• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms

    2022-08-31 09:55:46XichunZhang張希純WenshengFu付文升JinguangLv呂金光ChongZhang張崇XinZhao趙鑫WeiyanLi李衛(wèi)巖andHeZhang張賀
    Chinese Physics B 2022年8期
    關(guān)鍵詞:張崇金光

    Xichun Zhang(張希純) Wensheng Fu(付文升) Jinguang Lv(呂金光) Chong Zhang(張崇)Xin Zhao(趙鑫) Weiyan Li(李衛(wèi)巖) and He Zhang(張賀)

    1State Key Laboratory of High Power Semiconductor Lasers,Changchun University of Science and Technology,Changchun 130022,China

    2State Key Laboratory of Applied Optics,Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China

    3The First Military Representative Office of the Army in Changchun,Changchun 130033,China

    Keywords: metasurface,bottle beam,optical tweezers,Pancharatnam–Berry phase

    1. Introduction

    A bottle beam is a special hollow beam with a closed dark field in three dimensions along the propagation direction. This dark field is a closed region surrounded by highintensity light.[1,2]Bottle beams have a wide range of applications in optical tweezers,[3,4]laser catheters,[5]and optical micromanipulation.[6]In particular,when a bottle beam is applied to optical tweezers, it can stably capture and manipulate microscopic particles. Optical tweezers technology using a bottle beam as the light source has the advantages of non-contact and no strong light directly irradiating on the manipulated particles, so the particles can be manipulated without damage. Since 1987, various methods have been tried to generate bottle beams,such as the ring-slit-lens method,[7]the axial prism-lens system method,[7]the double-beam interferometry method,[9]the optical holography method,[10]and the phase plate method.[11]

    With the Pancharatnam–Berry (P–B) phase metasurface proposed by Prof.Cappasso of Harvard University in 2012,[12]the study of metasurfaces has become a research hotspot in the international academic community today. The P–B phase metasurface usually consists of subwavelength-sized grating,and rectangular or elliptical anisotropic units arranged in a particular pattern. By rotating these units to a certain angle, the phase of the incident light can be changed locally,so that the amplitude, phase and polarization of the incident or reflected light can be manipulated arbitrarily,[13–17]thereby shaping the wavefront of the beam. Therefore, such optical devices can replace or improve conventional optical elements.[18–21]An important application in this regard is optical lenses based on metasurfaces. In 2019, Wuet al.designed a metasurface to generate 3D hollow spots and simulated the light field distribution of 3D hollow spots at different wavelengths.[22]In 2021,Liet al.integrated optical tweezers and optical spanners, using a metasurface to generate both optical tweezers and optical spanners. They enhance the application of metasurfaces as optical lenses.[23]For example,a metallic and dielectric-typebased metasurface has been used to focus light into the near or far field,[21–26]and even to achieve achromatic effects in the visible or infrared wavelength range.[27–29]

    In this paper, we designed a metasurface with silicon dioxide (SiO2) as the substrate and titanium dioxide (TiO2)nanopillars as the unit. The incident light field passes through the metasurface to generate spherical waves and Bessel beam interference,[30]resulting in multiple high-intensity and micron-sized bottle beams. Compared to conventional optical systems,this system is simple and highly integrated. The lateral and longitudinal inner diameters of the generated bottle beam are significantly reduced. And the paper analyses the ability of the multiple bottle beams to act as arrayed optical tweezers,demonstrating their ability to capture multiple ytterbium atoms.

    2. Metasurface design principles

    2.1. Optical system design

    As shown in Fig. 1, the design of the metasurface optical system is presented in this paper. The incident beam of the He–Ne laser is collimated using a collimator.The beam passes through a polarizer to produce linearly polarized light and then passes through aλ/4 waveplate to produce a left-rotating circularly polarized beam (the angle of the fast axis of theλ/4 waveplate needs to be 45?to the polarization direction of the polarizer to produce a left-rotating circularly polarized beam).Finally, the beam is incident on the metasurface to produce multiple bottle beams, and the spot is observed using a CCD camera.

    Fig.1. A schematic diagram of the optical system.

