• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of fluid flow in a Brinkman porous medium-A numerical study*

    2014-06-01 12:30:02SHANKAR

    SHANKAR B. M.

    Department of Mathematics, PES Institute of Technology, Bangalore 560 085, India, E-mail: bmshankar@pes.edu KUMAR Jai

    ISRO Satellite Centre, Bangalore 560 017, India

    SHIVAKUMARA I. S.

    Department of Mathematics, Bangalore University, Bangalore 560 001, India

    NG Chiu-On (吳朝安)

    Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China

    Stability of fluid flow in a Brinkman porous medium-A numerical study*

    SHANKAR B. M.

    Department of Mathematics, PES Institute of Technology, Bangalore 560 085, India, E-mail: bmshankar@pes.edu KUMAR Jai

    ISRO Satellite Centre, Bangalore 560 017, India

    SHIVAKUMARA I. S.

    Department of Mathematics, Bangalore University, Bangalore 560 001, India

    NG Chiu-On (吳朝安)

    Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China

    (Received November 27, 2013, Revised May 5, 2014)

    The stability of fluid flow in a horizontal layer of Brinkman porous medium with fluid viscosity different from effective viscosity is investigated. A modified Orr-Sommerfeld equation is derived and solved numerically using the Chebyshev collocation method. The critical Reynolds numbercRe, the critical wave numbercα and the critical wave speedcc are computed for various values of porous parameter and ratio of viscosities. Based on these parameters, the stability characteristics of the system are discussed in detail. Streamlines are presented for selected values of parameters at their critical state.

    Brinkman model, Chebyshev collocation method, hydrodynamic stability, modified Orr-Sommerfeld equation

    Introduction

    The stability of fluid flows in a horizontal channel has been studied extensively and the copious literature available on this topic has been well documented in the book by Drazin and Reid[1]. The interesting finding is that the Poiseuille flow in a horizontal channel becomes unstable to infinitesimal disturbances when the Reynolds number exceeds the critical value 5 772. The corresponding problem in a porous medium has attracted limited attention of researchers despite its wide range of applications in geothermal operations, petroleum industries, thermal insulation and in the design of solid-matrix heat exchangers to mention a few. In particular, with the advent of hyperporous materials there has been a substantial increase in interest in the study of stability of fluid flows through porous media in recent years as it throws light on the onset of macroscopic turbulence in porous media[2].

    The hydrodynamic stability of flow of an incompressible fluid through a plane-parallel channel or circular duct filled with a saturated sparsely packed porous medium has been discussed on the basis of an analogy with a magneto-hydrodynamic problem by Nield[3]. Awartani and Hamdan[4]considered the stability of plane, parallel fully developed flow through porous channels and studied the effects of porous matrix and the microscopic inertia. The influence of slip boundary conditions on the modal and nonmodal stability of pressure-driven channel flows was studied by Lauga and Cossu[5]. By employing the Brinkman model with fluid viscosity same as effective viscosity, Makinde[6]investigated the temporal development of small disturbances in a pressure-driven fluid flow through a channel filled with a saturated porous medium. The critical stability parameters were obtained for a wide range of porous medium shape factor parameter. Besides, Makinde and Motsa[7]analyzed small disturbance stability of hydromagnetic steady flow between two parallel plates at a very small magnetic Reynolds number, while Makinde and Mhone[8]investigated the temporal stability of magneto-hydrodynamic Jeffery-Hamel flows at very small magnetic Reynolds number.

    Fig.1 Physical configuration

    1. Mathematical formulation

    We consider the flow of an incompressible viscous fluid through a layer of sparsely packed porous medium of thickness 2h, which is driven by an external pressure gradient. The bounding surfaces of the porous layer are considered to be rigid and a Cartesian coordinate system is chosen such that the origin is at the middle of the porous layer as shown in Fig.1.

    The governing equations are

    where q=(u,0,w) the velocity vector, ρ the fluid density, p the pressure, μethe effective viscosity, μ the viscosity of the fluid, k the permeability and ε the porosity of the porous medium. Let us render the above equations dimensionless using the quantities

    Substituting Eq.(9) into Eqs.(4) and (5), linearizingand restricting our attention to two-dimensional disturbances, we obtain (after discarding the asterisks for simplicity)

    To discuss the stability of the system, we use the normal mode solution of the form

    where =d/dDz is the differential operator. First, the pressure p is eliminated from the momentum equations by operating D on Eq.(15), multiplying Eq.(16) by iα and subtracting the resulting equations and then a stream function (,,)x z tψ is introduced through

    Equation (18) is the required stability equation which is the modified form of Orr-Sommerfeld equation and reduces to the one obtained for an ordinary viscous fluid if σp=0 and Λ=1.

