• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?

    2019-11-06 00:46:24BosenWang王鉑森YaoqingZhang張堯卿ShuxiangXu徐淑香KentoIshigakiKazuyukiMatsubayashiJinGuangCheng程金光HideoHosonoandYoshiyaUwatoko
    Chinese Physics B 2019年10期
    關(guān)鍵詞:金光

    Bosen Wang(王鉑森),Yaoqing Zhang(張堯卿),Shuxiang Xu(徐淑香),Kento Ishigaki,Kazuyuki Matsubayashi,Jin-Guang Cheng(程金光),4,Hideo Hosono,and Yoshiya Uwatoko

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Institute for Solid State Physics,University of Tokyo,Kashiwanoha 5-1-5,Kashiwa,Chiba 277-8581,Japan

    3Materials Research Center for Element Strategy,Tokyo Institute of Technology,Yokohama 226-8503,Japan

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords:new superconductor,high-pressure effect,strongly coupled superconductor

    Low energy anharmonic lattice vibration significantly affects electron–phonon coupling(λe?p)and plays an important role in exploring superconductors(SC)and revealing superconducting mechanism.[1,2]Among them,phonon softening associated with structural instabilities usually results in Fermi surface nesting and the enhancement of the electron–phonon coupling,which is believed to be much important for superconducting pairings.[3–7]Various cage-like materials have been reported and attracted much more attention.[3,6,7]The commonalities are composed of hollow covalently bonded atomic clusters and various inserted elements,offering playgrounds to explore diverse structures,exotic physics,and multifunctionalities,e.g.,multi-band SCs,[3,8–10]metal–insulator transition,[10]thermoelectricity,[11]and electrides.[12,13]But some regularity is not universal concerning the superconducting pairing mechanisms,which is also challenging to study these scientific issues.

    Hexagonal structure Mn5Si3-type derivatives are such examples.[14,15]One of the top priorities is the explorations of new SCs and superconducting mechanisms.[15–19]At present, the difficulty in synthesizing single-phase hexagonal and tetragonal materials lies in their close formation energies.[16,17,19]One common way is elementary intercalation into interstitial positions of Mn5Si3Mx(M=carbon,nitrogen,oxide,and transition metal elements,etc).[14–19]Hexagonal phase can be stabilized and the relevant studies are performed to reveal the relationships between lattice instabilities and superconductivity. For example,hexagonal Nb5Ir3is stabilized upon the insertion of the interstitial oxygen and Tcis increased as a result.It is sure that the interstitial oxygen brings great changes in electronic structures.[16]It still remains unclear whether the enhanced Tcis dominantly associated to the volume change,band fillings,structural instability,and/or disorders.[16]Another issue to be addressed is the relationship of electride and superconductivity. Theoretical calculations predicated that the electride nature of Nb5Ir3vanishes in Nb5Ir3O.As we know,eletride materials have electronic bands of anionic electron near Fermi level(EF)in many cases including C12A7: e-1 electride,Ca2N,and Y5Si3,which is the important reason why electride materials exhibit interesting properties.For SCs,Tcis enhanced along with the suppression of the electride nature and the coexistence of superconductivity and electride is firstly reported with Tc~0.16–2.4 K.[12,13]For C12A7:e-1 electride SC,Tcis increased to 2.4 K by pressure and this enhancement is attributed to the changes in electronic nature of anionic electride band crossing Fermi levels switching from s-to sd-hybridized state.[13]However,the interstitial oxygen suppresses superconducting state in other cases,hexagonal Zr5Sb3is superconductive at ~2.3 K,but Zr5Sb3O is not superconducting above 1.8 K,it is thought that larger density of states(DOS)at EFassociated with the Zr-d electrons and the larger value of λe?pis critical.[15]Analogously,in Zr5Sb(3?x)Rux,its hexagonal structure transforms into W5Si3-type one for 0.4 ≤x ≤0.6.Tcincreases from 2.3 K to 5 K in Zr5Sb2.4Ru0.6,which originates from the EFclose to the DOS peak.[17]Except for these above scientific issues,the present studies on the intercalated Mn5Si3-type materials focus on macro-correlations of crystal structure and superconductivity,and some conclusions are inadequate. In this work,Nb5Ir3O is selected to study the issues further. Another concern is to reveal superconductivity by comparative analysis of doping and high pressure,and to judge whether unconventional or not with magnetism of localized and/or itinerant iridium.[20,21]

    Fig.1.Crystal structures for(a)Nb5Ir3 and(b)Nb5Ir3O.ρ(T)for(c)Nb5Ir3 and(d)Nb5Ir3O.The enlargement of low-T data is shown in the inset.The derivative dρ/dT for(e)Nb5Ir3 and(f)Nb5Ir3O.The broad peaks are marked by T p.M(T)curves at 10 Oe under the ZFC and FC processes for(g)Nb5Ir3 and(h)Nb5Ir3O.

    High pressure is an effective and clean way to study structural chemistry and electronic phase transitions of materials by shortening bonds and reconstructing electronic bands.For SCs,high-pressure effect is valuable because the underlying mechanism can be identified by analogizing with the known SCs. In this work,Nb5Ir3O is found to be a strongly coupled SC with two s-wave gaps and phonon softening associated with interstitial oxygen is critical.