    2.2. Metasurface nanopillar design

    When the circularly polarized light irradiates the P–B phase metasurface, the outgoing light will consist of two components: left-handed circularly polarized light and righthanded circularly polarized light. And the component of the outgoing light with the opposite spin direction of the incident light will carry the geometric phase delay (±2θ), whereθis the nanopillar unit rotation angle and±1 represents lefthanded circularly polarized(LCP)and right-handed circularly polarized(RCP)light,respectively.

    With regard to the substrate of the metasurface, high transmittance at the operating wavelength is required to reduce losses and improve the efficiency of the device. To build metasurface nanostructures,materials with both high transmittance and a high refractive index are required. For the above reasons,titanium dioxide(TiO2)nanopillars arranged on a silicon dioxide(SiO2)substrate are chosen in this paper. Both materials have high transmittance at 632.8 nm, where TiO2meets the two conditions of a sufficiently high refractive index and enough low loss rate in the working wavelength. The simulations were carried out using the commercial software package“finite-difference time domain(FDTD Solutions)”(Lumerical Inc.). When calculating the transmittance, polarization conversion and Pancharatnam–Berry phase of the cell, periodic boundary conditions are used along thexandyaxes and the perfectly matched layer (PML) along thez-axis. The refractive indices of the SiO2substrate and TiO2cell are set to 1.46 and 2.58, respectively. To design the working wavelength of the metasurface as 632.8 nm, the metasurface nanopillar unit is shown in Fig.2(a),and its lengthl,widthw,and heighthare selected as 377 nm, 87 nm,and 600 nm, respectively. Its polarization conversion efficiency, as well as transmittance, are higher than 85%. Here,the polarization conversion efficiency is defined as the ratio of the intensity of the transmitted light opposite the incident light rotation to the intensity of the incident circularly polarized light. And its P–B phase delay with the rotation of the nanopillar can cover 0–2π, so that it can effectively control the wavefront. The simulation results are shown in Fig.2(b).

    Fig. 2. A schematic diagram of the nanopillar unit and the relationship between its rotation angle and related parameters. (a)A schematic diagram of a single nanopillar unit. (b) The relationship between the rotation angle of the nanopillar unit and the transmittance (triangular line), polarization conversion efficiency(circular line),and P–B phase(square line).

    2.3. Phase distribution of the metasurface

    In this paper,the metasurface comprises three parts from inside to outside: an inner ring, an opaque ring obstacle, and an outer ring,as shown in Fig.3,and their radii areR1=4μm,R2=6 μm, andR3=2 μm, respectively. For the inner ring part, the metasurface elements are arranged according to the hyperboloid phase distribution. Under the irradiation of lefthanded circularly polarized (LCP) light, the generated waves interfere with the phase length in the focal plane, forming a focused light and acting as a convex lens. The arrangement is given by the following expression:[12]

    where?1represents the phase delay,λis the incident wavelength,fis the given focal length,xandyare the transverse and longitudinal coordinates of the nanopillar centroid,respectively,andRis the metasurface radius. The phase delay can be achieved by rotating the nano cells based on the P–B phase principle,and the expression for the rotation angle of the rectangular nanopillar on the metasurface is

    In this paper,the metasurface radiusR4=12μm,the focal distancef=10 μm in the inner ring part, and the angleα=0.75 in the outer ring part (Fig. 3), composed of 1178 TiO2units. Its nano unit rotation angle is given by Eqs. (2)and(4).

    Figures 4(a)–4(c) show two-dimensional schematic diagrams of the inner and outer ring parts and the ring obstacle metasurface, respectively. Schematic diagrams of the spherical wave and Bessel light distribution along the optical axis direction are shown in Figs. 4(d) and 4(e), respectively. The spherical wave generated in the inner ring part of the metasurface is coherently superimposed with the Bessel light generated in the outer ring part. Multiple high-intensity bottle beams are formed in the region of coherent superposition of the two beams. As seen in Fig. 4(f), four complete bottle beams are produced. Figures 4(g)–4(i) show the line distribution schematic of Figs.4(d)–4(i),respectively.

    Fig.3. A schematic diagram of the ring obstacle metasurface. The inset part is an enlarged view of the metasurface.

    Fig. 4. The inner and outer rings of the metasurface, light field distribution and linear distribution. (a) A schematic diagram of the inner ring part of the metasurface.(b)A schematic diagram of the outer ring part of the metasurface.(c)A two-dimensional schematic diagram of the annular obstacle metasurface.(d)Optical field distribution of the spherical wave generated in the inner ring part. (e)Light field distribution of the Bessel light generated in the outer ring part. (f)Light field distribution of the bottle beam. (g)Line distribution of the spherical wave(d). (h)Line distribution of the Bessel light(e). (i)Line shape distribution of the multiple bottle beam(f).

