN H. T., WANG D. Under cover transport and accumulation of frazil granules[J]. Journal of Hydraulic Engineering, ASCE, 1995, 121(2): 184-195.

    [2] SUI J., KARNEY B. and SUN Z. et al. Field investigation of frazil jam evolution–A case study[J]. Journal of Hydraulic Engineering, ASCE, 2002, 128(8): 781-787.

    [3] HEALY D., HICKS F. Experimental study of ice jam formation dynamics[J]. Journal of Cold Regions Engineering, 2006, 20(4): 117-139.

    [4] BELTAOS S. Discussion of “smoothed particle hydrodynamics hybrid model of ice-jam formation and release”[J]. Canadian Journal of Civil Engineering, 2010, 37(4): 657-658.

    [5] BELTAOS S., TANG P. and ROWSELL R. Ice jam modelling and field data collection for flood forecasting in the Saint John River[J]. Hydrological Processes, 2012, 26(17): 2535-2545.

    [6] BELTAOS S., CARTER T. and ROWSELL R. Measurements and analysis of ice breakup and jamming characteristics in the Mackenzie Delta, Canada[J]. Cold Regions Science and Technology, 2012, 82: 110-123.

    [7] BELTAOS S. Progress in the study and management of river ice jams[J]. Cold Regions Science and Technology, 2008, 51(1): 2-19.

    [8] GHOBRIAL T., LOEWEN M. and HICKS F. Laboratory calibration of upward looking sonars for measuring suspended frazil ice concentration[J]. Journal of Cold Regions Science and Technology, 2012, 70: 19-31.

    [9] DOW K., STEFFLER P. and HICKS F. Analysis of the stability of floating ice blocks[J]. Journal of Hydraulic Engineering, ASCE, 2011, 137(4): 412-422.

    [10] HICKS F. An overview of river ice problems[J]. Journal of Cold Regions Science and Technology, Special Issue on River Ice, 2009, 55(2):175-185.

    [11] LI Zhi-jun, HAN Ming and QIN Jian-min et al. States and advances in monitor of ice thickness change[J]. Advances in Water Science, 2005, 16(5): 753-757(in Chinese).

    [12] SUN Zhao-chu, WANG De-sheng and WANG Zhaoxing. The discussion of ice thickness calculation models[J]. Journal of Hydraulic Engineering, 1985, (1): 54-60(in Chinese).

    [13] SUI J., WANG J. and BALACHANDAR R. et al. Accumulation of frazil ice along a river bend[J]. Canadian Journal of Civil Engineering, 2008, 35(2): 158-169.

    [14] WANG J., SUI J. and CHEN P. et al. Mechanisms of ice accumulation in a river bend–An experimental study[J]. International Journal of Sediment Research, 2012, 27(4): 521-537.

    [15] HEALY D., HICKS F. Experimental study of ice jam thickening under dynamic flow conditions[J]. Journal of Cold Regions Engineering, 2007, 21(3): 72–91.

    [16] NOLIN S., ROUBTSOVA V. and MORSE B. Smoothed particle hydrodynamics hybrid model of ice-jam formation and release[J]. Canadian Journal of Civil Engineering, 2009, 36(7): 1133-1143.

    [17] SHEN H. T. Mathematical modeling of river ice processes[J]. Cold Regions Science and Technology, 2010, 62(2): 3-13.

    [18] WANG Jun, CHEN Pang-pang and JIANG Tao et al. The simulation of ice accumulation under ice cover[J]. Journal of Hydraulic Engineering, 2009, 40(3): 348-354(in Chinese).

    [19] WANG Jun, CHEN Pang-pang and SUI Jueyi. Numerical simulation of ice jams in natural channels[J]. Journal of Hydraulic Engineering, 2011, 42(9): 1117-1121(in Chinese).

    [20] CARSON R., BELTAOS S. and GROENEVELD J. Comparative testing of numerical models of river ice jams[J]. Canadian Journal of Civil Engineering, 2011, 38(6): 669-678.

    [21] BELTAOS S. River ice jams[M]. Highlands Ranch, Colorado, USA: Water Resources Publications, 1995, 105-146.

    [22] SHEN Hong-dao. River ice study[M]. Zhengzhou, China: Yellow River Water Conservancy Press, 2010, 67-103(in Chinese).

