• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle*

    2014-06-01 12:30:02CHENXin陳鑫LUChuanjing魯傳敬CHENYing陳瑛CAOJiayi曹嘉怡
    關(guān)鍵詞:陳鑫

    CHEN Xin (陳鑫), LU Chuan-jing (魯傳敬), CHEN Ying (陳瑛), CAO Jia-yi (曹嘉怡)

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: xinchen@sjtu.edu.cn

    A numerical analysis of the influence of the cavitator’s deflection angle on flow features for a free moving supercavitated vehicle*

    CHEN Xin (陳鑫), LU Chuan-jing (魯傳敬), CHEN Ying (陳瑛), CAO Jia-yi (曹嘉怡)

    Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

    MOE Key Laboratory of Hydrodynamics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail: xinchen@sjtu.edu.cn

    (Received March 15, 2013, Revised January 14, 2014)

    When a high-speed cavitated weapon moves under water, the flow properties are important issues for the sake of the trajectory predication and control. In this paper, a single-fluid multiphase flow method coupled with a natural cavitation model is proposed to numerically simulate the free moving phase of an underwater supercavitated vehicle under the action of the external thrust. The influence of the cavitator’s deflection angle ranging from -3oto 3oon the cavity pattern, the hydrodynamics and the underwater trajectory is investigated. Based on computational results, several conclusions are qualitatively drawn by an analysis. The deflection angle has very little effect on the cavity pattern. When the deflection angle increases, the variation curves of the vertical linear velocity, the lift coefficient and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients will be and the higher the pitching moment coefficient becomes. At the finishing time of the free moving phase, when the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle is less than -1oor greater than 1o, the position of the center of mass and the pitching angle change greatly. If a proper deflection angle of the cavitator is adopted, the underwater vehicle can navigate in a pseudo-fixed depth.

    cavitation, multiphase, underwater trajectory, dynamic mesh

    Introduction

    When a high-speed weapon covered with natural and ventilated cavities moves under water, the flow features are important issues for the research and development. Because of some unavoidable objective factors in the process of trajectory controls, such as that of adjusting the deflection angle of the cavitator, there exist abnormal deviations in the cavity pattern, the hydrodynamics and the underwater trajectory in some phase of motion. These deviations can degrade the weapon’s combat performance. Thus, the prediction of the flow properties of the vehicle is very important.

    For a submarine-launched missile model under the action of a fixed external thrust, Wang et al.[1]experimentally measured the thrust, the pressure overload and the structural strain of the model, and theoretically analyzed the underwater trajectory. Based on the theorems of the momentum and the moment of the momentum, Zhang et al.[2]built a mathematical model of the trajectory for a carrier with six degrees of freedom in the dynamic coordinate system. They proposed a control scheme of a rocket-assisted torpedo’s underwater trajectory using MATLAB/SIMULINK. Gu et al.[3]studied a problem of the underwater trajectory for a mine launched from a submarine in the phase of motion without external forces, and they put forward a theoretical model to analyze the underwater trajectory under the effect of the current in the simulation environment of MATLAB. An improved control and guidance system for supercavitating vehicles was designed. Cao et al.[4]established simplified equationsfor the longitudinal motion of supercavitating vehicles to simulate the trajectory of vehicles travelling at a speed of around 90 m/s. The calculating results show that the motion of a supercavitating vehicle at changeable depth and direction can be handled using typical control schemes of the top steer without a feedback system.

    The previous simulations are mostly carried out in the framework of self-developed programs or other tools like MATLAB based on many hypotheses using several semi-experimental and semi-theoretical formulas. These studies point to a kind of study method, to obtain the laws of vehicles’ motion affected by single-factor or multi-factors in an ideal state. However, with the development of computer hardware and numerical techniques, it is possible to couple the solution of the flow field and the body’s motion. This kind of study method[5]is advantageous in analyzing the flow structures and the mechanisms of a complicated physical phenomenon.

    1. Governing equations of the flow field

    The vapor phase should also satisfy the continuity condition during the phase-transition process[8]

    where ρ is the density, t stands for the time, u denotes the velocity vector, p is the pressure, the subscripts m, l and v, respectively, indicate the mixture, the liquid phase and the vapor phase.

    The volume fractions of the phases satisfy

    Additionally, two individual transport equations are employed to describe the phase-transition process between the vapor and the liquid.

    where RBis the radius of the vapor bubble, and a value of 10-6m is selected, αnucdenotes the volume fraction of the gas nuclei in the liquid, and here a value of 10-5is specified. In addition, Fvap=0.02, Fcond=0.001.

    2. Equations of motion for the free rigid body

    2.1Coordinate system

    The coordinate systems with the right-hand rule are defined as in Fig.1. The superscripts I and B refer to the inertial system and the body system, respectively. The cavitator’s deflection angle αd(<90o) is determined by the anticlockwise angle from the axis of yBto the plane of the cavitator. The different lift force can be obtained by adjusting the deflection angle to change the body’s attitude motion.