    3. Analysis and discussion

    3.1. Bottle beam light field distribution

    In this paper,a metasurface with a radius of 12μm is designed and the incident light is LCP light. After simulation,four complete bottle beams are produced,labeled as Nos.1,2,3, and 4 in this paper. The light field distribution of its beam propagation direction is shown in Fig. 5(a), and the crosssectional light intensity of the multiple bottle beams at the propagation distances of 9.17 μm and 11.24 μm (at the focal plane of the bottle beams of Nos. 2 and 3) are shown in the small figure of Fig.5(a). These two bottle beams were selected,and the transverse full-widths at half-maximum of the two beams were measured to be 0.46μm and 0.6μm,and the longitudinal full-widths at half-maximum were 0.85 μm and 1.12μm,respectively(as shown in Figs.5(b)–5(d)). Here,the lateral and radial full-widths at half-maximum (FWHM) are defined as the distance between two points at half of the maximum intensity of the light field along thexandzdirections of a single bottle beam.

    Fig.5. A light field diagram and a linearity diagram of the multiple bottle beams. (a)Light field distribution in the beam propagation direction(z-direction)of the multiple bottle beams. The two insets show the transverse light field distributions at 9.17μm and 11.24μm,respectively. (b)Line distribution of the light intensity in the z-direction of the beam of the multiple bottle beams. (c),(d)Line distribution of the x-direction light intensity at 9.17μm and 11.24μm.The longitudinal full-widths at half-maximum(FWHM)of the bottle beams of 2 and 3 are 0.85μm and 1.12μm,respectively,and the transverse full-widths at half-maximum(FWHM)are 0.46μm and 0.6μm,respectively.

    3.2. Effect of different aperture ring diaphragms on the number of bottle beams

    The number of generated multiple bottle beams can be changed when the size of the annular obstacle on the metasurface. In this paper,the radius of the metasurface is 12μm,and we control its outer ring sizeR3=2μm,and change the size of the ring obstacle so that the ring obstacle sizes areR2=5μm,6 μm, and 7 μm, respectively (R2corresponds to Figs. 6(a)–6(c), respectively). Through simulation, from the figure, it is easy to find that the number of bottle beams is 2,4,and 5 from left to right, respectively. When the focal length of the metasurface is constant,the size of the generated light field can be reduced by increasing the radius of the metasurface,allowing the light to be more focused.Therefore,when the inner ring of the focused light generated from Figs.6(a)–6(c)gradually decreases,the size of the focused light gradually increases. The interference range between the focused light and Bessel light gradually increases,and the number of bottle beams generated increases in turn. Therefore, the number of bottle beams can be changed by controlling the size of annular obstacles on the metasurface. Then,the number of generated bottle beams can be designed according to the planned number of particles to be captured.

    Fig. 6. The two-dimensional light field distribution along the beam propagation direction of the annular obstacle metasurface with different aperture sizes. From left to right,the annular obstacle dimensions are(a)R2=5μm,(b)R2=6μm,and(c)R2=7μm.

    3.3. Effect of varying the x-component of the nanopillar unit on the shape of the bottle beam

    When we change thex-directional component of the rotation angle of the nanopillar cell, the shape of the resulting bottle beam is changeable.Using a rounded corner rectangular opaque obstacle with a hollow circle in the center(R1=4μm,R4=12 μm), as shown in Fig. 7, the metasurface is divided into three parts, numbered 1, 2, and 3 in Fig. 7. The second part of this is the hyperbolic phase distribution, whose focal plane light field distribution is shown in Fig. 7b, from which it can be seen that an elliptical light spot is formed, and the rotation angle of the nanopillar unit on it is expressed by

    Parts 1 and 3 are tapered phase distributions with nanopillar units rotated at the angle shown in Eq.(4),producing a Bessel beam,as shown in small Fig.7(a).Under the incidence of lefthanded circularly polarized light,the elliptically focused light produced in part 2 interferes with the Bessel light produced in parts 1 and 3 to cancel. The resulting light field distribution is shown in Fig.8.