    At ambient pressure(AP),electrical transport and specific heat of Nb5Ir3and Nb5Ir3O were measured on commercial physical properties measurement system(PPMS,1.8 K≤T ≤300 K,?9 T ≤H ≤9 T).High-pressure susceptibility was measured in a piston-cylinder cell with glycerol as the pressure transmitting medium(PTM)and a small piece lead as the pressure monitor.The background contributions mainly originate from Meissner signal of Pb reference.High-pressure electrical transport was performed by the four-probe method in a cubic anvil pressure cell which generated the hydrostatic environment.[22]MgO cubes were used as the gasket and glycerol as PTM.All the measurements were carried out in4He refrigerated chambers(1.9 K ≤T ≤300 K).

    Structures of Nb5Ir3and Nb5Ir3O(1?δ)are shown in Figs.1(a)and 1(b).They have similar hexgonal symmetry except for the interstitial oxygen inserted.Nb5Ir3contains two groups of weakly connected octahedra along the c axis:one is hollow(Nb1)6octahedron connected by Nb1–Nb1 bonds,the other is side-sharing Ir(Nb2)6octahedron.Moreover,it is regarded as the network of twisted trigonal Nb1-prisms connected by the planes along the c axis,which allows the insertion of oxide ion in the“Nb1 cages”.It does not change the crystal structure,but forms covalent bonds Nb1–O.Upon changing from Nb5Ir3to Nb5Ir3O,lattice parameter c contracts by ~0.11%while a and b expand by ~0.087%. In Figs.1(c)and 1(d),ρ(T)of Nb5Ir3and Nb5Ir3O shows the metallic behavior. Two independent drops appear in the inset of Fig.1(c),which represent superconducting transitions of hexagonal and tetragonal Nb5Ir3,respectively.[20,21]andare marked where ρ(T)deviates linearly and is zero.At AP,is ~9.4 K for hexagonal Nb5Ir3and ~4.0 K for tetragonalis ~10.15 K and~is 10 K for Nb5Ir3O.In Fig.1(d),ρ(T)is shown and similar in temperature dependence for both as-grown Nb5Ir3O and annealed one(4 GPa,600?C).A clear difference is that high pressure broadens the transition anddecreases from ~10 K to ~9.6 K.A broad peak appears in dρ/dT at a critical temperature Tp,which decreases from ~62.5 K to ~53.8 K upon the increase of the interstitial oxygen. Usually,this peak reflects the information of the phonon spectrum and is closely related with Debye temperature θD.[23]

    Fig.2.The transverse resistivity ρxy vs.H at various temperatures:(a)S1#and(b)S2#.(c)Temperature dependence of Hall coefficient RH(T).

    Figure 2 displays the field-dependence of transverse resistivity ρxyat various temperatures up to 5 T.ρxyshows a linear H-dependence for each temperature. Hall coefficient RHis defined by dρxy/dH. RHis positive and almost temperature independent below 200 K,and negative above 250 K,which suggests the balance of electron-to hole-types carriers with different effective masses and velocities.Its strong temperature dependence elucidates that Nb5Ir3O has a complex multi-band electronic structure with both electron-and hole-Fermi pockets.[24,25]According to the successive changes in mangetism and electrical resistivity,we can exclude the possible structural and magnetic phase transitions.Besides,the longitudinal resistivity ρxxis measured,the magnetoresistance MR=?ρxx/ρxx(0)=(ρxx(5 T)?ρxx(0))/ρxx(0)<2%. As we know,for a multi-band structure material,it is difficult to calculate the carrier concentration by a single-band model.It is necessary to consider the mobility of two carriers and the specific Fermi surface structures and more theoretical calculations and in-depth experimental analysis are needed.Meanwhile,the carrier density by the simple estimate of the singleband model is only a lower limit of the total carrier number(electrons plus holes),such as n ~1.6×1028m?3for Nb5Ir3O at 300 K.Considering the change of sign of RH,the compensation effect at 300 K(where the one-band carrier density was calculated)is expected to still be significant.Further understandings need De-Haas–van Alphen and angle-resolved photoemission spectroscopy.

    Temperature dependence of specific heat Cp(T)is shown in Fig.3(a). On warming,Cp(T)increases and approximates 3NR above 300 K.Tc(~9.94 K)is marked by the jump in Cp/T.The inset shows Cp(T)/T and its polynomial fittingsin the temperature range of Tc≤T ≤14 K,where γnT andare electron and phonon contributions,respectively. It gives γn=34.255 mJ/mol·K2,β1=0.4489 mJ/mol·K4,β2=1.07×10?3mJ/mol·K6. Electronic contribution Ce(T)was investigated by the deduction offrom Cp(T)as in Fig.3(c). The ?C/γnTcat Tcis ~1.91,larger than 1.43 for a Bardeen–Cooper–Schrieffer(BCS)SC.[26]λe?pis 0.85 by using McMillan formula Tc=(θD/1.45)exp{?1.04(1+λe?p)/[λe?p?0.15(1+0.62λe?p)]}, which implies strong electron–phonon coupling.[26]

