• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle*

    2014-06-01 12:30:02CHENXin陳鑫LUChuanjing魯傳敬CHENYing陳瑛CAOJiayi曹嘉怡
    關(guān)鍵詞:陳鑫

    CHEN Xin (陳鑫), LU Chuan-jing (魯傳敬), CHEN Ying (陳瑛), CAO Jia-yi (曹嘉怡)

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: xinchen@sjtu.edu.cn

    A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle*

    CHEN Xin (陳鑫), LU Chuan-jing (魯傳敬), CHEN Ying (陳瑛), CAO Jia-yi (曹嘉怡)

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: xinchen@sjtu.edu.cn

    (Received March 15, 2013, Revised January 14, 2014)

    When a high-speed cavitated weapon moves under water, the flow properties are important issues for the sake of the trajectory predication and control. In this paper, a single-fluid multiphase flow method coupled with a natural cavitation model is proposed to numerically simulate the free moving phase of an underwater supercavitated vehicle under the action of the external thrust. The influence of the cavitator’s deflection angle ranging from -3oto 3oon the cavity pattern, the hydrodynamics and the underwater trajectory is investigated. Based on computational results, several conclusions are qualitatively drawn by an analysis. The deflection angle has very little effect on the cavity pattern. When the deflection angle increases, the variation curves of the vertical linear velocity, the lift coefficient and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients will be and the higher the pitching moment coefficient becomes. At the finishing time of the free moving phase, when the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle is less than -1oor greater than 1o, the position of the center of mass and the pitching angle change greatly. If a proper deflection angle of the cavitator is adopted, the underwater vehicle can navigate in a pseudo-fixed depth.

    cavitation, multiphase, underwater trajectory, dynamic mesh

    Introduction

    When a high-speed weapon covered with natural and ventilated cavities moves under water, the flow features are important issues for the research and development. Because of some unavoidable objective factors in the process of trajectory controls, such as that of adjusting the deflection angle of the cavitator, there exist abnormal deviations in the cavity pattern, the hydrodynamics and the underwater trajectory in some phase of motion. These deviations can degrade the weapon’s combat performance. Thus, the prediction of the flow properties of the vehicle is very important.

    For a submarine-launched missile model under the action of a fixed external thrust, Wang et al.[1]experimentally measured the thrust, the pressure overload and the structural strain of the model, and theoretically analyzed the underwater trajectory. Based on the theorems of the momentum and the moment of the momentum, Zhang et al.[2]built a mathematical model of the trajectory for a carrier with six degrees of freedom in the dynamic coordinate system. They proposed a control scheme of a rocket-assisted torpedo’s underwater trajectory using MATLAB/SIMULINK. Gu et al.[3]studied a problem of the underwater trajectory for a mine launched from a submarine in the phase of motion without external forces, and they put forward a theoretical model to analyze the underwater trajectory under the effect of the current in the simulation environment of MATLAB. An improved control and guidance system for supercavitating vehicles was designed. Cao et al.[4]established simplified equationsfor the longitudinal motion of supercavitating vehicles to simulate the trajectory of vehicles travelling at a speed of around 90 m/s. The calculating results show that the motion of a supercavitating vehicle at changeable depth and direction can be handled using typical control schemes of the top steer without a feedback system.

    The previous simulations are mostly carried out in the framework of self-developed programs or other tools like MATLAB based on many hypotheses using several semi-experimental and semi-theoretical formulas. These studies point to a kind of study method, to obtain the laws of vehicles’ motion affected by single-factor or multi-factors in an ideal state. However, with the development of computer hardware and numerical techniques, it is possible to couple the solution of the flow field and the body’s motion. This kind of study method[5]is advantageous in analyzing the flow structures and the mechanisms of a complicated physical phenomenon.

    1. Governing equations of the flow field

    The vapor phase should also satisfy the continuity condition during the phase-transition process[8]

    where ρ is the density, t stands for the time, u denotes the velocity vector, p is the pressure, the subscripts m, l and v, respectively, indicate the mixture, the liquid phase and the vapor phase.

    The volume fractions of the phases satisfy

    Additionally, two individual transport equations are employed to describe the phase-transition process between the vapor and the liquid.

    where RBis the radius of the vapor bubble, and a value of 10-6m is selected, αnucdenotes the volume fraction of the gas nuclei in the liquid, and here a value of 10-5is specified. In addition, Fvap=0.02, Fcond=0.001.

    2. Equations of motion for the free rigid body

    2.1Coordinate system

    The coordinate systems with the right-hand rule are defined as in Fig.1. The superscripts I and B refer to the inertial system and the body system, respectively. The cavitator’s deflection angle αd(<90o) is determined by the anticlockwise angle from the axis of yBto the plane of the cavitator. The different lift force can be obtained by adjusting the deflection angle to change the body’s attitude motion.