    Fig.1 The coordinate systems, cavitator’s deflection angle

    2.2Governing equations

    In the inertial coordinate system, the body’s translational motion is governed by the equation

    After the accelerations are computed from Eq.(8) and Eq.(9), the velocities, the coordinates of the body’s center of mass and the angular velocities, the Euler angles are derived by an explicit difference scheme.

    2.3Dynamic mesh method

    The dynamic mesh method can be used to model the flows where the shape of the domain changes with time due to the motion on the domain boundaries. The motion can be a prescribed motion or/and unprecribed motion where the sequence motion is determined based on the solution at the current time. The updating of the volume mesh is handled automatically at each time step on the basis of the new positions of the boundaries. At present, there are three kinds of dynamic mesh methods used widely: the fixed-grid method[15], the sliding mesh method[16]and the local remeshing method[17].

    In the process of updating the volume mesh, the integral form of the conservation equation for a general scalar ζ on an arbitrary control volume V with a moving boundary can be expressed as

    where ugis the mesh velocity of the moving mesh, λ is the diffusion coefficient, Sζis the source term of ζ, A is used to represent the boundary of the control volume V.

    In the fixed-grid method adopted in this paper, the mesh in the computational domain moves with the motion of the body. In other words, the number of the grid and the relative positions between the grid nodes remain unchanged during the whole calculation.

    3. Results and discussions

    3.1Computational parameters

    The vehicle’s total length and maximal diameter are denoted by L and D, respectively, and the components along the axial direction include a cavitator (head rudder), two bowl-shaped flow guides, an afterbody, a cross trailing rudder and a trailing cylinder. The cavitator is a disk with a diameter of Dn.

    In the course of the simulation, the motion of the vehicle is confined entirely to the plane of the pitch. Thus, the flow is symmetrical with respect to the plane of zI=0, and there are just three degrees of freedom, namely (xI,yI,θz). The flow domain can be reduced by half to save the calculation time. A multi-block structured mesh is generated, containing a total number of about 1.5×106cells.

    The upstream boundary and the external boundary are disposed with a constant velocity. The downstream boundary is specified with a fixed static pressure. A fixed mass flux is set on the ventilating nozzle. The surface of the vehicle is under no-slip wall condition.

    The deflection angle of the cross trailing rudder is selected as 0oand keeps constant. The initialized velocities are set to a value of vIbx0in x direction, and 0 in both y and z directions. A starting coordinates of (0.5L,0,0) are specified at the center of mass of the vehicle. Each component of the initialized angular velocity is given a value of 0 rad/s. The Euler angles of (0,0,θz0) are given in the startup solution.

    Fig.2 CTb, Cqvs. T

    Fig.3 Shapes of cavity at different times, αd=0o

    3.2Cavity pattern

    Figure 3 illustrates the history of the shape of the cavity when αdis equal to 0o. It can be seen from Fig.3(a) and Fig.3(b) that before the gas ventilating, namely T<1.746, the vehicle is in the phase of the early acceleration accompanying the natural cavitation occurred at the head-body, near the shoulder and the end of the big cylinder and downstream from the cross trailing rudder.

    Figure 4 presents the relationships between the cavitation number, the cavity length and the cavitator’s deflection angles at T=0 and T=1.746, where

    Fig.4 Relations of σ,cL withdα at different times

    During the time T in the range of 1.746-12.225, the vehicle is in the phase of the acceleration and the ventilated cavitation. It is found from Fig.3(c) that, within the non-dimensional time of 0.837 after ventilating the gas, a supercavity is formed rapidly, and a natural cavity with a length of 1/3L-2/5L appears downstream from the cross trailing rudder. During the phase of the ventilated cavitation, the difference in the vehicle’s motion attitude between the cavitator’s deflection angles becomes gradually notable because of the variation of the lift.

    When T is equal to 11.352, the gas supply is stopped. After a time measured by the non-dimensional time of about 0.837, namely, T>12.225, the vehicle resumes to a state of natural cavitation again as shown in Fig.3(e). Meanwhile, the vehicle is already released from the external thrust at T=8.732. Therefore, the vehicle is in the phase of the deceleration, and the cavity length is reduced gradually as illustrated in Fig.3(h).

    3.3Hydrodynamics

    Fig.5 Relation ofdC with time

    Fig.6 Relation of Cpwith time, αd=0o

    Fig.7 Relation oflC with time

    It can be seen from Fig.5 that, during the phase of the acceleration, the drag coefficient goes down at first quickly and then slowly. After stopping the gas supply, the drag coefficient increases significantly. It should be noticed that, there are two distinctly sudden changes in the drag coefficient. The first sudden change results from the action of the ventilating gas. The second sudden change is caused by the transition from the cavitation to the non-cavitation on the trailing cylinder.