    [23] PARISET E., HAUSSER R. and GAGNON A. Formation of ice covers and ice jams in rivers[J]. Journal of the Hydraulics Division, ASCE, 1966, 92(6): 1-24.

    [24] WU Chang-jun. The study of flow field and ice accumulation of ice jams under ice cover in a curved channel[D]. Doctoral Thesis, Hefei, China: Hefei University of Technology, 1993(in Chinese).

    [25] SUI J., KARNEY B. and Fang D. Variation in water level under ice-jammed condition–Field investigation and experimental study[J]. Nordic Hydrology, 2005, 36(1): 65-84.

    10.1016/S1001-6058(14)60085-8

    * Project suppotted by the National Natural Science Foundation of China (Grant Nos. 51379054, 50979021).

    Biography: WANG Jun (1962-), Male, Ph. D., Professor

    SUI Jueyi, E-mail: jueyi.sui@unbc.ca

    猜你喜歡
    王軍
    HITTING PROBABILITIES AND INTERSECTIONS OF TIME-SPACE ANISOTROPIC RANDOM FIELD
    石榴樹想法妙
    我要好好來欣賞
    好孩子畫報(2020年5期)2020-06-27 14:08:05
    黃陵祭
    不下戰(zhàn)場的士兵——王軍
    活力(2019年19期)2020-01-06 07:34:36
    蜜蜂和油菜花
    可愛的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    Revisit submergence of ice blocks in front of ice cover-an experimental study *
    Impact of bridge pier on the stability of ice jam*
    91狼人影院| 国产毛片a区久久久久| 内地一区二区视频在线| 最近最新中文字幕大全电影3| 别揉我奶头 嗯啊视频| 久久久久久久久久久丰满 | 国产久久久一区二区三区| av黄色大香蕉| 中出人妻视频一区二区| 日日摸夜夜添夜夜添小说| 搡老熟女国产l中国老女人| 网址你懂的国产日韩在线| 99精品在免费线老司机午夜| 国产精品久久久久久av不卡| 国产黄a三级三级三级人| 在线观看美女被高潮喷水网站| 男女之事视频高清在线观看| 成人无遮挡网站| 在现免费观看毛片| 舔av片在线| 成人国产麻豆网| 成人毛片a级毛片在线播放| 日韩欧美国产一区二区入口| 国产主播在线观看一区二区| 色哟哟·www| 中文字幕熟女人妻在线| 精品午夜福利在线看| 中文字幕熟女人妻在线| 美女cb高潮喷水在线观看| 国产精品美女特级片免费视频播放器| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美在线乱码| 女同久久另类99精品国产91| av中文乱码字幕在线| 国内揄拍国产精品人妻在线| 最近视频中文字幕2019在线8| 亚洲av熟女| 真人一进一出gif抽搐免费| 韩国av在线不卡| 精品无人区乱码1区二区| 国产v大片淫在线免费观看| 99热这里只有精品一区| 国产 一区 欧美 日韩| 国产伦精品一区二区三区四那| 国产免费男女视频| 