    Fig.1 The coordinate systems, cavitator’s deflection angle

    2.2Governing equations

    In the inertial coordinate system, the body’s translational motion is governed by the equation

    After the accelerations are computed from Eq.(8) and Eq.(9), the velocities, the coordinates of the body’s center of mass and the angular velocities, the Euler angles are derived by an explicit difference scheme.

    2.3Dynamic mesh method

    The dynamic mesh method can be used to model the flows where the shape of the domain changes with time due to the motion on the domain boundaries. The motion can be a prescribed motion or/and unprecribed motion where the sequence motion is determined based on the solution at the current time. The updating of the volume mesh is handled automatically at each time step on the basis of the new positions of the boundaries. At present, there are three kinds of dynamic mesh methods used widely: the fixed-grid method[15], the sliding mesh method[16]and the local remeshing method[17].

    In the process of updating the volume mesh, the integral form of the conservation equation for a general scalar ζ on an arbitrary control volume V with a moving boundary can be expressed as

    where ugis the mesh velocity of the moving mesh, λ is the diffusion coefficient, Sζis the source term of ζ, A is used to represent the boundary of the control volume V.

    In the fixed-grid method adopted in this paper, the mesh in the computational domain moves with the motion of the body. In other words, the number of the grid and the relative positions between the grid nodes remain unchanged during the whole calculation.

    3. Results and discussions

    3.1Computational parameters

    The vehicle’s total length and maximal diameter are denoted by L and D, respectively, and the components along the axial direction include a cavitator (head rudder), two bowl-shaped flow guides, an afterbody, a cross trailing rudder and a trailing cylinder. The cavitator is a disk with a diameter of Dn.

    In the course of the simulation, the motion of the vehicle is confined entirely to the plane of the pitch. Thus, the flow is symmetrical with respect to the plane of zI=0, and there are just three degrees of freedom, namely (xI,yI,θz). The flow domain can be reduced by half to save the calculation time. A multi-block structured mesh is generated, containing a total number of about 1.5×106cells.

    The upstream boundary and the external boundary are disposed with a constant velocity. The downstream boundary is specified with a fixed static pressure. A fixed mass flux is set on the ventilating nozzle. The surface of the vehicle is under no-slip wall condition.

    The deflection angle of the cross trailing rudder is selected as 0oand keeps constant. The initialized velocities are set to a value of vIbx0in x direction, and 0 in both y and z directions. A starting coordinates of (0.5L,0,0) are specified at the center of mass of the vehicle. Each component of the initialized angular velocity is given a value of 0 rad/s. The Euler angles of (0,0,θz0) are given in the startup solution.

    Fig.2 CTb, Cqvs. T

    Fig.3 Shapes of cavity at different times, αd=0o

    3.2Cavity pattern

    Figure 3 illustrates the history of the shape of the cavity when αdis equal to 0o. It can be seen from Fig.3(a) and Fig.3(b) that before the gas ventilating, namely T<1.746, the vehicle is in the phase of the early acceleration accompanying the natural cavitation occurred at the head-body, near the shoulder and the end of the big cylinder and downstream from the cross trailing rudder.

    Figure 4 presents the relationships between the cavitation number, the cavity length and the cavitator’s deflection angles at T=0 and T=1.746, where

    Fig.4 Relations of σ,cL withdα at different times

    During the time T in the range of 1.746-12.225, the vehicle is in the phase of the acceleration and the ventilated cavitation. It is found from Fig.3(c) that, within the non-dimensional time of 0.837 after ventilating the gas, a supercavity is formed rapidly, and a natural cavity with a length of 1/3L-2/5L appears downstream from the cross trailing rudder. During the phase of the ventilated cavitation, the difference in the vehicle’s motion attitude between the cavitator’s deflection angles becomes gradually notable because of the variation of the lift.

    When T is equal to 11.352, the gas supply is stopped. After a time measured by the non-dimensional time of about 0.837, namely, T>12.225, the vehicle resumes to a state of natural cavitation again as shown in Fig.3(e). Meanwhile, the vehicle is already released from the external thrust at T=8.732. Therefore, the vehicle is in the phase of the deceleration, and the cavity length is reduced gradually as illustrated in Fig.3(h).

    3.3Hydrodynamics

    Fig.5 Relation ofdC with time

    Fig.6 Relation of Cpwith time, αd=0o

    Fig.7 Relation oflC with time

    It can be seen from Fig.5 that, during the phase of the acceleration, the drag coefficient goes down at first quickly and then slowly. After stopping the gas supply, the drag coefficient increases significantly. It should be noticed that, there are two distinctly sudden changes in the drag coefficient. The first sudden change results from the action of the ventilating gas. The second sudden change is caused by the transition from the cavitation to the non-cavitation on the trailing cylinder.