    Fig.3.(a)Temperature dependent Cp(T)for Nb5Ir3O,the inset shows low-T Cp(T)/T.(b)Theis the sum of Debye model CD and Einstein oscillators CE.(c)Electronic specific heat Ce(T)=Cp(T)?(β1T 3+β2T 5)is analyzed by using a single-gap model as Ce(T)/T=β1T 3+β2T 5+Bexp(??/kBT).(d)and(e)H-dependence of Cp(T).(f)The upper critical field Hc2 is given by Hc2(T)=Hc2(0)[1?(T/Tc)2]/[1+(T/Tc)2]and Hc2(0)=?0.693Tc dHc2/dT,respectively.Inset shows H-dependent γ(H)and its comparison to H1/2-behavior for d-wave SCs.

    To get more information on gap symmetry,Ce(T)was analyzed by a single-gap model C(T)=β1T3+β2T5+Bexp(??/kBT)at first,which gives 2?/kBTc=4.25. But clear deviations between experimental and mathematical fitting exist for T<5 K,which implies that isotropic s-wave is too simple. Meanwhile,an anisotropic s-wave gap is similar but not applicable to the present case. Then,two anisotropic s-waves with gaps ?1and ?2are required. The data are well duplicated with 2?L(0)/kBTc~6.56(90%)and 2?S(0)/kBTc~2.36(10%). Furthermore,H-dependence of Ce(T,H)is measured. At H=0,the linear extrapolation of Ce/T vs.gives a“residual”Sommerfeld coefficient γ0≈0 mJ·mol?1·K?2.For each H,γ(H)at T=0 K is determined by linear fitting to Ce/T vs.T2.The H-dependence of γ(H)is plotted in Fig.3(f). γ(H)increases linearly as a function of H,implying the appearance of nodeless gap.γ(H)is smaller than the H1/2dependence for d-wave SCs with line nodes.[27]Generally,in fully-gapped SCs,the excited state is seen as normal-state quasiparticles in vortex core states,which generates the γn(H)≈H at zero temperature. Thus,Nb5Ir3O is a fully-gapped s-waves SC.Moreover,using the Hdependence ofCp(T)data in Figs.3(d)and 3(e),the upper critical field Hc2(0)is 10.5(5)T and 9.5(8)T by Ginzburg–Landau equation Hc2(T)=Hc2(0)[1 ?(T/Tc)2]/[1+(T/Tc)2]and Werthamer–Helfand–Hohenberg(WHH)formula Hc2(0)=?0.693TcdHc2/dT,respectively.[28]

    To extract phonon contributions,thevs.T is plotted.It shows a broad peak at ~23 K,which manifests the existence of low-energy Einstein vibration associated with anomalies in the phonon spectrum.[29]Cp(T)is the sum of Debye mode and Einstein oscillators

    where CD(T)and CE(T)are the contributions of continuous phonon mode and localized oscillators,respectively,N,N1,and N2are the numbers of oscillators per formula,R is the gas constant,θDand θE1,θE2are Debye and Einstein temperatures,respectively.It gives θD=315.8(4)K,θE1=87.9(2)K,θE2=69.7(5)K,which are insensitive to the temperature ranges selected.As above,the Nb1O octahedron is connected with side-sharing Ir(Nb2)6one,which reminds us that Tcdepends on λe?pin materials with low-lying phonon modes.It suggests the existence of phonon softening associated with interstitial oxygen.

    Figure 4 shows ρ(T)of Nb5Ir3O under various pressures.With increasing pressure,room-temperature ρ decreases and its value at 13 GPa is nearly three times smaller than that at AP.ρ(T)has similar temperature dependence for each pressure:metallic behavior and entering into superconducting state.As shown in Fig.4(b),with increasing pressure,anddecrease and transition widthincreases,implying that the superconducting transition is broadened by pressure.As shown in Fig.4(c),susceptibility is measured in a piston pressure cell.is determined by the intersections of two straight lines. Large field shielding effect belowconfirms bulk superconductivity.The fraction is nearly 1 by subtracting the background contributions of Pb signal which is about 5%–10%of total magnetization.decreases from~9.91 K at 0.10 GPa to ~9.70 K at 1.21 GPa.The stress effect and the enhanced anisotropy by pressure are the main reasons.Besides,the broad peak at T p ~53.8 K atAP enhances to 69.4 K at 13 GPa,which is negatively correlated with Tc.

    Fig.4.(a)The ρ(T)under various pressures.(b)Low-T ρ(T)is enlarged and dρ/T in the inset.(c)M(T)under ZFC process at 10 Oe.(d)?ρ(T)under various pressures and the characteristic temperatures T ?,T ε,and T#are defined as the crossing points from T 2-to T 3-dependence,the deviation from T 3-dependence,the intersection of T 3-dependence and linear fitting,respectively.The parameters are summarized with pressures:(e),(h)ρ300 K,ρ0,(i)the A value.