    Figures 8(a) and 8(b) show the light field distribution in thexzandyzdirections,respectively. The cross-sectional light intensity of the multiple bottle beams at the propagation distances of 8.88μm and 10.88μm(at the white dashed lines in Figs.8(a)and 8(b))is shown in Figs.8(c)and 8(d). These two bottle beams were selected, and the transverse full-widths at half-maximum of the No. 2 bottle beam were measured and found to be 0.46 μm and 0.98 μm (Fig. 8(c)), and the transverse full-widths at half-maximum of the No. 3 bottle beam were 0.54 μm and 1.3 μm (Fig. 8(d)). An elliptical bottle beam is obtained, which changes the shape of the beam and increases the versatility of its application.

    Fig.7. (a)The hollow rounded rectangular obstacle metasurface,where the small figure(a)shows the focal plane of the Bessel beam generated in part 1 and the small figure(b)shows the focal plane of the focused light generated in part 2.

    Fig.8. (a),(b)Light field distribution of the multiple bottle beams in the xz and yz directions. (c),(d)Focal plane light intensity distribution of the multiple bottle beams at the propagation distances of 8.88μm and 10.88μm(at the white lines of beams 2 and 3),respectively.

    4. Multiple bottle beams to capture multiple particles

    4.1. Analysis of the radiation force on the particle

    Since the bottle beam can be used as optical tweezers,this paper analyzes the radiation force and the feasibility of trapping multiple particles in the bottle light field of this array.

    Usually, cooling and trapping atoms can be achieved by techniques such as cavity cooling,[31]Raman sideband cooling,[32]feedback cooling,[33]and intensity gradient cooling.[34]However,the size of the single-atom confinement potential trap produced by these schemes is relatively large,tens of thousands of times larger than the size of an atom,which makes the detection and subsequent application of single atoms more difficult.In contrast,the bottle beam generated in this paper has a small inner diameter size and a small captive region,so it can capture atoms more precisely. We chose the ytterbium atom(Yb)as the model of the imprisoned particle for the calculation,which is currently used in optical lattice clocks,[35]mainly for precise time measurement. This paper will analyze the ability of the bottle beam to trap ytterbium atoms,and provide an alternative method for atom cooling and trapping in ytterbium atomic optical lattice clocks.

    Optical tweezers can capture two types of particles; one is a particle whose refractive index is greater than the refractive index of the surrounding medium,which is referred to as a class A particle. The other is a particle whose refractive index is less than the refractive index of the medium surrounding the particle, which is referred to as a class B particle. Generally speaking,the central bright spot formed by focusing the light beam can capture class A particles.And to stably capture class B particles, a bottle beam needs to be formed. In this paper,we consider capturing particles whose refractive indexes are smaller than the refractive index of the medium surrounding the particles, i.e., class B particles. The use of a bottle beam allows the particles to be controlled at a lower light intensity location,minimizing the effect of the beam energy on the particles.

    In this paper,the Rayleigh scattering model is used to analyze the forces on the particles.[36]In this model,the particle can be viewed as a single dipole(a Rayleigh microsphere with a radius much smaller than the incident wavelength is considered as a dipole). The force acting on the particle is the force acting on the dipoles,and the force exerted by the optical field on this dipole can be divided into two parts,namely,the scattering force(Fscat)and the gradient force(Fgrad).

    Fig. 9. A schematic diagram of the forces on ytterbium atoms in a bottle beam.

    Figure 9 shows the transverse and longitudinal forces on two ytterbium atoms in different positions in the localized hollow beam. It can be seen from the figure that the combined forces(dashed arrows in Fig.9)both point to the center of the hollow region, which leads to the capture of the atoms. The scattering force in the figure is caused by the absorption and re-radiation between the dipole of the beam in the direction of light transmission. The expressions are

    wherenis the refractive index of the medium(in this paper,we taken=1.332 for water),ε=8.85×10?12is the dielectric constant in vacuum, andCis the cross-section of the atomic radiation pressure,which is expressed as

    Here,cis the speed of light propagation in a vacuum.

    Based on Eqs. (6)–(8), the gradient force and scattering force distributions of the multiple bottle optical field on ytterbium atoms are calculated,as shown in Fig.10.

    Fig.10. The gradient force and scattering force distribution of multiple bottle beams. (a)Radial gradient force distribution. (b)Radial scattering force distribution. (c) A comparison of radial gradient force and radial scattering force. (d)Transverse gradient force distribution at 7.45μm and 11.24μm.