    Taking αd=0ofor example, Fig.6 shows the variation of the pressure coefficient with time monitored at the point A, which is 0.8 radius away from the center of the trailing cylinder’s bottom face. Figure 3(f) demonstrates that the trailing cylinder is covered with the natural cavity at T<14.845. So, the pressure on the bottom of the trailing cylinder approaches the saturated pressure of the liquid to raise the bottom drag coefficient of the vehicle. As T is equal to 15.019, the bottom face of the trailing cylinder is in the vicinity of the natural cavity’s closure region due to the decreasing velocity of the vehicle and the increasing natural cavitation number, as shown in the Fig.3(g). Under the influence of the high pressure in the cavity’s closure region, the pressure on the bottom face goes up suddenly to have an evidently lower bottom drag coefficient than before. Then, because of the further decrease of the vehicle’s velocity, the size of the natural cavity reduces gradually, which weakens the influence of the high pressure in the closure region on the bottom of the trailing cylinder with the result of the enlarged bottom drag coefficient. In addition, at a same time, after stopping the gas supply, the greater the deflection angle of the cavitator is, the smaller the drag coefficient is.

    Fig.8 Relation of Cmzwith time

    It can be seen from Fig.7 that the lift coefficient curve has an upward tendency as a whole. During the artificial ventilation, one sees propagations of the disturbance caused by the supercavity’s formation and disappearance, and the sharp variation in the wet area of the vehicle. Under these conditions, the lift coefficient assumes a wavy curve, as well as the pitching moment, the linear velocity in y direction, and the angular velocity about z axis. Moreover, the greater thecavitator’s deflection angle, the smaller the lift coefficient is. After the gas supply is stopped, the magnitude of the wavy curve drops step by step. At a same time, the larger the cavitator’s deflection angle is, the less the lift coefficient becomes.

    Figure 8 shows that the lift has a strong influence on the pitching moment. Both of them vary in a manner opposite to each other.

    Fig.9 Relation of Cvxwith time

    Fig.10 Relation of Cvywith time

    Fig.11 Relation ofzCωwith time

    3.4Underwater trajectory

    Fig.12 Distribution of the center of mass, T=20.957

    Fig.13 Distribution of θ2, T=20.957

    Figures 12-13 show the distributions of the center of mass and the pitching angle of the vehicle in the computational range of the cavitator’s deflection angle at T=20.957. It is found from these scattered points that the pitching angle turns from positive to negative with the increase of αd, and the navigation distance becomes greater, whereas the navigation depth becomes smaller. When the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle are less than -1oor greater than 1o, the position of the center of mass and the pitching angle change significantly.

    4. Conclusions

    In the present work, a method of numerical simulation is put forward to calculate the free moving phase of an underwater supercavitated vehicle under the action of an external thrust. The influences of the cavitator’s deflection angle ranging from-3oto 3oon the cavity pattern, the hydrodynamicsand the underwater trajectory are investigated. Based on computational results, several conclusions can be qualitatively drawn by analysis as follows:

    (1) According to the segmental law of the gas supply, the cavity pattern can be divided into three phases in order, namely, the natural cavitation, the ventilated cavitation and the natural cavitation. The deflection angle has very little impact on the cavity pattern.

    (2) The relation of the drag coefficient versus time is very complicated with some sudden changes under the action of a thrust and under ventilation conditions. On the whole, the lift coefficient goes up while the pitching moment coefficientgoes down, along with oscillations in the phase of the ventilated cavitation. When the deflection angle increases, the variation curves of the lift and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients are, whereas the higher the pitching moment coefficient is.

    (3) The effect of the external thrust makes the horizontal linear velocity accelerate at first, and then decelerate. Furthermore, the vertical linear velocity changes in a wave shape. At a given moment, the greater the deflection angle, the larger the vertical linear velocity is. With the growing deflection angle, the variation curves of the vertical linear velocity and the pitching angle velocity become flatter, along with oscillations in the phase of the ventilated cavitation. With a certain deflection angle of the cavitator, the underwater vehicle can navigate in a pseudo-fixed depth.

    (4) At the finishing time of the free moving phase, with an increase in the deflection angle, the navigation distance of the vehicle increases, but the depth decreases. In addition, the pitching angle varies from positive to negative. As the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are close to each other. However, when the deflection angle are less than -1oor greater than 1o, the position of the center of mass and the pitching angle change significantly.

    [1] WANG Cong, WANG Xue-xiao and XU Shi-chang et al. Analysis and testing on dynamic property of submarine-launched missile[J]. Missiles and Space Vehicles, 2002, 2: 12-15(in Chinese).

    [2] ZHANG Xue-feng, PAN Guang and WANG Peng. Underwater trajectory design of rocket assisted torpedo[J]. Torpedo Technology, 2007, 15(4): 11-14(in Chinese).