亚洲专区中文字幕在线| 日韩欧美三级三区| 一区二区三区四区激情视频 | 日韩欧美在线二视频| 真人一进一出gif抽搐免费| 很黄的视频免费| 51国产日韩欧美| 久久久精品欧美日韩精品| 亚洲专区中文字幕在线| 亚洲欧美日韩东京热| 成人国产综合亚洲| 2021天堂中文幕一二区在线观| 精品乱码久久久久久99久播| 在线观看午夜福利视频| 少妇人妻精品综合一区二区 | 日韩精品青青久久久久久| 男女下面进入的视频免费午夜| 狂野欧美激情性xxxx在线观看| 成年女人毛片免费观看观看9| 麻豆成人午夜福利视频| 最近中文字幕高清免费大全6 | 97碰自拍视频| 男女下面进入的视频免费午夜| 欧美性猛交╳xxx乱大交人| 日韩亚洲欧美综合| 日本三级黄在线观看| 国产精品亚洲美女久久久| 熟女电影av网| 国产又黄又爽又无遮挡在线| 国产精品一区二区三区四区久久| 黄片wwwwww| 国产成人福利小说| 一进一出抽搐动态| 熟妇人妻久久中文字幕3abv| 美女免费视频网站| 性插视频无遮挡在线免费观看| 亚洲人成网站在线播| 久久久久国产精品人妻aⅴ院| 3wmmmm亚洲av在线观看| 国产成人影院久久av| 99热这里只有是精品50| 日日啪夜夜撸| 91久久精品国产一区二区成人| 一卡2卡三卡四卡精品乱码亚洲| 日韩精品中文字幕看吧| www.色视频.com| 日韩欧美精品免费久久| 国产伦精品一区二区三区四那| 波多野结衣高清无吗| 国产精品女同一区二区软件 | 精华霜和精华液先用哪个| 日本爱情动作片www.在线观看 | 亚洲精品在线观看二区| 深夜精品福利| 色视频www国产| 国产免费男女视频| 久久久久久久久大av| 春色校园在线视频观看| 赤兔流量卡办理| 最好的美女福利视频网| 欧美成人a在线观看| 国产又黄又爽又无遮挡在线| 老熟妇仑乱视频hdxx| 国产一区二区亚洲精品在线观看| 国产精品伦人一区二区| 亚洲中文字幕日韩| 嫩草影院精品99| 欧美中文日本在线观看视频| 国产熟女欧美一区二区| 亚洲无线在线观看| 校园春色视频在线观看| av在线蜜桃| a级毛片免费高清观看在线播放| 日本撒尿小便嘘嘘汇集6| 老司机深夜福利视频在线观看| 亚洲精品成人久久久久久| 少妇猛男粗大的猛烈进出视频 | 精品久久久久久成人av| 国产高清视频在线播放一区| 校园人妻丝袜中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区视频在线观看免费| 变态另类丝袜制服| 校园人妻丝袜中文字幕| 精品久久久久久久久av| 成人性生交大片免费视频hd| 日本熟妇午夜| 波多野结衣高清作品| 18禁黄网站禁片午夜丰满| 搡老熟女国产l中国老女人| 在线观看一区二区三区| 午夜爱爱视频在线播放| 黄色配什么色好看| 久久中文看片网| 乱系列少妇在线播放| 搡老熟女国产l中国老女人| 一区福利在线观看| 国产淫片久久久久久久久| 亚洲国产日韩欧美精品在线观看| 免费电影在线观看免费观看| 乱系列少妇在线播放| 国产免费男女视频| 国产精品,欧美在线| 1024手机看黄色片| 人妻制服诱惑在线中文字幕| 99在线人妻在线中文字幕| 亚洲成a人片在线一区二区| 亚洲午夜理论影院| 91麻豆精品激情在线观看国产| www.www免费av| 国产av麻豆久久久久久久| 午夜福利在线在线| 禁无遮挡网站| 真实男女啪啪啪动态图| 一区二区三区高清视频在线| 欧美成人性av电影在线观看| 午夜激情福利司机影院| 色5月婷婷丁香| 99久久精品热视频| 久99久视频精品免费| 久久久久久久久久成人| 天堂√8在线中文| 俺也久久电影网| 韩国av在线不卡| 国产精品久久久久久久久免| 色av中文字幕| 久久精品国产亚洲av天美| 国产视频一区二区在线看| 男女边吃奶边做爰视频| 亚洲图色成人| av天堂在线播放| 男女视频在线观看网站免费| 啦啦啦韩国在线观看视频| 亚洲自拍偷在线| 亚洲精品久久国产高清桃花| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 免费看av在线观看网站| 免费在线观看影片大全网站| 色精品久久人妻99蜜桃| 国产精品人妻久久久久久| 