    Figure 10(a)shows the distribution of the radial gradient force(z-direction): the gradient force is 0 at the black dashed line, and the black solid line marks the range where the bottle beams of 1, 2, 3, and 4 are located. The region where the radial gradient force is greater than 0 means that the direction of the gradient force is in thez-axis positive direction;in contrast, the region where the radial gradient force is less than 0 means that the direction of the gradient force is in thez-axis negative direction. Therefore, it can be seen from the figure that gradient force balance points exist in all four bottle light regions. Figure 10(b)shows the radial scattering force distribution. Figure 10(c)shows the radial gradient force compared with the radial scattering force,where the red line is the radial gradient force,and the black line is the radial scattering force.The scattering force is 5 orders of magnitude smaller than the gradient force,as can be seen from the figure. Therefore, the effect of the scattering force is minimal compared to the gradient force.Figure 10(d)shows the distribution of the transverse gradient force at 7.45μm and 11.24μm(beams 2 and 4).Similarly,a transverse gradient force greater than 0 means that the direction of the gradient force is in the positive direction of thex-axis, and a transverse gradient force less than 0 means that the direction of the gradient force is in the negative direction of thex-axis.It can be seen from the figure that there is a transverse gradient force balance point at the center point(x=0).Gradient force equilibrium points in both transverse and radial light fields imply that the atoms can be imprisoned. Here,the transverse and radial forces are defined as the forces exerted on the particle along thexandzdirections,respectively.

    4.2. Feasibility analysis of multiple bottle optical field imprisoned particles

    To achieve stable capture of atoms,three stability criteria need to be satisfied.

    1. The gradient force needs to be greater than the scattering force. The particle capture mainly relies on the gradient force generated by the optical field. We use the stability factorRto express the ratio of the gradient force and the scattering force,and its expression is

    2. Another factor that affects the stability of the beam to enable it to capture particles is the Brownian motion of the particles, which affects the stability of the capture when the size of the particles being manipulated is small. Therefore,to capture the particles stably,the potential well generated by the gradient force should be deep enough to overcome the kinetic energy of the particles. In other words, the kinetic energy of the particle must be much smaller than the potential trapping well,which is expressed as

    whereε1=1.796 is the dielectric constant of the environment surrounding the atom. Here,ε2=?54+5.9i is the dielectric constant of the ytterbium atom.

    3. The gradient force can balance the gravity of the particles. Therefore,the gradient force needs to be larger than the gravity of the particles.

    In this paper,the bottle beams of Nos.1 and 3 are selected to calculate their gradient forces and scattering forces. Also,the feasibility of trapping multiple ytterbium atoms is calculated. Since the scattering force is transmitted in the direction of light transmission (radial direction), there is no scattering force distribution in the lateral movement,so the stability criterion of (1) only needs to analyze the force in the radial direction. For bottle beam No. 1, it is calculated that: (1) the stability factorR1=2642.7 yields a radial gradient force four orders of magnitude larger than the radial scattering force;(2)the beam radialRt1=5.74e?22and transverseRt1=1.87e?5,both much smaller than 1,indicate that the potential trap generated by the gradient force is sufficient to overcome the kinetic energy generated by the Brownian motion of the atoms;(3) gravityG=2.82e?24is six orders of magnitude smaller than the gradient force, and gravity can be neglected. Therefore, stable confinement can be achieved for the No. 1 bottle beam.

    For the No. 3 bottle beam, it is calculated that: (1)the stability factorR2= 2242.7; (2) the beam radialRt2=4.2147e?28and the beam transverseRt2=5.19e?8; (3)gravityG=2.82e?24.By combining the three stability criteria,the No.3 bottle beam can also achieve stable confinement. Therefore,both Nos.1 and 3 bottle light fields can achieve cooling and captivity of ytterbium atoms, and the capture of multiple particles is achieved.

    5. Conclusion

    In this paper, the P–B phase metasurface is used to generate several micron-scale bottle beams. Two bottle beams are selected and their transverse full-widths at half-maximum are measured to be 0.46 μm and 0.6 μm, with longitudinal fullwidths at half-maximum of 0.85μm and 1.12μm. The metasurface lens can change the number of bottle beams generated by controlling the size of the annular obstacle. And the shape of the focal point can be changed by changing the rotation of thex-component of the unit,which generates an elliptical bottle beam.