    [3] GU Chuang, PANG Hong-zhao and ZHANG Yong. Research of sea water that affect the trajectory of mine projected by submarine[J]. Ship Electronic Engineering, 2010, 30(2): 168-171(in Chinese).

    [4] CAO Wei, WEI Ying-jie and HAN Wan-jin et al. Simulating the trajectory of supercavitating vehicles[J]. Journal of Harbin Engineering University, 2010, 31(3): 323-328(in Chinese).

    [5] YANG Xiao-guang, CHEN Huan-long and LIU Huaping et al. Simulation about 3D flow field of missile underwater motion and water-exit process[J]. Journal of Ballistics, 2010, 22(1): 107-110(in Chinese).

    [6] MANNINEN M., TAIVASSALO V. and KALLIO S. On the mixture model for multiphase flow[M]. Espoo, Finland: VTT Publications, 1996.

    [7] HUANG Biao, WANG Guo-yu and ZHAO Yu. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model[J]. Journal of Hydrodynamics, 2014, 26(1): 26-36.

    [8] ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [9] SPALART P., ALLMARAS A. A one-equation turbulence model for aerodynamic flows[R]. Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics, 1992.

    [10] HUA Zu-lin, XING Ling-hang and GU Li. Application of a modified quick scheme to depth-averaged -kε turbulence model based on unstructured grids[J]. Journal of Hydrodynamics, 2008, 20(4): 514-523.

    [11] YANG Guo-gang, DING Xin-wei and BI Ming-shu et al. Improved SIMPLE algorithm used in numerical simulation of flammable gas cloud deflagration[J]. Journal of Dalian University of Technology, 2004, 44(6): 789-792(in Chinese).

    [12] CHENG Guang-hui, HUANG Ting-zhu and CHENG Xiao-yu. Preconditioned Gauss-Seidel type iterative method for solving linear systems[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(9): 1275-1279.

    [13] CHEN Xin, LU Chuan-jing and LI Jie et al. The wall effect on ventilated cavitating flows in closed cavitation tunnels[J]. Journal of Hydrodynamics, 2008, 20(5): 561-566.

    [14] HU Yong, CHEN Xin and LU Chuan-jing et al. Study on the interaction between ventilated cavitating flow and the exhausted gas of an underwater vehicle[J]. Chinese Journal of Hydrodynamics, 2008, 23(4): 438-445(in Chinese).

    [15] AZCUETA R. Computation of turbulent free-surface flows around ships and floating bodies[J]. Ship Technology Research, 2002, 49: 999-1022.

    [16] BASARA B., ALAJBEGOVIC A. and BEADER D. Simulation of single- and two-phase flows on sliding unstructured meshes using finite volume method[J]. International Journal for numerical methods in fluids, 2004, 45(10): 1137-1159.

    [17] CHIANG C. H., JONG B. S. and LIN T. W. A robust feature-preserving semi-regular remeshing method for triangular meshes[J]. Visual Computer, 2011, 27(9): 811-825.

    10.1016/S1001-6058(14)60078-0

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11372185, 11102110) and the Shanghai Leading Academic Discipline Project (Grant No. B206).