    The boundaries are rigid and the appropriate boundary conditions are

    2. Method of solution

    Equation (18) together with the boundary conditions (19) constitutes an eigenvalue problem which has to be solved numerically. The resulting eigenvalue problem is solved using the Chebyshev collocation method.

    Table 1 Order of polynomial independence for σp=0.5, Re=20000, α=1 and Λ=1

    The thk order Chebyshev polynomial is given by

    Table 2 Comparison of critical stability parameters for values of A=Reε2(-dpb/dx) =2 and Λ=1

    The Chebyshev collocation points are given by

    Here, the upper and lower wall boundaries correspond to j=0 and N, respectively. The field variable ψ can be approximated in terms of the Chebyshev variable as follows

    The governing Eqs.(18) and (19) are discretized in terms of the Chebyshev variable z to get

    The above equations form the following system of linear algebraic equations

    Table 3 Variation of Rec, αcand ccfor different values of σpand Λ

    For fixed values of Λ, σpand Re, the values of c which ensure a non-trivial solution of Eq.(28) are obtained as the eigenvalues of the matrix B-1A From N+1 eigenvalues c(1),c(2),…,c( N+1), the one having the largest imaginary part of (c( p), say) is selected. In order to obtain the neutral stability curve, the value of Re for which the imaginary part of c( p) vanishes is sought. Let this value of Re be Req. The lowest point of Reqas a function of α gives the critical Reynolds number Recand the critical wave number αc. The real part of c( p) corresponding to Recand αcgives the critical wave speed cc. This procedure is repeated for various values of Λ and σp.

    3. Results and discussion

    The stability of fluid flow in a horizontal layer of Brinkman porous medium with fluid viscosity different from effective viscosity is investigated using the Chebyshev collocation method. To know the accuracy of the method employed, it is instructive to look at the wave speed as a function of order of Chebyshev polynomials. Table 1 illustrates this aspect for different orders of Chebyshev polynomials ranging from 1 to 100. It is observed that four digit point accuracy was achieved by retaining 51 terms in Eq.(22). As the number of terms increases in Eq.(22), the results are found to remain consistent and the accuracy improved up to 7 digits and 10 digits for N=80 and N=100, respectively. In the present study, the results are presented by taking N=80 in Eq.(22). To compare our results with those of Makinde[6], the results obtained for different values of porous parameter for a fixed value of A=Reε2(-dpb/dx)=2 and Λ=1 are tabulated in Table 2. The results are in good agreement and confirm the validity of numerical method employed.

    Fig.2 Neutral curves for different values of pσ and Λ

    Fig.3 Variation of pσ for two values of Λ

    As was pointed out in the introduction, the Brinkman model rests on an effective viscosity μedifferent from fluid viscosity μ denoted through Λ in dimensionless form and it has a determinative influence on the stability of the system. The critical stability parameters computed for various values of Λ=1, 2, 3 and 5 as well as porous parameter σpare tabulated in Table 3. The results for σp=0 and Λ=1 in Table 3 correspond to the stability of classical plane-Poiseuille flow. For this case, it is seen that the critical Reynolds number Rec=5772.955239, the critical wave number αc=1.02 and the critical wave speed cc=0.264872176035885which are in excellent agreement with those reported in the literature[1]. From the table it is obvious that increasing Λ is to increase Recsignificantly though not αcand cc. Thus increase in Λ has a stabilizing effect on the fluid flow due to increase in the viscous diffusion. Besides, increase in the porous parameter is to increase Recand thus it has a stabilizing effect on the fluid flow due to decrease in the permeability of the porous medium.

    The neutral stability curves are displayed in Fig.2 for different values of σpand for two values of Λ=1 and 2. The portion below each neutral curve corresponds to stable region and the region above corresponds to instability one. It may be noted that, increase in σpand Λ is to increase the region of stability. The lowest curve in the figure corresponds to the classical plane-Poiseuille flow case.