    Taking αd=0ofor example, Fig.6 shows the variation of the pressure coefficient with time monitored at the point A, which is 0.8 radius away from the center of the trailing cylinder’s bottom face. Figure 3(f) demonstrates that the trailing cylinder is covered with the natural cavity at T<14.845. So, the pressure on the bottom of the trailing cylinder approaches the saturated pressure of the liquid to raise the bottom drag coefficient of the vehicle. As T is equal to 15.019, the bottom face of the trailing cylinder is in the vicinity of the natural cavity’s closure region due to the decreasing velocity of the vehicle and the increasing natural cavitation number, as shown in the Fig.3(g). Under the influence of the high pressure in the cavity’s closure region, the pressure on the bottom face goes up suddenly to have an evidently lower bottom drag coefficient than before. Then, because of the further decrease of the vehicle’s velocity, the size of the natural cavity reduces gradually, which weakens the influence of the high pressure in the closure region on the bottom of the trailing cylinder with the result of the enlarged bottom drag coefficient. In addition, at a same time, after stopping the gas supply, the greater the deflection angle of the cavitator is, the smaller the drag coefficient is.

    Fig.8 Relation of Cmzwith time

    It can be seen from Fig.7 that the lift coefficient curve has an upward tendency as a whole. During the artificial ventilation, one sees propagations of the disturbance caused by the supercavity’s formation and disappearance, and the sharp variation in the wet area of the vehicle. Under these conditions, the lift coefficient assumes a wavy curve, as well as the pitching moment, the linear velocity in y direction, and the angular velocity about z axis. Moreover, the greater thecavitator’s deflection angle, the smaller the lift coefficient is. After the gas supply is stopped, the magnitude of the wavy curve drops step by step. At a same time, the larger the cavitator’s deflection angle is, the less the lift coefficient becomes.

    Figure 8 shows that the lift has a strong influence on the pitching moment. Both of them vary in a manner opposite to each other.

    Fig.9 Relation of Cvxwith time

    Fig.10 Relation of Cvywith time

    Fig.11 Relation ofzCωwith time

    3.4Underwater trajectory

    Fig.12 Distribution of the center of mass, T=20.957

    Fig.13 Distribution of θ2, T=20.957

    Figures 12-13 show the distributions of the center of mass and the pitching angle of the vehicle in the computational range of the cavitator’s deflection angle at T=20.957. It is found from these scattered points that the pitching angle turns from positive to negative with the increase of αd, and the navigation distance becomes greater, whereas the navigation depth becomes smaller. When the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are more close to each other. However, when the deflection angle are less than -1oor greater than 1o, the position of the center of mass and the pitching angle change significantly.

    4. Conclusions

    In the present work, a method of numerical simulation is put forward to calculate the free moving phase of an underwater supercavitated vehicle under the action of an external thrust. The influences of the cavitator’s deflection angle ranging from-3oto 3oon the cavity pattern, the hydrodynamicsand the underwater trajectory are investigated. Based on computational results, several conclusions can be qualitatively drawn by analysis as follows:

    (1) According to the segmental law of the gas supply, the cavity pattern can be divided into three phases in order, namely, the natural cavitation, the ventilated cavitation and the natural cavitation. The deflection angle has very little impact on the cavity pattern.

    (2) The relation of the drag coefficient versus time is very complicated with some sudden changes under the action of a thrust and under ventilation conditions. On the whole, the lift coefficient goes up while the pitching moment coefficientgoes down, along with oscillations in the phase of the ventilated cavitation. When the deflection angle increases, the variation curves of the lift and the pitching moment coefficient become flatter. In the phase of the second natural cavitation, at a same time, the greater the deflection angle is, the lower the drag and the lift coefficients are, whereas the higher the pitching moment coefficient is.

    (3) The effect of the external thrust makes the horizontal linear velocity accelerate at first, and then decelerate. Furthermore, the vertical linear velocity changes in a wave shape. At a given moment, the greater the deflection angle, the larger the vertical linear velocity is. With the growing deflection angle, the variation curves of the vertical linear velocity and the pitching angle velocity become flatter, along with oscillations in the phase of the ventilated cavitation. With a certain deflection angle of the cavitator, the underwater vehicle can navigate in a pseudo-fixed depth.

    (4) At the finishing time of the free moving phase, with an increase in the deflection angle, the navigation distance of the vehicle increases, but the depth decreases. In addition, the pitching angle varies from positive to negative. As the deflection angle lies in the small range of -1o-1o, the position of the center of mass and the pitching angle of the vehicle are close to each other. However, when the deflection angle are less than -1oor greater than 1o, the position of the center of mass and the pitching angle change significantly.

    [1] WANG Cong, WANG Xue-xiao and XU Shi-chang et al. Analysis and testing on dynamic property of submarine-launched missile[J]. Missiles and Space Vehicles, 2002, 2: 12-15(in Chinese).

    [2] ZHANG Xue-feng, PAN Guang and WANG Peng. Underwater trajectory design of rocket assisted torpedo[J]. Torpedo Technology, 2007, 15(4): 11-14(in Chinese).