    Normal-state ρ(T)is analyzed bywith residual resistivity ρ0,temperature coefficient A,and exponent n.It is found that n is ~2.±0.1 for T ≤T?,then increases up to ~3.±0.1 for T?≤T ≤Tε,and then tends to saturation for T ≥T#,where T?,Tε,and T#are defined as the crossing points of T2-to T3-dependence,the deviation from T3-dependence,the intersection of T3-dependence and linear fitting above 250 K,respectively.All the parameters are shown in Figs.4(f)and 4(g).Considering the small pressure difference and distribution(<0.5 GPa)in the cubic anvil cell cooling from 300 K to 2 K,the present analyses of temperature dependence of resistivity are reliable.increases as the pressure increases while T?reaches the maximum at 8 GPa.T2-fittings for Tc≤T ≤T?give ρ,A and their pressure dependence in Figs.4(h)and 4(i).Both ρ and ρ300Kreduce with increasing pressure.The decrease of ρ is attributed to the weakened grain boundary scatterings under pressure.The A has a positive correlation with Tc:it decreases quickly below 4 GPa,and then trends to a constant.

    Fig.5.(a)Pressure phase diagram,the color represents the changing trends of resistivity. (b)The the unit-cell volume V,and the lattice parameter ratio c/(10a)are related with the increasing nominaloxide content(1?δ)of 0,0.20,0.40,0.60,0.80,1.0 for (c)We scaled the relationship of and for The thick lines indicate the tendency.

    In Fig.5(a),we outline the high-pressure phase diagram.The color represents the changing trend of resistivity. Generally,T2-dependence for Tc≤T ≤T?shows that electron–electron scattering is the main source and T3-dependence forindicates important electron–phonon scattering.Above Tε,ρ(T)is saturated,indicating that electron–phonon scattering is comparable to the atomic lattice spacing.Thus,the increases of characteristic temperatures reflect the change of phonon contributions.[23,26,30]For,theunit-cell volume,and lattice parameters c/(10a)ratio are summarized in Fig.5(b). With increasing(1 ?δ),increases from ~9.4 K to ~10.15 K in Nb5Ir3O,the volume expands from ~272.89 mm3to ~273.05 mm3,and c/(10a)decreases from ~0.649 to ~0.647.More interestingly,and the volume have similar linear dependence on c/(10a).In Fig.5(c),the relationship ofandis also scaled.Bothanddecrease linearly with Tp.It is argued thatis proportional to the parameters closely correlated with θD,which implies that phonon contributions are different with pressures,[23,26]e.g.,the weakness of phonon scattering and the reduced value of λe?p.[5,15,17]

    Finally,we discuss the evolution of superconditing transition temperature with the interstitial oxygen and pressures.As mentioned above,with increasing concentration of the interstitial oxygen,the volume expands and Tcenhances,which seems to contradict with pressure.[16]Under pressure,Tccorrelates with the A value directly. As we know,A is proportional to the square of Sommerfeld coefficient,as an important measure of DOS at EF.Therefore,the decrease of Tcmainly originates from the reduce of N(EF),which is consistent with the phonon-mediated behavior in Nb5Ir3O.Previous studies revealed that Tcwill be higher if with larger N(EF).[15,17–19]It suggests that band filling effect is the main result of superconductivity.Or to say,high pressure and interstitial oxygen change the electronic structure and phonon spectrum in different ways.Several possible scenarios are proposed:the first case is that pressure broadens energy bands and results in the decrease of N(EF).[26]It is consistent with the fact that Nb5Ir3O is phonon-medicated SC.For Nb5Ir3O(1?δ),the monotonic increase of N(EF)may account for higher Tcwith increasing concentration of the interstitial oxygen.The second scenario is the weakness of λe?punder pressure,which can reduce Tc.[1,2]This is basically consistent with strong correlation characteristics of these SCs.[3,7,8,10]For Nb5Ir3O(1?δ),considering the strong electronegativity of oxygen,the insertion of interstitial oxygen introduces Nb1–O ionic bonds,which may enhance the electron correlations and λe?p.The third scenario is that Nb5Ir3O has an inter-band coupling considering its multi-band electronic structure,which usually appears in other multi-band SCs.[31,32]For Nb5Ir3O(1?δ),the insertion of interstitial oxygen enhances this coupling and results in an enhancement of Tc,which is in good agreement with theoretical calculations.To understand the details,further studies on band structures and phonon spectrum are also required.

    In summary,we have investigated robust superconductivity and gap symmetry of Nb5Ir3O.Nb5Ir3O is found to be strongly coupled phonon-medicated SC with double s-waves.Phonon softening and low-lying phonon modes associated with the interstitial oxygen are critical to understand the evolution of Tc.

    Acknowledgment

    We thank S.Nagasaki and Dr.Gouchi for the technical assistance.