    Fig.4 Variation of growth rate Im(αc) against α for different values

    Figures 3(a), 3(b) and 3(c), respectively, show the variation of Rec, αcand ccas a function of porous parameter σpfor two values of Λ=1 and 2. It is observed that increase in σpand Λ is to reinforce stability on the system. The critical wave number exhibits a decreasing trend initially with σpbut increases with further increase in σp. Although initially the critical wave number for Λ=2 are higher than thoseof Λ=1, the trend gets reversed with increasing values of σp. The critical wave speed decreases with increasing porous parameter (σp=0 to 10) and remains constant as σpincreases further. Moreover, the critical wave speed decreases with increasing Λ and becomes independent of ratio of viscosities with increasing porous parameter.

    Fig.5 Streamlines for =1Λ

    Fig.6 Streamlines for =2Λ

    The variation in the growth rate of the most unstable mode against the wave number for different values of porous parameter with Λ=1 and for different values of ratio of viscosities with σp=3 is illustrated in Figs.4(a) and 4(b), respectively. It is observed that increase in the value of porous parameter is to suppre-ss the disturbances and thus its effect is to eliminate the growth of small disturbances in the flow. Although similar is the effect with increasing the value of ratio of viscosities at lower and higher wave number regions, an opposite kind of behavior could be seen at intermediate values of wave number.

    Figures 5 and 6 show the streamlines for different values of σpfor Λ=1 and 2, respectively at their critical state. In the figures, dashed and solid lines represent negative and positive values, of ψ, respectively. It is observed that there is a significant variation in the streamlines pattern with varying σpand Λ. As the value of σpincreases from 0 to 5, the strength of secondary flow decreases but flow profile remains same. In this regime, convective cells are unicellular and cells are spread throughout the domain. Figure 5(d) indicates that for σp=20, secondary flow becomes double-cellular but flow is only near to walls of the channel. But it is not true for Λ=2 for the same σp. As the value of σpincreases further the flow strength again increases and convective cells become unicellular. The streamlines pattern illustrated in Fig.6 for Λ=2 exhibits a similar behavior.

    4. Conclusion

    The temporal development of infinitesimal disturbances in a horizontal layer of Brinkman porous medium with fluid viscosity different from effective viscosity has been studied numerically using the Chebyshev collocation method. It is found that the ratio of viscosities has a profound effect on the stability of the system and increase in its value is to stabilize the fluid flow. Nonetheless, its effect on the critical wave number and the critical wave speed is found to be insignificant. Besides, increase in the value of porous parameter has stabilizing effect on the fluid flow. The secondary flow for =Λ1 and 2 is spread throughout the domain at lower values ofpσ but confined in the middle of the domain at higher values. Secondary flow pattern remains the same for both values of viscosity ratios considered here.

    Acknowledgements

    The author B. M. S. wishes to thank the Head of the Department of Science and Humanities, Principal and the Management of the College for Encouragement. The authors wish to thank the reviewers for their useful suggestions.

    [1] DRAZIN P. G., REID W. H. Hydrodynamic stability[M]. Cambridge, UK: Cambridge University Press, 2004.

    [2] INGHAM D. B., POP I. Transport phenomena in porous media II[M]. Oxford, UK: Elsevier Science, 2002, 198-230.

    [3] NIELD D. A. The stability of flow in a channel or duct occupied by a porous medium[J]. International Journal of Heat and Mass Transfer, 2003, 46(22): 4351-4354.

    [4] AWARTANI M. M., HAMDAN M. H. Fully developed flow through a porous channel bounded by flat plates[J]. Applied Mathematics and Computation, 2005, 169(2): 749-757.

    [5] LAUGA E., COSSU C. A note on the stability of slip channel flows[J]. Physics of Fluids, 2005, 17(8): 088106.

    [6] MAKINDE O. D. On the Chebyshev collocation spectral approach to stability of fluid flow in a porous medium[J]. International Journal for Numerical Methods in Fluids, 2009, 59(7): 791-799.

    [7] MAKINDE O. D., MOTSA S. S. Hydromagnetic stability of plane-Poiseuille flow using Chebyshev spectral collocation method[J]. Journal of Institute of Mathe-

    [8] MAKINDE O. D., MHONE P. Y. Temporal stability of matics and Computer Sciences, 2001, 12(2): 175-183. small disturbances in MHD Jeffery-Hamel flows[J]. Computers and Mathematics with Applications, 2007, 53(1): 128-136.

    [9] MAKINDE O. D., MHONE P. Y. On temporal stability analysis for hydromagnetic flow in a channel filled with a saturated porous medium[J]. Flow, Turbulence and Combustion, 2009, 83(1): 21-32.