    [3] GU Chuang, PANG Hong-zhao and ZHANG Yong. Research of sea water that affect the trajectory of mine projected by submarine[J]. Ship Electronic Engineering, 2010, 30(2): 168-171(in Chinese).

    [4] CAO Wei, WEI Ying-jie and HAN Wan-jin et al. Simulating the trajectory of supercavitating vehicles[J]. Journal of Harbin Engineering University, 2010, 31(3): 323-328(in Chinese).

    [5] YANG Xiao-guang, CHEN Huan-long and LIU Huaping et al. Simulation about 3D flow field of missile underwater motion and water-exit process[J]. Journal of Ballistics, 2010, 22(1): 107-110(in Chinese).

    [6] MANNINEN M., TAIVASSALO V. and KALLIO S. On the mixture model for multiphase flow[M]. Espoo, Finland: VTT Publications, 1996.

    [7] HUANG Biao, WANG Guo-yu and ZHAO Yu. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model[J]. Journal of Hydrodynamics, 2014, 26(1): 26-36.

    [8] ZWART P. J., GERBER A. G. and BELAMRI T. A two-phase flow model for predicting cavitation dynamics[C]. Fifth International Conference on Multiphase Flow. Yokohama, Japan, 2004.

    [9] SPALART P., ALLMARAS A. A one-equation turbulence model for aerodynamic flows[R]. Technical Report AIAA-92-0439, American Institute of Aeronautics and Astronautics, 1992.

    [10] HUA Zu-lin, XING Ling-hang and GU Li. Application of a modified quick scheme to depth-averaged -kε turbulence model based on unstructured grids[J]. Journal of Hydrodynamics, 2008, 20(4): 514-523.

    [11] YANG Guo-gang, DING Xin-wei and BI Ming-shu et al. Improved SIMPLE algorithm used in numerical simulation of flammable gas cloud deflagration[J]. Journal of Dalian University of Technology, 2004, 44(6): 789-792(in Chinese).

    [12] CHENG Guang-hui, HUANG Ting-zhu and CHENG Xiao-yu. Preconditioned Gauss-Seidel type iterative method for solving linear systems[J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(9): 1275-1279.

    [13] CHEN Xin, LU Chuan-jing and LI Jie et al. The wall effect on ventilated cavitating flows in closed cavitation tunnels[J]. Journal of Hydrodynamics, 2008, 20(5): 561-566.

    [14] HU Yong, CHEN Xin and LU Chuan-jing et al. Study on the interaction between ventilated cavitating flow and the exhausted gas of an underwater vehicle[J]. Chinese Journal of Hydrodynamics, 2008, 23(4): 438-445(in Chinese).

    [15] AZCUETA R. Computation of turbulent free-surface flows around ships and floating bodies[J]. Ship Technology Research, 2002, 49: 999-1022.

    [16] BASARA B., ALAJBEGOVIC A. and BEADER D. Simulation of single- and two-phase flows on sliding unstructured meshes using finite volume method[J]. International Journal for numerical methods in fluids, 2004, 45(10): 1137-1159.

    [17] CHIANG C. H., JONG B. S. and LIN T. W. A robust feature-preserving semi-regular remeshing method for triangular meshes[J]. Visual Computer, 2011, 27(9): 811-825.

    10.1016/S1001-6058(14)60078-0

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 11372185, 11102110) and the Shanghai Leading Academic Discipline Project (Grant No. B206).