    Two of the bottle beams are selected, and their ability to imprison Yb atoms is analyzed. By combining the three stability criteria, it is concluded that both bottle beams can cool and imprison the ytterbium atoms.

    In practical applications, the metasurface is lighter, thinner,and easier to integrate. Moreover,the size of the multiple bottle beams generated in this paper is significantly reduced,resulting in more accurate capture of tiny particles. The multiple bottle beams will have applications in super-resolution microscopy,super-resolution lithography,high-density data storage, optical micromanipulation of nanoparticles, and nanooptical manufacturing.

    Acknowledgment

    Project supported by the State Key Laboratory of Applied Optics(Grant No.SKLA02020001A17).

    猜你喜歡
    張崇金光
    午夜繁華
    金光現(xiàn)代學(xué)徒班感恩教育的實踐
    The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon
    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?
    張崇和:美好生活需要食品行業(yè)美好未來呼喚責(zé)任擔當
    頤和園十七孔橋再現(xiàn)“金光穿孔”景象
    澳門月刊(2018年1期)2018-01-17 08:48:45
    張崇和會長出席第20屆古鎮(zhèn)燈博會(秋季展)
    張崇和會長出席第54屆世界五金大會
    張崇和會長:牢記使命 推動中國輕工業(yè)走進新時代
    張崇和會長出席中皮協(xié)八屆二次理事擴大會并發(fā)表重要講話
    免费日韩欧美在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产看品久久| 黄频高清免费视频| 久久久久久亚洲精品国产蜜桃av| 丝袜美足系列| 一本大道久久a久久精品| 一区二区三区激情视频| 在线观看一区二区三区激情| 90打野战视频偷拍视频| 日本午夜av视频| 在线观看国产h片| av在线播放精品| 亚洲精品成人av观看孕妇| 91成人精品电影| 亚洲精品美女久久av网站| 亚洲国产欧美一区二区综合| 男女边吃奶边做爰视频| a 毛片基地| 久久久久久久大尺度免费视频| 午夜免费男女啪啪视频观看| 18在线观看网站| 成人国产av品久久久| 色94色欧美一区二区| 亚洲精品自拍成人| 一级毛片电影观看| 在线 av 中文字幕| 久久亚洲精品不卡| 日韩av在线免费看完整版不卡| av网站在线播放免费| 国语对白做爰xxxⅹ性视频网站| 18禁观看日本| 91精品三级在线观看| 久久人妻熟女aⅴ| 国产成人av教育| av国产精品久久久久影院| 侵犯人妻中文字幕一二三四区| 国产精品香港三级国产av潘金莲 | 国产精品99久久99久久久不卡| 国产在线观看jvid| 中文字幕另类日韩欧美亚洲嫩草| 国产精品人妻久久久影院| 少妇猛男粗大的猛烈进出视频| 亚洲三区欧美一区| 亚洲第一青青草原| 亚洲一卡2卡3卡4卡5卡精品中文| 9色porny在线观看| 亚洲成人免费电影在线观看 | 啦啦啦视频在线资源免费观看| 99热全是精品| 亚洲成av片中文字幕在线观看| 国产色视频综合| 久久影院123| 欧美日韩精品网址| 人妻 亚洲 视频| 中文字幕人妻丝袜制服| 