    [10] RUDRAIAH N., SHANKAR B. M. and NG C. O. Electrohydrodynamic stability of couple stress fluid flow in a channel occupied by a porous medium[J]. Special Topics and Reviews in Porous Media-An International Journal, 2011, 2(1): 11-22.

    [11] COUTINHO J. E. A., De LEMOS M. J. S. Laminar flow with combustion in inert porous media[J]. International Communications in Heat and Mass Transfer, 2012, 39(7): 896-903.

    [12] SUNDARAVADIVELU K., TSO C. P. Influence of viscosity variations on the forced convection flow through two types of heterogeneous porous media with isoflux boundary condition[J]. International Journal of Heat and Mass Transfer, 2003, 46(13): 2329-2339.

    [13] VALDES-PARADA F. J., OCHOA-TAPIA J. A. and ALVAREZ-RAMIREZ J. On the effective viscosity for the Darcy-Brinkman equation[J]. Physica A-Statistical Mechanics and Its Applications, 2007, 385(1): 69-79.

    [14] KRASNOV D. S., ZIENICKE E. and ZIKANOV O. et al. Numerical study of the instability of the Hartmann layer[J]. Journal of Fluid Mechanics, 2004, 504: 183-211.

    [15] GOLUB G. H., Van Der VORST H. A. Eigenvalue computation in the 20th century[J]. Journal of Computational and Applied Mathematics, 2000, 123(1-2): 35-65.

    10.1016/S1001-6058(14)60076-7

    * Project supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant No. HKU 715510E).