    Biography: CHEN Xin (1976-), Male, Ph. D.,

    Associate Professor

    猜你喜歡
    陳鑫
    傳銷(xiāo)頭目反傳銷(xiāo):我要贖罪
    新傳奇(2021年28期)2021-08-23 10:20:40
    Experimental investigation on DBD plasma reforming hydrocarbon blends
    大地精靈
    Sediment transport in pure acceleration-skewed oscillatory sheet flow *
    Experimental and numerical investigations of the aerodynamic noise reduction of automotive side view mirrors *
    好書(shū)推薦
    微信群聊惹的禍
    做人與處世(2017年9期)2017-07-27 11:02:16
    Numerical investigation of the time-resolved bubble cluster dynamics by using the interface capturing method of multiphase flow approach*
    陳鑫的午后三點(diǎn)
    環(huán)境保護(hù)主要問(wèn)題及對(duì)策研究
    日韩大码丰满熟妇| 欧美久久黑人一区二区| 成年人黄色毛片网站| 欧美日韩一级在线毛片| 日韩人妻精品一区2区三区| 亚洲成av片中文字幕在线观看| 亚洲欧美色中文字幕在线| 一二三四社区在线视频社区8| cao死你这个sao货| 熟女少妇亚洲综合色aaa.| 亚洲专区字幕在线| 悠悠久久av| 欧美亚洲日本最大视频资源| 婷婷丁香在线五月| 日日爽夜夜爽网站| 亚洲欧美日韩高清在线视频 | 9色porny在线观看| 人人妻人人添人人爽欧美一区卜| 午夜日韩欧美国产| 日日夜夜操网爽| 国精品久久久久久国模美| 99九九在线精品视频| 久久久久网色| 丰满饥渴人妻一区二区三| 自线自在国产av| 精品视频人人做人人爽| 久久久久精品人妻al黑| 51午夜福利影视在线观看| 成人手机av| 国产成人免费观看mmmm| 首页视频小说图片口味搜索| 亚洲欧美清纯卡通| 欧美97在线视频| 肉色欧美久久久久久久蜜桃| 久久久国产一区二区| 亚洲自偷自拍图片 自拍| 成人国产一区最新在线观看| 最近中文字幕2019免费版| 男人操女人黄网站| 天堂8中文在线网| 亚洲精品第二区| 在线观看免费视频网站a站| 精品免费久久久久久久清纯 | 久久香蕉激情| 99久久综合免费| 999久久久国产精品视频| 国产三级黄色录像| 国产一区二区在线观看av| 一级毛片精品| 少妇粗大呻吟视频| 国产精品一区二区在线观看99| 最黄视频免费看| 久久青草综合色| 欧美日韩黄片免| 亚洲男人天堂网一区| 最新的欧美精品一区二区| 国产精品欧美亚洲77777| 色老头精品视频在线观看| 国产又爽黄色视频| 麻豆av在线久日| √禁漫天堂资源中文www| a级毛片黄视频| 一个人免费看片子| 日韩人妻精品一区2区三区| 亚洲精品日韩在线中文字幕| 国产在线视频一区二区| 亚洲av欧美aⅴ国产| 精品免费久久久久久久清纯 | 啦啦啦啦在线视频资源| 亚洲少妇的诱惑av| 亚洲精品一二三| 国产精品av久久久久免费| 又大又爽又粗| 国产区一区二久久| 看免费av毛片| 老司机影院成人| 亚洲全国av大片| 亚洲男人天堂网一区| 中文字幕另类日韩欧美亚洲嫩草| av有码第一页| 9191精品国产免费久久| 精品一区二区三区四区五区乱码| 免费看十八禁软件| 成在线人永久免费视频| 99国产综合亚洲精品| 视频在线观看一区二区三区| bbb黄色大片| 黑人猛操日本美女一级片| 久久 成人 亚洲| 午夜激情av网站| 丝瓜视频免费看黄片| 少妇被粗大的猛进出69影院| 免费高清在线观看日韩| 久久久久国内视频| e午夜精品久久久久久久| 制服人妻中文乱码| 欧美激情久久久久久爽电影 | 成年人免费黄色播放视频| 99香蕉大伊视频| 亚洲色图综合在线观看| 一个人免费看片子| 色94色欧美一区二区| 亚洲五月婷婷丁香| 久久ye,这里只有精品| 亚洲精品一卡2卡三卡4卡5卡 | 中文精品一卡2卡3卡4更新| 超碰成人久久| 亚洲精品久久成人aⅴ小说| 电影成人av| 男女高潮啪啪啪动态图| 一区二区三区激情视频| 性高湖久久久久久久久免费观看| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美清纯卡通| 国产淫语在线视频| 久久九九热精品免费| 我的亚洲天堂| 97在线人人人人妻| 狠狠狠狠99中文字幕| 一本—道久久a久久精品蜜桃钙片| 亚洲精品av麻豆狂野| 亚洲国产欧美网| 久久国产精品男人的天堂亚洲| 欧美 日韩 精品 国产| 午夜免费观看性视频| 国产精品.