    猜你喜歡
    金光
    午夜繁華
    Optimal driving field for multipartite quantum battery coupled with a common thermal bath
    王記寨
    Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
    金光現(xiàn)代學徒班感恩教育的實踐
    The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon
    Comparative study of pulsed laser diode end-pumped thulium-doped 2-μm Q-switched lasers?
    呂金光
    龍的傳人
    頤和園十七孔橋再現(xiàn)“金光穿孔”景象
    澳門月刊(2018年1期)2018-01-17 08:48:45
    曰老女人黄片| 欧美激情 高清一区二区三区| 亚洲欧美日韩另类电影网站| 好男人电影高清在线观看| 丁香欧美五月| 欧美在线黄色| 美女午夜性视频免费| 日韩精品免费视频一区二区三区| cao死你这个sao货| 欧美不卡视频在线免费观看 | 中文字幕人妻熟女乱码| 女生性感内裤真人,穿戴方法视频| 亚洲精品一区av在线观看| 精品久久久精品久久久| 欧美另类亚洲清纯唯美| 男人操女人黄网站| 亚洲av日韩精品久久久久久密| 动漫黄色视频在线观看| 国产成人精品久久二区二区免费| 校园春色视频在线观看| 51午夜福利影视在线观看| 精品一品国产午夜福利视频| 亚洲精品国产区一区二| 搡老熟女国产l中国老女人| 一级片'在线观看视频| 满18在线观看网站| 在线免费观看的www视频| 精品国产超薄肉色丝袜足j| 亚洲欧美一区二区三区久久| 久久久国产一区二区| 中文欧美无线码| 久久人妻福利社区极品人妻图片| 久久天堂一区二区三区四区| 12—13女人毛片做爰片一| 日韩免费高清中文字幕av| 久久人妻av系列| 久久草成人影院| 欧美日韩视频精品一区| а√天堂www在线а√下载| 欧美黑人欧美精品刺激| 亚洲全国av大片| 又紧又爽又黄一区二区| netflix在线观看网站| 成人影院久久| 99久久精品国产亚洲精品| 一区二区三区精品91| 香蕉丝袜av| 亚洲精品美女久久av网站| 黄色女人牲交| 色在线成人网| 精品电影一区二区在线| 国产精品免费视频内射| 欧美乱码精品一区二区三区| 精品第一国产精品| 性欧美人与动物交配| 99热国产这里只有精品6| 中国美女看黄片| 亚洲av日韩精品久久久久久密| 亚洲精华国产精华精| 免费人成视频x8x8入口观看| 叶爱在线成人免费视频播放| 亚洲视频免费观看视频| 亚洲少妇的诱惑av| 久久精品91蜜桃| 在线十欧美十亚洲十日本专区| 搡老熟女国产l中国老女人| 亚洲精品av麻豆狂野| 日本三级黄在线观看| 少妇的丰满在线观看| 久久久国产成人免费| 69av精品久久久久久| 天堂中文最新版在线下载| 琪琪午夜伦伦电影理论片6080| 国产av一区二区精品久久| 久久国产乱子伦精品免费另类| 亚洲国产欧美日韩在线播放| 欧美精品亚洲一区二区| 欧美乱码精品一区二区三区| 丰满迷人的少妇在线观看| 亚洲欧美精品综合久久99| 国产成人av教育| 日韩av在线大香蕉| 欧美激情高清一区二区三区| 久久久水蜜桃国产精品网| 男人舔女人下体高潮全视频| 最好的美女福利视频网| 国产无遮挡羞羞视频在线观看| 色婷婷久久久亚洲欧美| 久久青草综合色| 国产高清国产精品国产三级| 高清av免费在线| x7x7x7水蜜桃| 麻豆国产av国片精品| 18禁裸乳无遮挡免费网站照片 | 在线观看免费日韩欧美大片| 国产精品久久视频播放| 久久人妻熟女aⅴ| 深夜精品福利| 淫秽高清视频在线观看| 午夜福利免费观看在线| 久久精品aⅴ一区二区三区四区| 涩涩av久久男人的天堂| 男人舔女人的私密视频| 亚洲精品国产区一区二| 亚洲欧美日韩另类电影网站| 欧美日韩亚洲高清精品| 中文亚洲av片在线观看爽| 亚洲精品成人av观看孕妇| 中文字幕高清在线视频| 在线观看免费高清a一片| 精品高清国产在线一区| 国产1区2区3区精品| 在线观看免费高清a一片| 国产aⅴ精品一区二区三区波| 国产成人av激情在线播放| 夜夜躁狠狠躁天天躁| 制服人妻中文乱码| 国内久久婷婷六月综合欲色啪| 欧美成人免费av一区二区三区| 日本三级黄在线观看| 午夜久久久在线观看| 首页视频小说图片口味搜索| 亚洲一区高清亚洲精品| 精品国产乱码久久久久久男人| 欧美黄色片欧美黄色片| 国产99白浆流出| 亚洲 欧美 日韩 在线 免费| 曰老女人黄片| 美女国产高潮福利片在线看| 欧美日韩瑟瑟在线播放| 色婷婷久久久亚洲欧美| 国产精品国产高清国产av| 欧美人与性动交α欧美软件| 