    Biography: SHANKAR B. M. (1985-), Male, Ph. D.,

    Assistant Professor

    NG Chiu-On,

    E-mail: cong@hku.hk

    日韩中文字幕欧美一区二区| 757午夜福利合集在线观看| 国产一级毛片七仙女欲春2 | 欧美人与性动交α欧美精品济南到| 丝袜美腿诱惑在线| 熟妇人妻久久中文字幕3abv| 欧美 亚洲 国产 日韩一| 中文资源天堂在线| 色婷婷久久久亚洲欧美| 亚洲一区二区三区色噜噜| 免费观看精品视频网站| 九色国产91popny在线| 看免费av毛片| 淫妇啪啪啪对白视频| 久久国产精品人妻蜜桃| 国产精品一区二区免费欧美| 黄色毛片三级朝国网站| 中文字幕av电影在线播放| 中文资源天堂在线| 久久久久国产精品人妻aⅴ院| 天天一区二区日本电影三级| 欧美精品亚洲一区二区| 中文亚洲av片在线观看爽| 不卡一级毛片| 动漫黄色视频在线观看| www日本黄色视频网| 一个人免费在线观看的高清视频| 制服诱惑二区| 观看免费一级毛片| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 中亚洲国语对白在线视频| 国产亚洲欧美精品永久| 欧美绝顶高潮抽搐喷水| 免费看a级黄色片| 国产一区二区三区在线臀色熟女| 在线观看免费午夜福利视频| 亚洲 欧美一区二区三区| 国产视频一区二区在线看| 午夜福利一区二区在线看| 国产成人精品无人区| 女人被狂操c到高潮| 欧美乱码精品一区二区三区| 国产av在哪里看| 久久久水蜜桃国产精品网| 黄片大片在线免费观看| 久久人妻av系列| 亚洲专区国产一区二区| 婷婷六月久久综合丁香| 人成视频在线观看免费观看| 成熟少妇高潮喷水视频| 岛国在线观看网站| 欧美在线黄色| 大型av网站在线播放| 国产v大片淫在线免费观看| av电影中文网址| 亚洲精品在线观看二区| or卡值多少钱| 很黄的视频免费| 9191精品国产免费久久| 人人妻人人澡欧美一区二区| 成在线人永久免费视频| 97超级碰碰碰精品色视频在线观看| 精品国产国语对白av| 男人舔女人的私密视频| 90打野战视频偷拍视频| 国产视频内射| 搞女人的毛片| 亚洲熟妇熟女久久| 在线观看免费视频日本深夜| 女人爽到高潮嗷嗷叫在线视频| 天天一区二区日本电影三级| 日韩国内少妇激情av| 一边摸一边做爽爽视频免费| 午夜福利高清视频| 丁香欧美五月| 免费电影在线观看免费观看| 欧美性猛交黑人性爽| 母亲3免费完整高清在线观看| 最近在线观看免费完整版| 成年免费大片在线观看| 日本三级黄在线观看| 免费无遮挡裸体视频| 国产精品香港三级国产av潘金莲| 99久久无色码亚洲精品果冻| 色尼玛亚洲综合影院| av免费在线观看网站| 久久99热这里只有精品18| 久久久久国内视频| 我的亚洲天堂| 成人av一区二区三区在线看| 琪琪午夜伦伦电影理论片6080| 99久久国产精品久久久| 9191精品国产免费久久| 久久人人精品亚洲av| 极品教师在线免费播放| 人妻久久中文字幕网| 香蕉久久夜色| 久久国产精品男人的天堂亚洲| 亚洲av熟女| 亚洲国产中文字幕在线视频| 精品不卡国产一区二区三区| 88av欧美| 最近在线观看免费完整版| 黄色毛片三级朝国网站| 成人国产一区最新在线观看| av在线天堂中文字幕| 精品久久蜜臀av无| 欧美日韩精品网址| 日韩欧美三级三区| 好男人在线观看高清免费视频 | 亚洲精品久久成人aⅴ小说| 日韩三级视频一区二区三区| 一级作爱视频免费观看| 看片在线看免费视频| 91字幕亚洲| 精品久久久久久久毛片微露脸| 国产精品美女特级片免费视频播放器 | 在线十欧美十亚洲十日本专区| 99精品在免费线老司机午夜| 欧美日韩精品网址| 欧美日本亚洲视频在线播放| 日产精品乱码卡一卡2卡三| 亚洲成人精品中文字幕电影| 亚洲精品一区av在线观看| 美女黄网站色视频| 欧美性猛交黑人性爽| 91久久精品国产一区二区成人| 亚洲欧美日韩高清专用| 99久国产av精品| 天堂av国产一区二区熟女人妻| 女同久久另类99精品国产91| 一级a爱片免费观看的视频| 麻豆国产97在线/欧美| 97热精品久久久久久| 欧美丝袜亚洲另类| a级一级毛片免费在线观看| 国语自产精品视频在线第100页| 在线观看av片永久免费下载| 亚洲精品亚洲一区二区| 欧美日本亚洲视频在线播放| 丰满人妻一区二区三区视频av| 嫩草影院入口| 日本黄色片子视频| a级一级毛片免费在线观看| 久久鲁丝午夜福利片| 午夜福利在线在线| 国产伦精品一区二区三区视频9| 