变态另类丝袜制服| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久久久久丰满 | 久久久久久伊人网av| av国产免费在线观看| 国产精品,欧美在线| 色综合站精品国产| 精品午夜福利视频在线观看一区| 成人毛片a级毛片在线播放| 亚洲精品国产成人久久av| 一本一本综合久久| 亚洲精品456在线播放app | ponron亚洲| 国产精品无大码| 最后的刺客免费高清国语| 赤兔流量卡办理| eeuss影院久久| 99riav亚洲国产免费| 真实男女啪啪啪动态图| 久久国产乱子免费精品| 亚洲人与动物交配视频| 在线观看免费视频日本深夜| 两个人视频免费观看高清| 久久久精品大字幕| 久久精品国产自在天天线| 日韩亚洲欧美综合| 欧美最新免费一区二区三区| 男女之事视频高清在线观看| 亚洲中文日韩欧美视频| 亚洲av.av天堂| 99热6这里只有精品| 在线a可以看的网站| 亚洲狠狠婷婷综合久久图片| 欧美一级a爱片免费观看看| 无遮挡黄片免费观看| 亚洲欧美清纯卡通| 婷婷亚洲欧美| 日韩欧美免费精品| 亚洲在线观看片| 国产午夜精品久久久久久一区二区三区 | 亚洲中文字幕一区二区三区有码在线看| 亚洲av一区综合| 亚洲av成人精品一区久久| 亚洲成人精品中文字幕电影| 成年人黄色毛片网站| 一个人看视频在线观看www免费| 国产精品免费一区二区三区在线| 性欧美人与动物交配| 日本黄大片高清| 91在线精品国自产拍蜜月| 免费观看精品视频网站| 久久久久久久久大av| 亚洲一区高清亚洲精品| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| netflix在线观看网站| 我的女老师完整版在线观看| 午夜福利成人在线免费观看| 日韩欧美精品v在线| 给我免费播放毛片高清在线观看| 色综合色国产| 免费大片18禁| 看黄色毛片网站| 日韩欧美三级三区| 国产久久久一区二区三区| 婷婷精品国产亚洲av在线| 一本久久中文字幕| 亚洲专区国产一区二区| 欧美黑人欧美精品刺激| 久9热在线精品视频| 亚洲人成网站高清观看| 欧美日韩综合久久久久久 | 欧美xxxx黑人xx丫x性爽| 国产av一区在线观看免费| 永久网站在线| 欧美黑人巨大hd| 搡老熟女国产l中国老女人| 十八禁网站免费在线| 亚洲国产精品久久男人天堂| 亚洲成人中文字幕在线播放| 热99re8久久精品国产| 久久香蕉精品热| 欧美日韩乱码在线| 尾随美女入室| 国产一区二区三区在线臀色熟女| 看片在线看免费视频| 在线观看一区二区三区| 亚洲精品影视一区二区三区av| 国产单亲对白刺激| 99久国产av精品| 黄色一级大片看看| 成人三级黄色视频| 嫩草影院精品99| 51国产日韩欧美| 国产探花在线观看一区二区| 老熟妇仑乱视频hdxx| 听说在线观看完整版免费高清| 啦啦啦啦在线视频资源| 在线观看av片永久免费下载| 国产亚洲精品久久久com| 成人国产综合亚洲| 99九九线精品视频在线观看视频| 国产精品人妻久久久久久| 国产精品一区二区三区四区久久| 九色国产91popny在线| 亚洲精品一区av在线观看| 观看美女的网站| 亚洲黑人精品在线| 国产中年淑女户外野战色| 天堂av国产一区二区熟女人妻| 人妻夜夜爽99麻豆av| 偷拍熟女少妇极品色| 内地一区二区视频在线| 国产极品精品免费视频能看的| 国产成人福利小说| 在线播放国产精品三级| 久久99热这里只有精品18| 午夜激情福利司机影院| 亚洲精品亚洲一区二区| 51国产日韩欧美| 国内精品美女久久久久久| 97热精品久久久久久| 欧美精品啪啪一区二区三区| 日本爱情动作片www.