久久久| 一级,二级,三级黄色视频| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕最新亚洲高清| 老司机深夜福利视频在线观看 | 亚洲九九香蕉| 99精品久久久久人妻精品| 国产亚洲午夜精品一区二区久久| 美女福利国产在线| 欧美成人午夜精品| 国产主播在线观看一区二区| 亚洲一区二区三区欧美精品| 亚洲国产欧美网| 国产日韩欧美在线精品| 国产精品偷伦视频观看了| av国产精品久久久久影院| 精品人妻一区二区三区麻豆| 最近最新中文字幕大全免费视频| 窝窝影院91人妻| 精品人妻一区二区三区麻豆| 国产精品成人在线| 国产亚洲精品一区二区www | 青春草亚洲视频在线观看| 亚洲熟女精品中文字幕| 狂野欧美激情性xxxx| 国产成人啪精品午夜网站| 美女福利国产在线| 精品国产国语对白av| 无限看片的www在线观看| 老熟女久久久| 考比视频在线观看| 国产亚洲精品久久久久5区| 电影成人av| 亚洲avbb在线观看| 美国免费a级毛片| 成人av一区二区三区在线看 | bbb黄色大片| 午夜免费鲁丝| 国产亚洲av高清不卡| kizo精华| 久久天躁狠狠躁夜夜2o2o| 极品人妻少妇av视频| 日日爽夜夜爽网站| 欧美亚洲日本最大视频资源| 男女床上黄色一级片免费看| 国产成人影院久久av| 精品欧美一区二区三区在线| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 丁香六月欧美| 久久久精品区二区三区| 精品福利观看| 在线永久观看黄色视频| av在线老鸭窝| 国产一区二区三区综合在线观看| 亚洲五月婷婷丁香| 国产人伦9x9x在线观看| 国产精品一二三区在线看| 久久毛片免费看一区二区三区| 国产精品九九99| 俄罗斯特黄特色一大片| 宅男免费午夜| 欧美激情极品国产一区二区三区| 香蕉国产在线看| 亚洲国产欧美一区二区综合| 午夜老司机福利片| 国产亚洲精品一区二区www | 18禁国产床啪视频网站| 国产精品成人在线| 中文字幕av电影在线播放| 多毛熟女@视频| 欧美久久黑人一区二区| 婷婷成人精品国产| 在线亚洲精品国产二区图片欧美| 日韩,欧美,国产一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 日韩中文字幕视频在线看片| 日韩有码中文字幕| 99久久综合免费| 国产淫语在线视频| 国产av精品麻豆| 久久久久久亚洲精品国产蜜桃av| 国精品久久久久久国模美| 国产免费视频播放在线视频| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频| 又大又爽又粗| 成人18禁高潮啪啪吃奶动态图| 国产亚洲一区二区精品| 亚洲精品一二三| 香蕉国产在线看| 一级毛片精品| 亚洲 国产 在线| 免费在线观看完整版高清| 国产成人精品久久二区二区91| 欧美日韩亚洲国产一区二区在线观看 | 国产在视频线精品| 老熟女久久久| 美女脱内裤让男人舔精品视频| 国产精品亚洲av一区麻豆| 在线十欧美十亚洲十日本专区| 亚洲少妇的诱惑av| 五月开心婷婷网| 欧美精品一区二区大全| 少妇的丰满在线观看| av不卡在线播放| 精品亚洲成a人片在线观看| 一个人免费在线观看的高清视频 | 午夜福利影视在线免费观看| 国产野战对白在线观看| 国产成人影院久久av| 亚洲av片天天在线观看| 精品视频人人做人人爽| 亚洲色图 男人天堂 中文字幕| 91老司机精品| 黄网站色视频无遮挡免费观看| 国产一卡二卡三卡精品| 日本av免费视频播放| 国精品久久久久久国模美| 精品人妻1区二区| 日韩视频一区二区在线观看| 中文字幕色久视频| 亚洲专区国产一区二区| 他把我摸到了高潮在线观看 | 国产熟女午夜一区二区三区| 成人三级做爰电影| 亚洲国产看品久久| 午夜福利一区二区在线看| 亚洲欧美色中文字幕在线| 中亚洲国语对白在线视频| 亚洲情色 制服丝袜| 成人av一区二区三区在线看 | www.熟女人妻精品国产| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看| 人人妻人人澡人人看| 咕卡用的链子| 啦啦啦免费观看视频1| 亚洲国产欧美一区二区综合| 91老司机精品| 伊人久久大香线蕉亚洲五| 色94色欧美一区二区| 亚洲第一欧美日韩一区二区三区 | 免费一级毛片在线播放高清视频 | 国产免费一区二区三区四区乱码| 啦啦啦 在线观看视频| 国产高清videossex| 天天躁狠狠躁夜夜躁狠狠躁| 18禁黄网站禁片午夜丰满| 国产视频一区二区在线看| 最近最新中文字幕大全免费视频| 又黄又粗又硬又大视频| 精品国产乱码久久久久久男人| 50天的宝宝边吃奶边哭怎么回事| 久热这里只有精品99| av片东京热男人的天堂| 自线自在国产av| 如日韩欧美国产精品一区二区三区| 欧美激情久久久久久爽电影 | 国产男人的电影天堂91| 国产成人系列免费观看| 国产欧美日韩综合在线一区二区| 亚洲精品国产区一区二| 