    Biography: CHEN Xin (1976-), Male, Ph. D.,

    Associate Professor

    猜你喜歡
    陳鑫
    傳銷(xiāo)頭目反傳銷(xiāo):我要贖罪
    新傳奇(2021年28期)2021-08-23 10:20:40
    Experimental investigation on DBD plasma reforming hydrocarbon blends
    大地精靈
    Sediment transport in pure acceleration-skewed oscillatory sheet flow *
    Experimental and numerical investigations of the aerodynamic noise reduction of automotive side view mirrors *
    好書(shū)推薦
    微信群聊惹的禍
    做人與處世(2017年9期)2017-07-27 11:02:16
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    陳鑫的午后三點(diǎn)
    環(huán)境保護(hù)主要問(wèn)題及對(duì)策研究
    亚洲精品一二三| 99久久精品国产国产毛片| 大香蕉久久网| 非洲黑人性xxxx精品又粗又长| 日本av手机在线免费观看| 美女黄网站色视频| 亚洲精品亚洲一区二区| 身体一侧抽搐| 精品少妇黑人巨大在线播放| 97精品久久久久久久久久精品| 国产精品av视频在线免费观看| 久久久精品免费免费高清| 欧美成人a在线观看| 亚洲国产av新网站| 国产av国产精品国产| 亚洲精品第二区| 国产高清三级在线| 天堂网av新在线| 亚洲精品乱码久久久v下载方式| 日本一本二区三区精品| av线在线观看网站| 久热久热在线精品观看| 日韩三级伦理在线观看| kizo精华| 成年女人在线观看亚洲视频 | 国产av码专区亚洲av| 国产精品福利在线免费观看| 最新中文字幕久久久久| 亚洲精品日韩在线中文字幕| 日本黄色片子视频| 欧美另类一区| 国国产精品蜜臀av免费| 在现免费观看毛片| 成人午夜精彩视频在线观看| 国产永久视频网站| 日韩av免费高清视频| 一夜夜www| 亚洲aⅴ乱码一区二区在线播放| 3wmmmm亚洲av在线观看| 91狼人影院| 国产成人一区二区在线| 免费观看在线日韩| 麻豆国产97在线/欧美| 久久久久网色| 亚洲成人一二三区av| 日韩亚洲欧美综合| 永久网站在线| 日韩一区二区视频免费看| 免费黄频网站在线观看国产| 精品熟女少妇av免费看| 夫妻午夜视频| 成人鲁丝片一二三区免费| 成年女人在线观看亚洲视频 | 亚洲成人中文字幕在线播放| 老司机影院毛片| 91久久精品电影网| 国产 亚洲一区二区三区 | 最近中文字幕高清免费大全6| 国产亚洲一区二区精品| kizo精华| 成人亚洲欧美一区二区av| 国产高清不卡午夜福利| 午夜福利成人在线免费观看| 成年人午夜在线观看视频 | 亚洲无线观看免费| 国内精品一区二区在线观看| av.在线天堂| 丰满人妻一区二区三区视频av| 能在线免费看毛片的网站| 99热这里只有精品一区| 亚洲在线观看片| 97超碰精品成人国产| 国产v大片淫在线免费观看| 91精品伊人久久大香线蕉| 亚洲欧美清纯卡通| 成人av在线播放网站| 精品国内亚洲2022精品成人| 日韩一本色道免费dvd| 久久久久久久午夜电影| 亚洲精品456在线播放app| 日本熟妇午夜| 午夜福利网站1000一区二区三区| 亚洲精品亚洲一区二区| 久久久久久久久久久免费av| 最近最新中文字幕大全电影3| 国产成人a区在线观看| 日韩在线高清观看一区二区三区| 精品人妻视频免费看| 嫩草影院新地址| 又爽又黄无遮挡网站| av在线亚洲专区| 最近中文字幕2019免费版| 九草在线视频观看| 日日摸夜夜添夜夜爱| 亚洲精品乱久久久久久| 日本猛色少妇xxxxx猛交久久| 五月天丁香电影| 亚洲天堂国产精品一区在线| 成人毛片a级毛片在线播放| 日韩av免费高清视频| 国产人妻一区二区三区在| 欧美成人精品欧美一级黄| 高清毛片免费看| 2021少妇久久久久久久久久久| 久久久久久久午夜电影| 最近最新中文字幕免费大全7| 国产一区二区亚洲精品在线观看| 免费观看无遮挡的男女| 三级毛片av免费| 成人无遮挡网站| 深爱激情五月婷婷| 91久久精品国产一区二区三区| 在线观看av片永久免费下载| 国产三级在线视频| 亚洲精品自拍成人| 国产三级在线视频| 中文欧美无线码| 久久久久久久大尺度免费视频| 欧美高清成人免费视频www| 国产精品一区二区性色av| 亚洲国产av新网站| 91久久精品国产一区二区三区| 