在线观看 | 欧美又色又爽又黄视频| 国产成人aa在线观看| 欧美三级亚洲精品| 欧美成人a在线观看| 国产精品乱码一区二三区的特点| 超碰av人人做人人爽久久| 看片在线看免费视频| 亚洲国产欧洲综合997久久,| 老师上课跳d突然被开到最大视频| 国产一区二区在线观看日韩| 91精品国产九色| 午夜免费成人在线视频| 久久精品国产亚洲网站| 日韩欧美国产一区二区入口| 一级黄片播放器| 91久久精品电影网| 能在线免费观看的黄片| 国产精品综合久久久久久久免费| 最近在线观看免费完整版| 又紧又爽又黄一区二区| 18禁裸乳无遮挡免费网站照片| 亚洲av五月六月丁香网| 亚洲国产精品成人综合色| 亚洲最大成人中文| 最近中文字幕高清免费大全6 | 亚洲熟妇中文字幕五十中出| 亚洲三级黄色毛片| 国产黄a三级三级三级人| 天堂网av新在线| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 午夜福利欧美成人| 国产精品伦人一区二区| 日韩中字成人| 久久精品国产99精品国产亚洲性色| 国产av在哪里看| x7x7x7水蜜桃| 国产精品福利在线免费观看| 成年免费大片在线观看| 日本与韩国留学比较| x7x7x7水蜜桃| 亚洲乱码一区二区免费版| 无人区码免费观看不卡| 亚洲真实伦在线观看| 美女 人体艺术 gogo| 一进一出抽搐gif免费好疼| 最近在线观看免费完整版| 网址你懂的国产日韩在线| 欧美日韩中文字幕国产精品一区二区三区| 麻豆精品久久久久久蜜桃| 欧美精品啪啪一区二区三区| 高清日韩中文字幕在线| aaaaa片日本免费| 小说图片视频综合网站| 国产精品人妻久久久影院| 麻豆国产av国片精品| 午夜日韩欧美国产| 亚洲真实伦在线观看| 在线免费十八禁| 国产免费一级a男人的天堂| 亚洲四区av| 免费观看在线日韩| 久久久色成人| 国产精品综合久久久久久久免费| 国产中年淑女户外野战色| 精品人妻偷拍中文字幕| aaaaa片日本免费| av在线观看视频网站免费| aaaaa片日本免费| av中文乱码字幕在线| 两人在一起打扑克的视频| 日日啪夜夜撸| 男人狂女人下面高潮的视频| 欧美bdsm另类| 天堂影院成人在线观看| 深夜精品福利| av专区在线播放| 欧美日韩中文字幕国产精品一区二区三区| 韩国av一区二区三区四区| 中文字幕熟女人妻在线| 天天一区二区日本电影三级| 夜夜爽天天搞| 女同久久另类99精品国产91| 精品欧美国产一区二区三| 亚洲一区二区三区色噜噜| 欧美色视频一区免费| 999久久久精品免费观看国产| 真人一进一出gif抽搐免费| 国产高清视频在线播放一区| aaaaa片日本免费| 色在线成人网| 内地一区二区视频在线| 精品一区二区免费观看| 午夜精品一区二区三区免费看| 国产亚洲91精品色在线| 日韩欧美在线乱码| 日本爱情动作片www.在线观看 | 午夜福利18| 欧美成人免费av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美在线二视频| 日日撸夜夜添| 天堂网av新在线| 国产一区二区激情短视频| 日韩欧美在线乱码| 欧美成人性av电影在线观看| 欧美日韩综合久久久久久 | av福利片在线观看| 日本欧美国产在线视频| 97碰自拍视频| 精品午夜福利视频在线观看一区| 国产主播在线观看一区二区| 久久久久久久亚洲中文字幕| 国产免费av片在线观看野外av| 亚洲欧美激情综合另类| 在线国产一区二区在线| 3wmmmm亚洲av在线观看| 亚洲国产色片| 黄色日韩在线| 一个人免费在线观看电影| 国产av麻豆久久久久久久| 国产精品,欧美在线| 亚洲美女搞黄在线观看 | 午夜亚洲福利在线播放| 欧美最新免费一区二区三区| 久久国内精品自在自线图片| 久久热精品热| 女人被狂操c到高潮| 午夜a级毛片| 观看免费一级毛片| 国产男人的电影天堂91| 尾随美女入室| 欧美黑人巨大hd| 免费观看在线日韩| 韩国av在线不卡| 精品久久久久久久久亚洲 | 天堂√8在线中文| 人人妻人人看人人澡| 免费观看人在逋| 成人国产综合亚洲| 午夜精品在线福利| 亚洲精品一区av在线观看| 欧美日韩亚洲国产一区二区在线观看| 欧美在线一区亚洲| 国产亚洲精品综合一区在线观看| 超碰av人人做人人爽久久| 看十八女毛片水多多多| 日韩亚洲欧美综合| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 亚洲av成人av| 搡老熟女国产l中国老女人| 我要搜黄色片| 免费av不卡在线播放| 午夜免费激情av| 男女啪啪激烈高潮av片| 人妻久久中文字幕网| 日本 av在线| 亚洲在线观看片| 久久久精品欧美日韩精品| 国产精品一区二区三区四区免费观看 | 久久久久久国产a免费观看| 日韩欧美国产在线观看| 