一本色道久久久久久精品综合| 免费在线观看日本一区| 老汉色∧v一级毛片| 亚洲av美国av| 国产极品粉嫩免费观看在线| 国产免费视频播放在线视频| 午夜精品国产一区二区电影| 日本黄色日本黄色录像| av福利片在线| 国产成人a∨麻豆精品| 亚洲国产成人一精品久久久| 国产精品九九99| av福利片在线| 天天躁日日躁夜夜躁夜夜| 乱人伦中国视频| 一二三四社区在线视频社区8| 国产色视频综合| 日本av手机在线免费观看| 久久精品久久久久久久性| 亚洲,欧美,日韩| 中文欧美无线码| 久久久久久久久免费视频了| 91字幕亚洲| 久久精品人人爽人人爽视色| 日本vs欧美在线观看视频| 中文字幕av电影在线播放| 婷婷成人精品国产| 黄色一级大片看看| 黄色片一级片一级黄色片| 真人做人爱边吃奶动态| 成年av动漫网址| 国产精品.久久久| 亚洲欧洲国产日韩| 欧美性长视频在线观看| av欧美777| 久久久亚洲精品成人影院| 搡老乐熟女国产| 亚洲中文字幕日韩| 91精品三级在线观看| 婷婷色麻豆天堂久久| 亚洲欧洲精品一区二区精品久久久| 亚洲精品成人av观看孕妇| 欧美黑人欧美精品刺激| 一区二区av电影网| 亚洲欧美清纯卡通| 欧美变态另类bdsm刘玥| 69精品国产乱码久久久| 黄片播放在线免费| 丝袜在线中文字幕| 一本一本久久a久久精品综合妖精| 久久99精品国语久久久| 精品卡一卡二卡四卡免费| 久久人人97超碰香蕉20202| 夫妻性生交免费视频一级片| 免费久久久久久久精品成人欧美视频| 久久久久久免费高清国产稀缺| 亚洲精品美女久久久久99蜜臀| 夜夜爽天天搞| 色综合欧美亚洲国产小说| 欧美日本视频| av欧美777| 免费人成视频x8x8入口观看| 国内精品久久久久精免费| 午夜福利高清视频| 18禁美女被吸乳视频| 99久久精品国产亚洲精品| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 99riav亚洲国产免费| 国产人伦9x9x在线观看| 每晚都被弄得嗷嗷叫到高潮| 成在线人永久免费视频| √禁漫天堂资源中文www| 国产视频一区二区在线看| 久久精品国产亚洲av香蕉五月| 禁无遮挡网站| 国产99久久九九免费精品| 悠悠久久av| 亚洲精品粉嫩美女一区| 亚洲人成网站高清观看| 欧美一区二区精品小视频在线| 午夜福利免费观看在线| 国产v大片淫在线免费观看| 老司机在亚洲福利影院| 香蕉av资源在线| 两性夫妻黄色片| 黄色毛片三级朝国网站| 18禁黄网站禁片免费观看直播| 亚洲黑人精品在线| 亚洲天堂国产精品一区在线| 91成人精品电影| 国产精品 国内视频| xxx96com| 精品久久久久久,| cao死你这个sao货| 欧美久久黑人一区二区| 女人高潮潮喷娇喘18禁视频| 又大又爽又粗| 啦啦啦韩国在线观看视频| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放 | 又紧又爽又黄一区二区| 1024香蕉在线观看| 欧美色欧美亚洲另类二区| 欧美性长视频在线观看| 国产不卡一卡二| av超薄肉色丝袜交足视频| 国内久久婷婷六月综合欲色啪| 不卡一级毛片| 欧美日韩亚洲综合一区二区三区_| 久久久国产成人精品二区| 在线观看66精品国产| 国产精品免费一区二区三区在线| 成年免费大片在线观看| 欧美成人午夜精品| 精品免费久久久久久久清纯| 成人欧美大片| 草草在线视频免费看| 国产av又大| 国产激情偷乱视频一区二区| 久久精品aⅴ一区二区三区四区| 大香蕉久久成人网| 中文资源天堂在线| 十八禁网站免费在线| bbb黄色大片| 中文资源天堂在线| 免费在线观看完整版高清| 黄色片一级片一级黄色片| 在线观看舔阴道视频| 97人妻精品一区二区三区麻豆 | 亚洲av五月六月丁香网| 亚洲人成77777在线视频| 午夜福利成人在线免费观看| 亚洲专区中文字幕在线| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久,| 日韩高清综合在线| 精品高清国产在线一区| 亚洲国产精品999在线| 在线观看午夜福利视频| 在线国产一区二区在线| 亚洲,欧美精品.