最近的中文字幕免费完整| 精品人妻一区二区三区麻豆| 国产午夜精品论理片| 麻豆久久精品国产亚洲av| 亚洲综合色惰| 欧美日韩国产mv在线观看视频 | 久久久久免费精品人妻一区二区| 免费观看av网站的网址| 3wmmmm亚洲av在线观看| 一级片'在线观看视频| 欧美日本视频| 搞女人的毛片| 尾随美女入室| 亚洲精品一二三| 精品少妇黑人巨大在线播放| 久久久久久久久久人人人人人人| 亚洲在久久综合| 青春草视频在线免费观看| 色5月婷婷丁香| 99久久精品一区二区三区| av网站免费在线观看视频 | 一级毛片久久久久久久久女| 嫩草影院入口| 精品久久久久久久末码| 2021少妇久久久久久久久久久| 亚洲不卡免费看| 久久久欧美国产精品| 国产老妇女一区| 久久久久久九九精品二区国产| 精品人妻视频免费看| 国产男人的电影天堂91| 午夜免费激情av| 亚洲成人久久爱视频| 欧美丝袜亚洲另类| 国内精品宾馆在线| 久久综合国产亚洲精品| 最近视频中文字幕2019在线8| 91久久精品国产一区二区三区| 一个人观看的视频www高清免费观看| 一区二区三区四区激情视频| 免费观看无遮挡的男女| 久久精品久久久久久久性| 久久精品国产亚洲av涩爱| 亚洲精品视频女| 久久久久久伊人网av| 床上黄色一级片| 男女视频在线观看网站免费| 搡老乐熟女国产| 国产精品三级大全| 国产黄a三级三级三级人| 最近中文字幕高清免费大全6| 国产黄色免费在线视频| 国产高清不卡午夜福利| 最近中文字幕2019免费版| 九九久久精品国产亚洲av麻豆| 免费大片18禁| 精品欧美国产一区二区三| 欧美xxxx性猛交bbbb| 秋霞在线观看毛片| 三级毛片av免费| 亚洲精品中文字幕在线视频 | 国产成人一区二区在线| 97超视频在线观看视频| 亚洲国产成人一精品久久久| 久久精品人妻少妇| 有码 亚洲区| 国产高清有码在线观看视频| 精品久久久久久久末码| 免费观看无遮挡的男女| 久久久久精品性色| 国产成人a区在线观看| 欧美最新免费一区二区三区| 久久精品综合一区二区三区| 亚洲精品中文字幕在线视频 | 色综合亚洲欧美另类图片| 免费播放大片免费观看视频在线观看| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| av在线蜜桃| 少妇的逼好多水| videossex国产| 免费观看性生交大片5| 久久久精品欧美日韩精品| 国产高清有码在线观看视频| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 国产精品日韩av在线免费观看| 亚洲高清免费不卡视频| 麻豆成人午夜福利视频| 亚洲婷婷狠狠爱综合网| 一个人观看的视频www高清免费观看| 亚洲精品456在线播放app| 伊人久久精品亚洲午夜| 精品久久久久久久久av| 尤物成人国产欧美一区二区三区| 日韩av在线免费看完整版不卡| 亚洲av成人av| 久久国内精品自在自线图片| 欧美另类一区| 69av精品久久久久久| 午夜亚洲福利在线播放| 少妇猛男粗大的猛烈进出视频 | 狠狠精品人妻久久久久久综合| av福利片在线观看| 精品久久久久久久久亚洲| 久久韩国三级中文字幕| 亚洲精品第二区| 国产精品麻豆人妻色哟哟久久 | 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 久久久久网色| 中文字幕av在线有码专区| 街头女战士在线观看网站| 久久99热这里只频精品6学生| 国产片特级美女逼逼视频| 国产精品久久久久久久久免| 国产在视频线在精品| 中文字幕久久专区| 三级经典国产精品| 日韩成人av中文字幕在线观看| 日韩视频在线欧美| 国内揄拍国产精品人妻在线| 久久久久性生活片| av.在线天堂| 69人妻影院| 欧美潮喷喷水| 亚洲成人中文字幕在线播放| 亚洲av一区综合| 国产成人精品婷婷| 97超视频在线观看视频| 国产精品精品国产色婷婷| 非洲黑人性xxxx精品又粗又长| 色网站视频免费| 日韩av免费高清视频| 国产精品一二三区在线看| 搞女人的毛片| 精品人妻视频免费看| av免费观看日本| 国产成人福利小说| 免费大片18禁| 成人鲁丝片一二三区免费| 日韩视频在线欧美| a级一级毛片免费在线观看| 纵有疾风起免费观看全集完整版 | 国产精品人妻久久久久久| 亚洲成色77777| 久久久成人免费电影| 久久99热6这里只有精品| 国内精品美女久久久久久| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久久久免| h日本视频在线播放| 亚洲真实伦在线观看| 国产一级毛片七仙女欲春2| 天天躁夜夜躁狠狠久久av| 在线免费观看的www视频| 午夜免费激情av| 中文字幕制服av| 伦理电影大哥的女人| 97在线视频观看| 久久久久久久久久久丰满| 午夜福利在线在线| 欧美zozozo另类| 国产成人a区在线观看| 亚洲欧美日韩东京热| .