国产精品,欧美在线| 成人漫画全彩无遮挡| 美女内射精品一级片tv| 国内精品宾馆在线| 久久精品国产亚洲av天美| 国产亚洲精品av在线| 亚洲成人久久性| 精品一区二区免费观看| 俄罗斯特黄特色一大片| 毛片女人毛片| 欧洲精品卡2卡3卡4卡5卡区| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜 | 欧美成人a在线观看| 国产精品一区二区三区四区久久| 能在线免费观看的黄片| 搞女人的毛片| 97超视频在线观看视频| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av涩爱 | av视频在线观看入口| 久久人妻av系列| 波多野结衣高清无吗| 亚洲欧美日韩卡通动漫| 日韩大尺度精品在线看网址| 国产真实伦视频高清在线观看| 嫩草影院入口| 成人精品一区二区免费| 在线观看一区二区三区| 精品久久久久久久末码| 中文字幕免费在线视频6| 99九九线精品视频在线观看视频| 99九九线精品视频在线观看视频| 最近手机中文字幕大全| 在线观看午夜福利视频| 欧美成人免费av一区二区三区| 国产在视频线在精品| 成人欧美大片| 精品熟女少妇av免费看| 亚洲精品一区av在线观看| 成人特级av手机在线观看| 成人av在线播放网站| 天堂影院成人在线观看| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看| 一本久久中文字幕| 人人妻人人看人人澡| 欧美bdsm另类| 国产精品美女特级片免费视频播放器| 黄色配什么色好看| 女生性感内裤真人,穿戴方法视频| 老司机福利观看| 日本-黄色视频高清免费观看| av在线天堂中文字幕| 久久精品国产鲁丝片午夜精品| 一进一出抽搐gif免费好疼| 精品免费久久久久久久清纯| 亚洲在线观看片| 亚洲成人精品中文字幕电影| 午夜精品在线福利| 久久久久国产网址| 久久精品影院6| 特大巨黑吊av在线直播| 亚洲中文字幕一区二区三区有码在线看| 俄罗斯特黄特色一大片| 久久久精品大字幕| 男人舔女人下体高潮全视频| 欧美xxxx性猛交bbbb| 网址你懂的国产日韩在线| 亚洲国产欧美人成| 日本三级黄在线观看| 亚洲精品在线观看二区| 亚洲精品国产av成人精品 | 精品午夜福利在线看| 一级av片app| 日本黄大片高清| 嫩草影院新地址| av在线老鸭窝| 久久精品国产自在天天线| av女优亚洲男人天堂| 黄色配什么色好看| 国产精品爽爽va在线观看网站| 国产精品永久免费网站| 日日啪夜夜撸| 亚洲四区av| 日韩,欧美,国产一区二区三区 | 99热网站在线观看| 一级av片app| 成人av一区二区三区在线看| 中国美女看黄片| 欧美日本视频| 精品午夜福利在线看| 欧美极品一区二区三区四区| 久久久午夜欧美精品| 一本久久中文字幕| 人妻制服诱惑在线中文字幕| 综合色av麻豆| 国产成人a区在线观看| 少妇被粗大猛烈的视频| aaaaa片日本免费| 永久网站在线| 国产成人a∨麻豆精品| 久久久精品大字幕| 长腿黑丝高跟| 非洲黑人性xxxx精品又粗又长| 看十八女毛片水多多多| 亚洲性夜色夜夜综合| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| aaaaa片日本免费| 寂寞人妻少妇视频99o| 国产成人a∨麻豆精品| 久久久欧美国产精品| 国产一区亚洲一区在线观看| 国产精品综合久久久久久久免费| 男女啪啪激烈高潮av片| 久久久久国内视频| 看免费成人av毛片| 欧美性猛交╳xxx乱大交人| 国产成人a区在线观看| 久久精品夜夜夜夜夜久久蜜豆| aaaaa片日本免费| 精品一区二区三区人妻视频| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩东京热| 亚洲国产欧美人成| 精品久久久久久久久久免费视频| 久久精品久久久久久噜噜老黄 | 国内精品宾馆在线| 成人亚洲欧美一区二区av| 免费大片18禁| 亚洲人成网站在线观看播放| 五月玫瑰六月丁香| 国内久久婷婷六月综合欲色啪| 无遮挡黄片免费观看| 久99久视频精品免费| 你懂的网址亚洲精品在线观看 | 久久综合国产亚洲精品| 国产在线男女| 国产欧美日韩精品亚洲av| 在线播放国产精品三级| 精华霜和精华液先用哪个| 欧美xxxx性猛交bbbb| 国产午夜福利久久久久久| 免费搜索国产男女视频| 伊人久久精品亚洲午夜| 久久综合国产亚洲精品| 欧美高清成人免费视频www| 国产欧美日韩精品亚洲av| 精品人妻一区二区三区麻豆 | 国产日本99.