成年人黄色毛片网站| 成年人午夜在线观看视频| 国产精品国产av在线观看| 亚洲色图 男人天堂 中文字幕| 美女脱内裤让男人舔精品视频| 91国产中文字幕| 日本猛色少妇xxxxx猛交久久| 欧美人与性动交α欧美软件| 久久天堂一区二区三区四区| 久久香蕉激情| 超碰成人久久| a级片在线免费高清观看视频| 波多野结衣一区麻豆| 午夜福利视频精品| av在线老鸭窝| 这个男人来自地球电影免费观看| 脱女人内裤的视频| 亚洲av成人不卡在线观看播放网 | 国产成人av激情在线播放| 久久精品国产a三级三级三级| 51午夜福利影视在线观看| 亚洲av电影在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 捣出白浆h1v1| 熟女少妇亚洲综合色aaa.| 久久久久久久大尺度免费视频| 国产亚洲精品久久久久5区| 丝袜美足系列| 中文字幕人妻丝袜一区二区| 中国国产av一级| 青春草视频在线免费观看| 精品久久久久久电影网| 日韩制服丝袜自拍偷拍| 菩萨蛮人人尽说江南好唐韦庄| 三上悠亚av全集在线观看| 国产一区二区三区av在线| 日韩一区二区三区影片| 欧美精品一区二区大全| 水蜜桃什么品种好| av网站免费在线观看视频| 亚洲自偷自拍图片 自拍| 黑丝袜美女国产一区| 男男h啪啪无遮挡| www.av在线官网国产| 两个人看的免费小视频| 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| av视频免费观看在线观看| 国产男女内射视频| av视频免费观看在线观看| 国产亚洲午夜精品一区二区久久| 国产免费av片在线观看野外av| 国产激情久久老熟女| 美女午夜性视频免费| 欧美一级毛片孕妇| 在线观看一区二区三区激情| 成年女人毛片免费观看观看9 | 99久久综合免费| 五月开心婷婷网| 日日爽夜夜爽网站| 国产精品一区二区在线观看99| 免费一级毛片在线播放高清视频 | 亚洲成av片中文字幕在线观看| 亚洲av电影在线观看一区二区三区| 欧美97在线视频| 欧美一级毛片孕妇| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 国产精品香港三级国产av潘金莲| 一级片'在线观看视频| 日韩视频在线欧美| 2018国产大陆天天弄谢| 国产主播在线观看一区二区| 成人影院久久| 亚洲视频免费观看视频| 青春草亚洲视频在线观看| 亚洲精品一二三| 亚洲国产精品一区三区| www.999成人在线观看| 久久热在线av| 91精品三级在线观看| 亚洲精品久久午夜乱码| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 国产一卡二卡三卡精品| 老司机福利观看| 成年av动漫网址| 丰满饥渴人妻一区二区三| 十八禁高潮呻吟视频| 亚洲一码二码三码区别大吗| 大码成人一级视频| 自线自在国产av| 又大又爽又粗| 欧美国产精品va在线观看不卡| 亚洲精品粉嫩美女一区| 一级毛片电影观看| 日本五十路高清| 亚洲人成电影观看| 亚洲va日本ⅴa欧美va伊人久久 | 最近最新免费中文字幕在线| 丰满少妇做爰视频| 国产伦理片在线播放av一区| 两人在一起打扑克的视频| 亚洲欧美激情在线| 国产亚洲精品久久久久5区| 久久青草综合色| 欧美午夜高清在线| 国产精品 欧美亚洲| 在线永久观看黄色视频| 黄色怎么调成土黄色| 99国产精品免费福利视频| 一区二区三区四区激情视频| 色94色欧美一区二区| 国产亚洲精品一区二区www | 中文字幕另类日韩欧美亚洲嫩草| 不卡av一区二区三区| 亚洲七黄色美女视频| 欧美激情久久久久久爽电影 | 国产精品一区二区免费欧美 | 又黄又粗又硬又大视频| 电影成人av| 国产精品国产三级国产专区5o| 国产一区二区三区av在线| 国产高清视频在线播放一区 | 80岁老熟妇乱子伦牲交| 人人妻人人添人人爽欧美一区卜| 午夜福利免费观看在线| 热99国产精品久久久久久7| 国产福利在线免费观看视频| 久热爱精品视频在线9| 最新的欧美精品一区二区| 超碰97精品在线观看| 99热国产这里只有精品6| 午夜免费成人在线视频| 亚洲第一欧美日韩一区二区三区 | 国产在线免费精品| 亚洲专区字幕在线| 亚洲激情五月婷婷啪啪| 每晚都被弄得嗷嗷叫到高潮| 日韩制服骚丝袜av| 国产在线观看jvid| 欧美另类一区| 日韩,欧美,国产一区二区三区| 大片免费播放器 马上看| 黄色视频,在线免费观看| 国产成+人综合+亚洲专区| 男女免费视频国产| 国产精品一区二区精品视频观看| 后天国语完整版免费观看| 午夜精品国产一区二区电影| 国产成人免费观看mmmm| 人妻 亚洲 视频| 国产精品一区二区免费欧美 | 亚洲午夜精品一区,二区,三区| 国产精品 国内视频| 麻豆乱淫一区二区| 热99re8久久精品国产| videos熟女内射| 777米奇影视久久| 热99久久久久精品小说推荐| 久久久久久久精品精品| 丝袜美腿诱惑在线| www日本在线高清视频| 国产精品av久久久久免费| 