国产精品久久| 国产精品福利在线免费观看| 日韩三级伦理在线观看| 成人午夜高清在线视频| 韩国高清视频一区二区三区| 在线观看人妻少妇| 欧美不卡视频在线免费观看| 日韩不卡一区二区三区视频在线| 国内揄拍国产精品人妻在线| 麻豆国产97在线/欧美| 禁无遮挡网站| 少妇的逼水好多| 亚洲av免费在线观看| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 日韩av免费高清视频| 免费观看性生交大片5| 一二三四中文在线观看免费高清| 久99久视频精品免费| 白带黄色成豆腐渣| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 大片免费播放器 马上看| 水蜜桃什么品种好| 亚洲精品一区蜜桃| 少妇高潮的动态图| 成人国产麻豆网| 麻豆av噜噜一区二区三区| 中文天堂在线官网| 亚洲国产精品成人综合色| 国产一区有黄有色的免费视频 | 三级男女做爰猛烈吃奶摸视频| 只有这里有精品99| 欧美性感艳星| 国产亚洲av嫩草精品影院| 精品99又大又爽又粗少妇毛片| 免费观看av网站的网址| 插阴视频在线观看视频| 美女脱内裤让男人舔精品视频| 久久韩国三级中文字幕| 欧美高清成人免费视频www| 国产 一区精品| 欧美性感艳星| 午夜爱爱视频在线播放| 乱码一卡2卡4卡精品| 国产永久视频网站| 麻豆成人午夜福利视频| 身体一侧抽搐| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜添av毛片| 国产精品一及| 中文乱码字字幕精品一区二区三区 | 高清日韩中文字幕在线| 一边亲一边摸免费视频| 日本av手机在线免费观看| 久热久热在线精品观看| 亚洲精华国产精华液的使用体验| 国产有黄有色有爽视频| 亚洲一级一片aⅴ在线观看| 久久久色成人| 国产精品麻豆人妻色哟哟久久 | 爱豆传媒免费全集在线观看| 美女内射精品一级片tv| 亚洲欧美中文字幕日韩二区| 尾随美女入室| 免费观看a级毛片全部| 国产免费视频播放在线视频 | 成人高潮视频无遮挡免费网站| 亚洲精品视频女| 国精品久久久久久国模美| 丝袜喷水一区| 男女边摸边吃奶| 男插女下体视频免费在线播放| 三级经典国产精品| 最后的刺客免费高清国语| 一个人看的www免费观看视频| 日日摸夜夜添夜夜爱| 精品少妇黑人巨大在线播放| 久久6这里有精品| 联通29元200g的流量卡| 亚洲精品日韩av片在线观看| 国产高清有码在线观看视频| 国产 一区 欧美 日韩| 网址你懂的国产日韩在线| 久久99蜜桃精品久久| 最近中文字幕高清免费大全6| 婷婷色av中文字幕| av福利片在线观看| 久久久久久久久久黄片| 免费黄色在线免费观看| 亚洲国产日韩欧美精品在线观看| 久久精品人妻少妇| 国产免费视频播放在线视频 | 亚洲在久久综合| 男人舔奶头视频| 在线观看美女被高潮喷水网站| 国产乱人偷精品视频| 精品人妻视频免费看| 超碰97精品在线观看| 中文天堂在线官网| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验| 男人舔女人下体高潮全视频| 亚洲精品日本国产第一区| 欧美+日韩+精品| 亚洲av中文av极速乱| 国产亚洲最大av| 两个人视频免费观看高清| 国产乱人偷精品视频| av在线蜜桃| 我要看日韩黄色一级片| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 边亲边吃奶的免费视频| 国产成人精品福利久久| 日韩大片免费观看网站| 免费黄色在线免费观看| 国产熟女欧美一区二区| 99九九线精品视频在线观看视频| 99热全是精品| 久热久热在线精品观看| 成年女人看的毛片在线观看| 免费电影在线观看免费观看| 禁无遮挡网站| 精品亚洲乱码少妇综合久久| 国产午夜福利久久久久久| 久久综合国产亚洲精品| 乱码一卡2卡4卡精品| 床上黄色一级片| 欧美日韩亚洲高清精品| 久久久午夜欧美精品| 久久久久性生活片| 日本午夜av视频| 亚洲人成网站在线播| 国产精品av视频在线免费观看| 久久精品国产鲁丝片午夜精品| 国产成人免费观看mmmm| 成年女人在线观看亚洲视频 | 免费播放大片免费观看视频在线观看| 五月天丁香电影| 国产探花极品一区二区| 精品人妻偷拍中文字幕| 亚洲国产欧美人成| 成人二区视频| 熟女电影av网| 久久综合国产亚洲精品| 一级爰片在线观看| 久久精品久久久久久噜噜老黄| 亚洲一区高清亚洲精品| 亚洲欧洲国产日韩| 国产一区有黄有色的免费视频 | 美女cb高潮喷水在线观看| 亚洲精品一二三| 色吧在线观看| 一二三四中文在线观看免费高清| 亚洲精品国产av蜜桃| 国产午夜福利久久久久久| 