免费观看| 悠悠久久av| 性色avwww在线观看| 少妇高潮的动态图| 最近中文字幕高清免费大全6| 18+在线观看网站| 国产亚洲91精品色在线| 国产又黄又爽又无遮挡在线| 草草在线视频免费看| 99久国产av精品| 亚洲精品一区av在线观看| 熟女人妻精品中文字幕| 成人av一区二区三区在线看| 日本欧美国产在线视频| 中文亚洲av片在线观看爽| 国产精品久久久久久av不卡| 少妇高潮的动态图| av视频在线观看入口| 国产精品亚洲美女久久久| 一级毛片电影观看 | 日韩 亚洲 欧美在线| av.在线天堂| 久久天躁狠狠躁夜夜2o2o| 少妇熟女aⅴ在线视频| 色哟哟·www| 国产精品久久久久久久久免| 国产熟女欧美一区二区| 综合色av麻豆| 麻豆精品久久久久久蜜桃| 波野结衣二区三区在线| 可以在线观看的亚洲视频| 干丝袜人妻中文字幕| 人人妻人人看人人澡| 亚洲成人精品中文字幕电影| 中国美女看黄片| av在线老鸭窝| 婷婷精品国产亚洲av在线| 一区二区三区四区激情视频 | 麻豆成人午夜福利视频| 亚洲人成网站在线观看播放| 看非洲黑人一级黄片| 禁无遮挡网站| 国产在线男女| 精品国产三级普通话版| 欧美激情在线99| 欧美一级a爱片免费观看看| 免费看a级黄色片| 国产麻豆成人av免费视频| 免费在线观看影片大全网站| 国产片特级美女逼逼视频| 亚洲国产高清在线一区二区三| 欧美成人一区二区免费高清观看| 亚洲经典国产精华液单| 六月丁香七月| 国产老妇女一区| 欧美成人一区二区免费高清观看| 国产精品亚洲一级av第二区| 最近手机中文字幕大全| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品国产av成人精品 | 国产黄色视频一区二区在线观看 | 欧美区成人在线视频| 欧美xxxx黑人xx丫x性爽| 成年版毛片免费区| 欧美xxxx黑人xx丫x性爽| av福利片在线观看| 嫩草影院入口| 中文亚洲av片在线观看爽| 一本久久中文字幕| 不卡一级毛片| 精品人妻熟女av久视频| 国产三级中文精品| 一进一出抽搐动态| 午夜福利在线在线| 成人二区视频| 国内揄拍国产精品人妻在线| 尤物成人国产欧美一区二区三区| 丰满人妻一区二区三区视频av| 久久人妻av系列| 日韩三级伦理在线观看| 可以在线观看毛片的网站| 精品久久国产蜜桃| 久久久久久久久中文| 国产欧美日韩精品亚洲av| 99热精品在线国产| 亚洲无线在线观看| 伦精品一区二区三区| 搡老妇女老女人老熟妇| 大香蕉久久网| 午夜老司机福利剧场| 国产视频一区二区在线看| 禁无遮挡网站| 国内少妇人妻偷人精品xxx网站| 成人av在线播放网站| 日韩av不卡免费在线播放| 少妇人妻精品综合一区二区 | 九九久久精品国产亚洲av麻豆| 久久精品国产鲁丝片午夜精品| 香蕉av资源在线| 国产又黄又爽又无遮挡在线| 久久精品影院6| 看片在线看免费视频| 国产精品爽爽va在线观看网站| 内地一区二区视频在线| 国产v大片淫在线免费观看| 少妇人妻一区二区三区视频| 精品日产1卡2卡| 日韩中字成人| 直男gayav资源| 国产私拍福利视频在线观看| 亚洲在线观看片| 有码 亚洲区| 午夜日韩欧美国产| 天美传媒精品一区二区| 国产精品1区2区在线观看.| 亚洲va在线va天堂va国产| 亚洲欧美精品自产自拍| 亚洲成人久久爱视频| 人人妻,人人澡人人爽秒播| 国产视频内射| 成人国产麻豆网| 国产av一区在线观看免费| 国产精品国产三级国产av玫瑰| 亚洲在线自拍视频| 丰满乱子伦码专区| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 国产精品久久久久久久电影| 国产精品美女特级片免费视频播放器| 国产午夜精品久久久久久一区二区三区 | 欧美丝袜亚洲另类| 久久精品国产自在天天线| 久久久久久久久久久丰满| 黑人高潮一二区| 精品久久久久久久人妻蜜臀av| av在线天堂中文字幕| 亚洲国产精品合色在线| 国产成人影院久久av| 亚洲成人久久性| 精品无人区乱码1区二区| 91av网一区二区| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 欧美激情国产日韩精品一区| 中国美女看黄片| av在线蜜桃| 少妇熟女欧美另类| 国内揄拍国产精品人妻在线| 午夜精品一区二区三区免费看| 九九热线精品视视频播放| 国产探花极品一区二区| 欧美成人一区二区免费高清观看| 国产精品综合久久久久久久免费| 国产69精品久久久久777片| eeuss影院久久| 亚洲图色成人| 哪里可以看免费的av片| 毛片一级片免费看久久久久| 