日日摸夜夜添夜夜添小说| 午夜免费鲁丝| 最近最新中文字幕大全电影3 | 国产在线精品亚洲第一网站| 久久伊人香网站| 午夜久久久在线观看| 黄片播放在线免费| 亚洲精品av麻豆狂野| 热re99久久国产66热| 91精品国产国语对白视频| 美女福利国产在线| 在线观看舔阴道视频| 国产熟女xx| 国产免费男女视频| 午夜福利影视在线免费观看| 久久精品国产综合久久久| 欧美乱色亚洲激情| 精品福利观看| 国产视频一区二区在线看| 午夜激情av网站| 亚洲国产欧美网| 午夜日韩欧美国产| 真人做人爱边吃奶动态| 久久久久久久久中文| 亚洲av片天天在线观看| 亚洲欧美一区二区三区久久| 一本综合久久免费| 午夜日韩欧美国产| 亚洲一区二区三区不卡视频| 国产精品国产高清国产av| 久久久久国产精品人妻aⅴ院| 两性午夜刺激爽爽歪歪视频在线观看 | 国产免费av片在线观看野外av| 欧美在线黄色| 啦啦啦免费观看视频1| 久久国产精品男人的天堂亚洲| 亚洲成人精品中文字幕电影 | 19禁男女啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 老汉色av国产亚洲站长工具| 日本黄色日本黄色录像| 中文字幕人妻丝袜一区二区| 91精品三级在线观看| 免费在线观看完整版高清| 99精品欧美一区二区三区四区| 免费av毛片视频| 两个人免费观看高清视频| 欧美激情 高清一区二区三区| 国产成年人精品一区二区 | 欧美大码av| 欧美大码av| 淫妇啪啪啪对白视频| 我的亚洲天堂| 国产激情欧美一区二区| 看免费av毛片| 热re99久久国产66热| 国产1区2区3区精品| aaaaa片日本免费| 叶爱在线成人免费视频播放| 国产精品av久久久久免费| 一夜夜www| 夜夜爽天天搞| 色精品久久人妻99蜜桃| 国产成人影院久久av| 黄片大片在线免费观看| 国产欧美日韩一区二区精品| 成人18禁在线播放| 黄色丝袜av网址大全| www国产在线视频色| 校园春色视频在线观看| 色尼玛亚洲综合影院| 久久影院123| 亚洲色图综合在线观看| 亚洲av成人一区二区三| 精品国产国语对白av| 国产亚洲精品一区二区www| 欧美人与性动交α欧美软件| a级毛片黄视频| 黑人巨大精品欧美一区二区mp4| 精品电影一区二区在线| 久久国产精品男人的天堂亚洲| 在线永久观看黄色视频| 天堂√8在线中文| 国产有黄有色有爽视频| a在线观看视频网站| 在线观看免费午夜福利视频| 久久久久久亚洲精品国产蜜桃av| 欧美另类亚洲清纯唯美| 国产成人av激情在线播放| 亚洲午夜理论影院| 搡老熟女国产l中国老女人| 国产精品99久久99久久久不卡| 欧美亚洲日本最大视频资源| av天堂在线播放| 欧美午夜高清在线| 视频区欧美日本亚洲| 国产亚洲精品久久久久5区| 精品福利永久在线观看| 久99久视频精品免费| 亚洲第一欧美日韩一区二区三区| 91大片在线观看| 亚洲av片天天在线观看| 激情在线观看视频在线高清| 日本免费一区二区三区高清不卡 | 每晚都被弄得嗷嗷叫到高潮| 精品久久久久久,| 天堂动漫精品| 满18在线观看网站| 男人操女人黄网站| 亚洲欧美精品综合久久99| 高潮久久久久久久久久久不卡| 又黄又粗又硬又大视频| 亚洲熟女毛片儿| 午夜影院日韩av| 免费av毛片视频| 91av网站免费观看| 人人澡人人妻人| 久久午夜综合久久蜜桃| 少妇 在线观看| 亚洲成av片中文字幕在线观看| videosex国产| 91成年电影在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国内亚洲2022精品成人| 麻豆成人av在线观看| 十八禁网站免费在线| 日本wwww免费看| 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产一级毛片高清牌| 可以在线观看毛片的网站| 亚洲精品中文字幕在线视频| 亚洲激情在线av| 香蕉丝袜av| 久久久久久免费高清国产稀缺| 久久欧美精品欧美久久欧美| 美女午夜性视频免费| 欧美激情 高清一区二区三区| 天天添夜夜摸| 亚洲人成电影观看| 日本vs欧美在线观看视频| 法律面前人人平等表现在哪些方面| xxxhd国产人妻xxx| 欧美国产精品va在线观看不卡| 国产亚洲av高清不卡| 新久久久久国产一级毛片| 免费av毛片视频| 国产精品自产拍在线观看55亚洲| 又大又爽又粗| 国产成人av教育| 国内久久婷婷六月综合欲色啪| 久久国产亚洲av麻豆专区| 手机成人av网站| 欧美一区二区精品小视频在线| 在线观看一区二区三区| 亚洲精品美女久久av网站| 久久99一区二区三区| 制服诱惑二区| av网站在线播放免费| 亚洲色图综合在线观看| 欧美日韩av久久| 好男人电影高清在线观看| 一区二区日韩欧美中文字幕| 久久香蕉国产精品| 午夜福利在线观看吧| 级片在线观看| 