国产伦精品一区二区三区视频9| 精品99又大又爽又粗少妇毛片 | 日日摸夜夜添夜夜添av毛片 | 我的老师免费观看完整版| 国产中年淑女户外野战色| 黄片wwwwww| 国产在线精品亚洲第一网站| 天堂√8在线中文| 91在线观看av| 国产精品久久久久久av不卡| 国产高清视频在线播放一区| 蜜桃亚洲精品一区二区三区| 久久久久久久久久黄片| 搡老熟女国产l中国老女人| 观看美女的网站| 久久久久久久久久成人| 观看美女的网站| 成人永久免费在线观看视频| 免费大片18禁| 国产熟女欧美一区二区| 亚洲欧美激情综合另类| 色综合亚洲欧美另类图片| 国产激情偷乱视频一区二区| 日本a在线网址| 亚洲中文字幕日韩| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| 国产淫片久久久久久久久| av天堂在线播放| 日本在线视频免费播放| 久久久久久久午夜电影| 久久久久国产精品人妻aⅴ院| 亚洲最大成人手机在线| 亚洲自拍偷在线| 观看免费一级毛片| 国产精品女同一区二区软件 | 美女 人体艺术 gogo| 男女下面进入的视频免费午夜| 成人综合一区亚洲| 欧美性猛交╳xxx乱大交人| 亚洲国产精品合色在线| 国产淫片久久久久久久久| 美女大奶头视频| 国产成人a区在线观看| 深爱激情五月婷婷| 女同久久另类99精品国产91| 日本撒尿小便嘘嘘汇集6| 国产不卡一卡二| 中文字幕久久专区| 校园人妻丝袜中文字幕| 色哟哟哟哟哟哟| 中出人妻视频一区二区| 国产精品一区二区三区四区久久| 日韩国内少妇激情av| 午夜精品在线福利| 亚洲精品日韩av片在线观看| 国产色婷婷99| 女人十人毛片免费观看3o分钟| 日本黄大片高清| 蜜桃亚洲精品一区二区三区| 久久人人爽人人爽人人片va| 在线观看舔阴道视频| 午夜亚洲福利在线播放| 亚洲色图av天堂| 性插视频无遮挡在线免费观看| 日本成人三级电影网站| 性插视频无遮挡在线免费观看| 日本成人三级电影网站| 春色校园在线视频观看| 悠悠久久av| 亚洲人与动物交配视频| av在线观看视频网站免费| 桃色一区二区三区在线观看| 久久人人精品亚洲av| 男人狂女人下面高潮的视频| 午夜a级毛片| 黄色丝袜av网址大全| 91麻豆精品激情在线观看国产| 欧美国产日韩亚洲一区| 久久久久久久午夜电影| 看免费成人av毛片| 中国美女看黄片| 国产精品人妻久久久久久| 中国美白少妇内射xxxbb| 日韩欧美免费精品| 亚洲专区国产一区二区| 丝袜美腿在线中文| 999久久久精品免费观看国产| 欧美性感艳星| 国产毛片a区久久久久| 亚洲欧美清纯卡通| 国内少妇人妻偷人精品xxx网站| 久久久国产成人精品二区| 午夜a级毛片| 老女人水多毛片| 久久久久久国产a免费观看| 真实男女啪啪啪动态图| 99视频精品全部免费 在线| 少妇丰满av| 日韩大尺度精品在线看网址| 久久久久久大精品| 少妇熟女aⅴ在线视频| a级毛片免费高清观看在线播放| 不卡视频在线观看欧美| 一本久久中文字幕| av天堂在线播放| 国产精品永久免费网站| 成年女人永久免费观看视频| 伦精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 欧美一区二区精品小视频在线| 少妇人妻精品综合一区二区 | 桃红色精品国产亚洲av| 国产乱人视频| 成人二区视频| 久久久久久伊人网av| 中文字幕久久专区| av在线天堂中文字幕| 看十八女毛片水多多多| 亚洲av免费高清在线观看| 99国产极品粉嫩在线观看| 亚洲av电影不卡..在线观看| 精品乱码久久久久久99久播| 亚洲中文日韩欧美视频| 女人十人毛片免费观看3o分钟| 国产精品久久久久久久电影| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩无卡精品| 中文字幕人妻熟人妻熟丝袜美| 丰满人妻一区二区三区视频av| 日韩在线高清观看一区二区三区 | 黄色欧美视频在线观看| 久久久午夜欧美精品| 亚洲av电影不卡..在线观看| 亚州av有码| 亚洲成av人片在线播放无| 色播亚洲综合网| 永久网站在线| 久久久久性生活片| 国产主播在线观看一区二区| 免费在线观看日本一区| 欧美日韩乱码在线|