69人妻影院| 亚洲精品一二三| 97在线视频观看| 尾随美女入室| 美女内射精品一级片tv| 身体一侧抽搐| av女优亚洲男人天堂| 国产永久视频网站| 91精品国产九色| 亚洲精品成人久久久久久| 人妻系列 视频| 22中文网久久字幕| 一区二区三区免费毛片| 精品久久久久久电影网| 能在线免费看毛片的网站| 国产一级毛片七仙女欲春2| 春色校园在线视频观看| www.av在线官网国产| 麻豆国产97在线/欧美| 色尼玛亚洲综合影院| 国产真实伦视频高清在线观看| 久久久色成人| 国产毛片a区久久久久| 我要看日韩黄色一级片| 日本一本二区三区精品| 日韩精品青青久久久久久| 大片免费播放器 马上看| 亚洲欧美成人精品一区二区| 亚洲av免费在线观看| 老女人水多毛片| 又粗又硬又长又爽又黄的视频| 午夜免费观看性视频| 国产精品国产三级国产av玫瑰| 18禁动态无遮挡网站| 亚洲av中文av极速乱| 亚洲四区av| 国产探花极品一区二区| 高清av免费在线| 国产亚洲一区二区精品| 一级毛片黄色毛片免费观看视频| 亚洲精品久久午夜乱码| 青春草视频在线免费观看| www.色视频.com| 精品人妻熟女av久视频| 国产黄片美女视频| 18禁在线播放成人免费| 午夜精品一区二区三区免费看| 在线观看一区二区三区| 亚洲av成人精品一区久久| 最近视频中文字幕2019在线8| 尾随美女入室| 久久久国产一区二区| 国产高清三级在线| 26uuu在线亚洲综合色| 国产美女午夜福利| 欧美日本视频| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线播| 2021天堂中文幕一二区在线观| 午夜爱爱视频在线播放| 国产白丝娇喘喷水9色精品| 国产精品三级大全| 观看免费一级毛片| 免费播放大片免费观看视频在线观看| 少妇人妻精品综合一区二区| 一个人看的www免费观看视频| 国产视频首页在线观看| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄| 超碰97精品在线观看| 久久久成人免费电影| 秋霞伦理黄片| 久久99热这里只频精品6学生| 伦精品一区二区三区| 亚洲精品乱久久久久久| 中文字幕免费在线视频6| 亚洲精品久久久久久婷婷小说| 婷婷色综合www| 伦精品一区二区三区| 亚洲av免费在线观看| 成人二区视频| 亚洲激情五月婷婷啪啪| 国语对白做爰xxxⅹ性视频网站| 少妇高潮的动态图| 深爱激情五月婷婷| 午夜免费观看性视频| 国内揄拍国产精品人妻在线| 国产黄色视频一区二区在线观看| 熟女电影av网| 久久韩国三级中文字幕| 欧美高清成人免费视频www| 久久97久久精品| 一区二区三区高清视频在线| 成人二区视频| 精华霜和精华液先用哪个| 免费看av在线观看网站| 欧美精品一区二区大全| 久久国内精品自在自线图片| 成人亚洲精品一区在线观看 | 欧美性感艳星| 日本一本二区三区精品| 日韩欧美三级三区| 中文字幕制服av| 男女下面进入的视频免费午夜| 亚洲不卡免费看| 一级a做视频免费观看| 岛国毛片在线播放| 国产人妻一区二区三区在| 亚洲av中文av极速乱| 欧美3d第一页| 亚洲乱码一区二区免费版| 成年免费大片在线观看| 久久久午夜欧美精品| 99久国产av精品国产电影| 熟女电影av网| 男女视频在线观看网站免费| av福利片在线观看| 亚洲婷婷狠狠爱综合网| 国产精品99久久久久久久久| 在线观看美女被高潮喷水网站| 国产又色又爽无遮挡免| 亚洲国产欧美人成| 国产伦理片在线播放av一区| 毛片一级片免费看久久久久| 91久久精品电影网| 免费黄网站久久成人精品| 精品一区在线观看国产| 18+在线观看网站| 丰满乱子伦码专区| 99久久精品一区二区三区| 一级毛片电影观看| 麻豆成人午夜福利视频| 22中文网久久字幕| 水蜜桃什么品种好| 久久久午夜欧美精品| 国产麻豆成人av免费视频| 亚洲精品自拍成人| 精品人妻熟女av久视频| 亚洲精品视频女| 亚洲精品成人av观看孕妇| 国产黄色免费在线视频| 国产单亲对白刺激| 免费观看a级毛片全部| 晚上一个人看的免费电影| 久久久成人免费电影| 伊人久久国产一区二区| 亚洲国产精品专区欧美| 乱码一卡2卡4卡精品| 亚州av有码| 免费观看精品视频网站| 国产精品爽爽va在线观看网站| 少妇熟女aⅴ在线视频| 18禁在线无遮挡免费观看视频| 久久久午夜欧美精品| 成人美女网站在线观看视频| 一个人免费在线观看电影| 亚洲成色77777| 精品久久久精品久久久| 国产老妇女一区| 麻豆成人午夜福利视频| 亚洲国产高清在线一区二区三| 婷婷色综合www| 国产高清不卡午夜福利| 一区二区三区免费毛片| 成人亚洲欧美一区二区av| 日韩欧美精品免费久久| 大陆偷拍与自拍| 亚洲四区av| 亚洲精品久久久久久婷婷小说| 成年免费大片在线观看|