黄色毛片三级朝国网站| 国产aⅴ精品一区二区三区波| 亚洲av成人一区二区三| 精品一区二区三区视频在线观看免费 | 搡老乐熟女国产| 午夜91福利影院| 午夜两性在线视频| 亚洲国产精品999在线| www.999成人在线观看| bbb黄色大片| 人人澡人人妻人| 国产成人精品久久二区二区免费| 9热在线视频观看99| 伊人久久大香线蕉亚洲五| 欧美午夜高清在线| 天堂中文最新版在线下载| 操出白浆在线播放| 亚洲精品国产色婷婷电影| 日韩免费高清中文字幕av| 99久久久亚洲精品蜜臀av| 少妇被粗大的猛进出69影院| 欧美激情高清一区二区三区| 成人黄色视频免费在线看| 午夜成年电影在线免费观看| 91九色精品人成在线观看| 免费在线观看影片大全网站| 午夜福利一区二区在线看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成电影免费在线| 中文字幕最新亚洲高清| 一本综合久久免费| 中文字幕高清在线视频| 又紧又爽又黄一区二区| 水蜜桃什么品种好| 波多野结衣高清无吗| 18禁国产床啪视频网站| 国产伦人伦偷精品视频| av福利片在线| 国产aⅴ精品一区二区三区波| 国产伦人伦偷精品视频| 淫秽高清视频在线观看| 久久午夜亚洲精品久久| 久久伊人香网站| 色老头精品视频在线观看| 99国产极品粉嫩在线观看| 亚洲精品美女久久av网站| 这个男人来自地球电影免费观看| 成人亚洲精品av一区二区 | 波多野结衣av一区二区av| 成人免费观看视频高清| 制服诱惑二区| 黄色毛片三级朝国网站| www.自偷自拍.com| 国产精品九九99| 国产又色又爽无遮挡免费看| 男女之事视频高清在线观看| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 久久精品aⅴ一区二区三区四区| 欧美精品啪啪一区二区三区| 亚洲全国av大片| 久久精品人人爽人人爽视色| 久久香蕉激情| 精品第一国产精品| 亚洲欧美日韩另类电影网站| av欧美777| 天堂中文最新版在线下载| 操美女的视频在线观看| 美女福利国产在线| 国产精品综合久久久久久久免费 | 我的亚洲天堂| 不卡一级毛片| 国产成年人精品一区二区 | 女性被躁到高潮视频| 亚洲国产精品999在线| 俄罗斯特黄特色一大片| x7x7x7水蜜桃| 午夜福利影视在线免费观看| 亚洲伊人色综图| 久久久水蜜桃国产精品网| 真人一进一出gif抽搐免费| 两个人看的免费小视频| 亚洲专区国产一区二区| 黄色女人牲交| 一边摸一边抽搐一进一小说| 黄色丝袜av网址大全| 亚洲专区国产一区二区| 国产蜜桃级精品一区二区三区| 黄频高清免费视频| 可以免费在线观看a视频的电影网站| 中文字幕精品免费在线观看视频| 精品人妻1区二区| 俄罗斯特黄特色一大片| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久成人av| 国产av在哪里看| 丝袜美腿诱惑在线| 国产成人欧美在线观看| 免费日韩欧美在线观看| 国产不卡一卡二| 久久久久久久久久久久大奶| 日韩欧美在线二视频| 久热爱精品视频在线9| 人人妻人人爽人人添夜夜欢视频| 欧美日韩视频精品一区| 高潮久久久久久久久久久不卡| 国产成人欧美| 国产一区二区激情短视频| 视频区图区小说| 亚洲中文日韩欧美视频| av天堂在线播放| 91av网站免费观看| 91麻豆av在线| 欧美精品亚洲一区二区| 91麻豆精品激情在线观看国产 | 免费在线观看视频国产中文字幕亚洲| 18禁黄网站禁片午夜丰满| 99国产精品99久久久久| 一级a爱片免费观看的视频| 亚洲五月天丁香| 人妻丰满熟妇av一区二区三区| 妹子高潮喷水视频| 国产三级黄色录像| 夜夜夜夜夜久久久久| 女性被躁到高潮视频| 亚洲成人国产一区在线观看| 99久久国产精品久久久| 免费在线观看视频国产中文字幕亚洲| 欧美激情 高清一区二区三区| 欧美乱妇无乱码| 美女福利国产在线| 亚洲精品一区av在线观看| 男女下面插进去视频免费观看| 91精品国产国语对白视频| 精品久久久久久,| 男人操女人黄网站| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品久久成人aⅴ小说| 成人手机av| 香蕉久久夜色| 国产蜜桃级精品一区二区三区| 中文欧美无线码| 国产1区2区3区精品| 午夜影院日韩av| 亚洲五月天丁香| 日日爽夜夜爽网站| 美女大奶头视频| 国产一卡二卡三卡精品| 成在线人永久免费视频| 成人精品一区二区免费| 长腿黑丝高跟| 50天的宝宝边吃奶边哭怎么回事| 亚洲成人国产一区在线观看| 色婷婷av一区二区三区视频| 身体一侧抽搐| 人成视频在线观看免费观看| 麻豆一二三区av精品| 欧美激情极品国产一区二区三区| 国产在线精品亚洲第一网站| 国产av一区二区精品久久| 日韩欧美在线二视频| 