亚洲成人手机| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 国产一区二区激情短视频 | 久久亚洲国产成人精品v| 久久精品亚洲av国产电影网| 岛国在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 精品卡一卡二卡四卡免费| 美女高潮到喷水免费观看| 午夜免费鲁丝| 久久av网站| 欧美另类一区| 久热这里只有精品99| 一级片'在线观看视频| av在线老鸭窝| 久久久久久亚洲精品国产蜜桃av| 丝瓜视频免费看黄片| 国产极品粉嫩免费观看在线| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 黄网站色视频无遮挡免费观看| 亚洲精品自拍成人| 亚洲专区国产一区二区| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 亚洲av欧美aⅴ国产| 精品福利观看| 伊人亚洲综合成人网| 欧美 亚洲 国产 日韩一| 肉色欧美久久久久久久蜜桃| 美国免费a级毛片| 最近中文字幕2019免费版| 99久久99久久久精品蜜桃| 性高湖久久久久久久久免费观看| 国精品久久久久久国模美| 岛国毛片在线播放| 亚洲 欧美一区二区三区| 午夜福利,免费看| 国产精品一区二区免费欧美 | 青春草亚洲视频在线观看| 久久天堂一区二区三区四区| 正在播放国产对白刺激| 久久亚洲精品不卡| 大片电影免费在线观看免费| 精品视频人人做人人爽| 国产精品免费大片| 久久精品国产亚洲av香蕉五月 | 国内毛片毛片毛片毛片毛片| 九色亚洲精品在线播放| 麻豆国产av国片精品| 成年av动漫网址| 日本撒尿小便嘘嘘汇集6| 一个人免费看片子| 国产一区二区激情短视频 | 脱女人内裤的视频| 亚洲国产日韩一区二区| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 啦啦啦中文免费视频观看日本| 欧美日韩中文字幕国产精品一区二区三区 | 男男h啪啪无遮挡| 亚洲av日韩精品久久久久久密| av国产精品久久久久影院| 日韩三级视频一区二区三区| 一区二区三区四区激情视频| www.av在线官网国产| 99国产精品99久久久久| 国产三级黄色录像| 国产成人免费无遮挡视频| 国产又爽黄色视频| 在线观看免费午夜福利视频| 一级a爱视频在线免费观看| 90打野战视频偷拍视频| av电影中文网址| 久久女婷五月综合色啪小说| 亚洲 欧美一区二区三区| 十八禁高潮呻吟视频| 免费不卡黄色视频| 伊人久久大香线蕉亚洲五| 日韩大片免费观看网站| 精品国产一区二区三区四区第35| 成年女人毛片免费观看观看9 | 19禁男女啪啪无遮挡网站| 久久国产亚洲av麻豆专区| 国产精品自产拍在线观看55亚洲 | 99香蕉大伊视频| 午夜免费成人在线视频| 777米奇影视久久| 日韩电影二区| 亚洲欧洲精品一区二区精品久久久| 在线精品无人区一区二区三| 久久 成人 亚洲| 国产一区二区三区在线臀色熟女 | 人妻 亚洲 视频| 搡老乐熟女国产| 精品少妇黑人巨大在线播放| 亚洲 欧美一区二区三区| 亚洲av日韩精品久久久久久密| 黑人操中国人逼视频| 国产免费福利视频在线观看| 男人爽女人下面视频在线观看| 欧美亚洲 丝袜 人妻 在线| 中文字幕制服av| 国产精品秋霞免费鲁丝片| 亚洲成人免费电影在线观看| 成年人黄色毛片网站| 午夜精品国产一区二区电影| 99热国产这里只有精品6| 亚洲国产成人一精品久久久| 日本撒尿小便嘘嘘汇集6| 亚洲精品成人av观看孕妇| 国产欧美日韩一区二区精品| 黑人巨大精品欧美一区二区mp4| 麻豆国产av国片精品| 动漫黄色视频在线观看| 亚洲精品自拍成人| 91精品国产国语对白视频| 国产精品av久久久久免费| 美女国产高潮福利片在线看| 亚洲国产毛片av蜜桃av| √禁漫天堂资源中文www| 欧美黑人欧美精品刺激| 老司机午夜福利在线观看视频 | 亚洲精品一卡2卡三卡4卡5卡 | 色综合欧美亚洲国产小说| 午夜免费成人在线视频| 一级片'在线观看视频| 黄片小视频在线播放| 亚洲色图综合在线观看| 午夜精品国产一区二区电影| 亚洲精品乱久久久久久| 精品人妻在线不人妻| 极品人妻少妇av视频| 在线观看免费视频网站a站| 午夜免费鲁丝| 亚洲性夜色夜夜综合| 久久久久久久久免费视频了| 国产免费现黄频在线看| 午夜福利影视在线免费观看| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看 | 国产亚洲欧美精品永久| 黄片小视频在线播放| 欧美大码av| 90打野战视频偷拍视频| 美女国产高潮福利片在线看| cao死你这个sao货| 久久久久久免费高清国产稀缺| 日韩大码丰满熟妇| 自线自在国产av| 法律面前人人平等表现在哪些方面 | 日韩电影二区| 欧美黄色淫秽网站| 国产日韩欧美在线精品| 欧美久久黑人一区二区| 考比视频在线观看| 黄色毛片三级朝国网站| 国产在线免费精品| 免费在线观看视频国产中文字幕亚洲 | 国产成人av教育|