亚洲国产高清在线一区二区三| 欧美色视频一区免费| av中文乱码字幕在线| 精品99又大又爽又粗少妇毛片| 高清日韩中文字幕在线| 少妇的逼水好多| 亚洲七黄色美女视频| 国产视频一区二区在线看| 国产精品一区www在线观看| 国产午夜精品久久久久久一区二区三区 | 一个人看视频在线观看www免费| 毛片一级片免费看久久久久| 1000部很黄的大片| 欧美中文日本在线观看视频| 99久久精品热视频| 国产激情偷乱视频一区二区| 国产黄色小视频在线观看| 一个人看的www免费观看视频| 久久午夜亚洲精品久久| 2021天堂中文幕一二区在线观| 亚洲人成网站在线播| 久久久久久久久久黄片| 久久久久免费精品人妻一区二区| 午夜福利在线观看吧| 一区二区三区高清视频在线| 免费看av在线观看网站| 国产精品免费一区二区三区在线| 亚洲中文日韩欧美视频| 欧美zozozo另类| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 亚洲综合色惰| 看片在线看免费视频| 岛国在线免费视频观看| 久久久a久久爽久久v久久| 嫩草影视91久久| 精品午夜福利视频在线观看一区| 国产 一区精品| 晚上一个人看的免费电影| 午夜福利18| 国产亚洲欧美98| 日韩欧美国产在线观看| 亚洲中文字幕日韩| 亚洲婷婷狠狠爱综合网| 黄色一级大片看看| 色播亚洲综合网| 免费看光身美女| 听说在线观看完整版免费高清| 国产伦精品一区二区三区四那| 国产av不卡久久| 99热精品在线国产| 国产黄a三级三级三级人| 久久久精品大字幕| 天堂动漫精品| 大又大粗又爽又黄少妇毛片口| 长腿黑丝高跟| av专区在线播放| 精品久久久久久久久av| 天堂av国产一区二区熟女人妻| 床上黄色一级片| 麻豆一二三区av精品| a级毛片免费高清观看在线播放| 波多野结衣巨乳人妻| 国产一区二区三区在线臀色熟女| 在线播放无遮挡| 免费大片18禁| 国内精品一区二区在线观看| 国产精品久久视频播放| 亚洲精品亚洲一区二区| 亚洲第一电影网av| a级毛片a级免费在线| 国语自产精品视频在线第100页| 简卡轻食公司| 精品国产三级普通话版| 亚洲中文日韩欧美视频| 成人无遮挡网站| 日产精品乱码卡一卡2卡三| 又爽又黄a免费视频| 嫩草影院精品99| 女同久久另类99精品国产91| 成年免费大片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 国产高清视频在线播放一区| 国产中年淑女户外野战色| 日本五十路高清| 国产精品一区二区三区四区久久| 亚洲av电影不卡..在线观看| www日本黄色视频网| 99热这里只有精品一区| 国产蜜桃级精品一区二区三区| 国产av一区在线观看免费| 免费不卡的大黄色大毛片视频在线观看 | 99热全是精品| 国产私拍福利视频在线观看| 尾随美女入室| 一本一本综合久久| 一级a爱片免费观看的视频| 久久久精品大字幕| 日本爱情动作片www.在线观看 | 夜夜爽天天搞| 成人av一区二区三区在线看| 成年av动漫网址| 亚洲自偷自拍三级| 看片在线看免费视频| 深爱激情五月婷婷| 高清午夜精品一区二区三区 | 不卡视频在线观看欧美| 别揉我奶头~嗯~啊~动态视频| 国产不卡一卡二| 真人做人爱边吃奶动态| 久久午夜福利片| 亚洲真实伦在线观看| 精品久久久久久久久久免费视频| 成人午夜高清在线视频| 久久热精品热| 国内久久婷婷六月综合欲色啪| av在线天堂中文字幕| 亚洲中文字幕一区二区三区有码在线看| 极品教师在线视频| 国产一区二区激情短视频| 亚洲av二区三区四区| 99热全是精品| 五月玫瑰六月丁香| 老熟妇乱子伦视频在线观看| 精品无人区乱码1区二区| 在线播放国产精品三级| 国产成人一区二区在线| 午夜精品在线福利| 最新中文字幕久久久久| 日韩在线高清观看一区二区三区| 毛片女人毛片| 欧美bdsm另类| 97超碰精品成人国产| 国内精品宾馆在线| 男女下面进入的视频免费午夜| 国产精品人妻久久久久久| 午夜福利视频1000在线观看| 一级a爱片免费观看的视频| a级一级毛片免费在线观看| 插阴视频在线观看视频| 美女大奶头视频| 亚洲av五月六月丁香网| 非洲黑人性xxxx精品又粗又长| 99热只有精品国产| 久久鲁丝午夜福利片| 熟女人妻精品中文字幕| 国产精品免费一区二区三区在线| 成人高潮视频无遮挡免费网站| 乱系列少妇在线播放| 国产高清激情床上av| 中文字幕久久专区| 偷拍熟女少妇极品色| 亚洲av二区三区四区| 老司机影院成人| 亚洲精品一区av在线观看| 欧美另类亚洲清纯唯美| 日本精品一区二区三区蜜桃|