在线观看免费视频网站a站| 日本一区二区免费在线视频| 欧美日韩黄片免| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 香蕉丝袜av| 真人做人爱边吃奶动态| 国产91精品成人一区二区三区| 国产激情久久老熟女| 久久国产精品男人的天堂亚洲| aaaaa片日本免费| 日韩免费av在线播放| 后天国语完整版免费观看| 国产视频一区二区在线看| 满18在线观看网站| 亚洲一区高清亚洲精品| 精品一区二区三区av网在线观看| 婷婷六月久久综合丁香| 免费不卡黄色视频| 亚洲一区二区三区色噜噜 | 精品一区二区三区视频在线观看免费 | 无遮挡黄片免费观看| 国产欧美日韩一区二区精品| 国产熟女xx| 91精品三级在线观看| 正在播放国产对白刺激| 国产一区在线观看成人免费| 日本一区二区免费在线视频| 热re99久久精品国产66热6| a级毛片在线看网站| 日韩免费高清中文字幕av| av有码第一页| 亚洲 欧美一区二区三区| 欧美激情 高清一区二区三区| 一级片'在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成a人片在线一区二区| 一进一出抽搐gif免费好疼 | 亚洲欧美日韩另类电影网站| 国产精品 国内视频| 亚洲色图av天堂| 交换朋友夫妻互换小说| 亚洲自偷自拍图片 自拍| 亚洲九九香蕉| 国产亚洲精品综合一区在线观看 | www.www免费av| 欧美不卡视频在线免费观看 | 午夜精品在线福利| 国产精品1区2区在线观看.| 国产伦人伦偷精品视频| 亚洲午夜理论影院| videosex国产| 丁香六月欧美| 亚洲熟妇熟女久久| 久久久久久久久免费视频了| 亚洲视频免费观看视频| 日韩欧美在线二视频| 美女午夜性视频免费| 成人国语在线视频| 欧美在线黄色| 美女扒开内裤让男人捅视频| 啦啦啦免费观看视频1| 欧美黄色淫秽网站| 国产男靠女视频免费网站| 18禁黄网站禁片午夜丰满| 欧美亚洲日本最大视频资源| 国产精品成人在线| 妹子高潮喷水视频| 久久九九热精品免费| 日韩中文字幕欧美一区二区| 一边摸一边抽搐一进一小说| 久热爱精品视频在线9| 电影成人av| 亚洲色图av天堂| 久久久久久久精品吃奶| 国产亚洲精品一区二区www| 亚洲av电影在线进入| 看片在线看免费视频| 91精品三级在线观看| 欧美大码av| 亚洲激情在线av| 夫妻午夜视频| 亚洲片人在线观看| 成人三级做爰电影| 精品一品国产午夜福利视频| 亚洲国产中文字幕在线视频| 国产不卡一卡二| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片 | 超色免费av| 精品国产超薄肉色丝袜足j| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 男人操女人黄网站| 高清毛片免费观看视频网站 | 亚洲激情在线av| 久久久精品欧美日韩精品| 韩国av一区二区三区四区| 成在线人永久免费视频| 黑人操中国人逼视频| 久久人妻福利社区极品人妻图片| 成人永久免费在线观看视频| 日本a在线网址| 日韩精品中文字幕看吧| 国产成人精品久久二区二区91| 国产精品国产高清国产av| 电影成人av| 天堂俺去俺来也www色官网| 国产有黄有色有爽视频| 热99国产精品久久久久久7| 亚洲av第一区精品v没综合| 岛国在线观看网站| 一级片免费观看大全| 一边摸一边做爽爽视频免费| 如日韩欧美国产精品一区二区三区| 欧美亚洲日本最大视频资源| 精品熟女少妇八av免费久了| 成人国产一区最新在线观看| 桃色一区二区三区在线观看| 国产在线观看jvid| 日韩欧美在线二视频| 久久中文看片网| 亚洲欧美日韩高清在线视频| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 精品国产乱码久久久久久男人| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| 变态另类成人亚洲欧美熟女 | 香蕉丝袜av| 超碰成人久久| 男女下面插进去视频免费观看| 国产精品98久久久久久宅男小说| 亚洲一区二区三区欧美精品| 热re99久久精品国产66热6| 视频区图区小说| 色在线成人网| 亚洲男人的天堂狠狠| 一进一出好大好爽视频| 亚洲情色 制服丝袜| 久久精品影院6| 在线观看免费高清a一片| 国产精品自产拍在线观看55亚洲| 免费在线观看视频国产中文字幕亚洲| 欧美在线一区亚洲| 午夜激情av网站| 桃红色精品国产亚洲av| 成人av一区二区三区在线看| 美女 人体艺术 gogo| 欧美av亚洲av综合av国产av| 校园春色视频在线观看| 亚洲成人国产一区在线观看| 一级毛片女人18水好多| 午夜福利在线免费观看网站| 国产精品乱码一区二三区的特点 | 久久久久久久精品吃奶|