| 久久这里只有精品19| 激情在线观看视频在线高清| 91成年电影在线观看| 日韩一卡2卡3卡4卡2021年| 老熟妇乱子伦视频在线观看| 草草在线视频免费看| 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| 精品一区二区三区视频在线观看免费| 女性生殖器流出的白浆| 一本精品99久久精品77| 午夜福利18| 丝袜人妻中文字幕| 757午夜福利合集在线观看| 男女做爰动态图高潮gif福利片| av福利片在线| 精品少妇一区二区三区视频日本电影| 欧美日韩中文字幕国产精品一区二区三区| 国产成人啪精品午夜网站| 成人特级黄色片久久久久久久| 亚洲av日韩精品久久久久久密| 在线看三级毛片| 777久久人妻少妇嫩草av网站| 欧美激情极品国产一区二区三区| 久久久久精品国产欧美久久久| 12—13女人毛片做爰片一| 丝袜美腿诱惑在线| 久久午夜综合久久蜜桃| 巨乳人妻的诱惑在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲在线自拍视频| 久久99热这里只有精品18| 99久久国产精品久久久| 欧美日韩精品网址| 男女之事视频高清在线观看| 亚洲人成网站高清观看| 国产免费av片在线观看野外av| 亚洲成人久久爱视频| 白带黄色成豆腐渣| 亚洲九九香蕉| 国产99久久九九免费精品| 欧美av亚洲av综合av国产av| 好男人在线观看高清免费视频 | 后天国语完整版免费观看| 美国免费a级毛片| 99精品欧美一区二区三区四区| 十分钟在线观看高清视频www| 日本黄色视频三级网站网址| 色播亚洲综合网| 久久国产亚洲av麻豆专区| 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 国产精品99久久99久久久不卡| 国产精品九九99| 国产亚洲欧美精品永久| 女人高潮潮喷娇喘18禁视频| 国产国语露脸激情在线看| 一二三四在线观看免费中文在| 久久香蕉国产精品| 国产aⅴ精品一区二区三区波| 精品电影一区二区在线| 在线观看午夜福利视频| 精品福利观看| 黄色视频,在线免费观看| 国产aⅴ精品一区二区三区波| 国产av在哪里看| 禁无遮挡网站| 欧美成人午夜精品| 国产精品久久视频播放| 国产免费男女视频| 极品教师在线免费播放| 高潮久久久久久久久久久不卡| 久久久国产欧美日韩av| 亚洲欧美激情综合另类| 久久久久久人人人人人| 91国产中文字幕| 在线十欧美十亚洲十日本专区| 欧美黑人欧美精品刺激| 日本在线视频免费播放| 国产精品香港三级国产av潘金莲| 两人在一起打扑克的视频| 中文亚洲av片在线观看爽| 男女之事视频高清在线观看| 国产1区2区3区精品| 丰满的人妻完整版| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 精品无人区乱码1区二区| 999久久久精品免费观看国产| 免费观看人在逋| 怎么达到女性高潮| 精品国产美女av久久久久小说| 欧美日韩黄片免| 久久人妻福利社区极品人妻图片| 久久国产亚洲av麻豆专区| 免费在线观看完整版高清| 99热这里只有精品一区 | 欧美国产精品va在线观看不卡| 午夜福利免费观看在线| 人妻丰满熟妇av一区二区三区| 在线永久观看黄色视频| 一本一本综合久久| 亚洲三区欧美一区| 一本久久中文字幕| 变态另类成人亚洲欧美熟女| 日韩av在线大香蕉| 欧美国产精品va在线观看不卡| 免费高清在线观看日韩| 色综合婷婷激情| 亚洲男人天堂网一区| √禁漫天堂资源中文www| 亚洲国产精品999在线| 欧美色视频一区免费| 久热爱精品视频在线9| 制服丝袜大香蕉在线| 色综合婷婷激情| 国产成年人精品一区二区| 国产精品久久电影中文字幕| av欧美777| 国产区一区二久久| 男人舔女人的私密视频| 午夜精品久久久久久毛片777| 熟妇人妻久久中文字幕3abv| 亚洲久久久国产精品| 欧美国产日韩亚洲一区| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻熟女乱码| 久久久久久人人人人人| 日韩有码中文字幕| 国产午夜福利久久久久久| a级毛片在线看网站| 婷婷亚洲欧美| 啪啪无遮挡十八禁网站| 搞女人的毛片| 狠狠狠狠99中文字幕| 欧美最黄视频在线播放免费| www.999成人在线观看| 成人三级做爰电影| 村上凉子中文字幕在线| 少妇的丰满在线观看| 国产精品久久久久久亚洲av鲁大| 亚洲欧美激情综合另类| 2021天堂中文幕一二区在线观 | 日韩 欧美 亚洲 中文字幕| 日韩一卡2卡3卡4卡2021年| 亚洲 国产 在线| 午夜精品在线福利| 999久久久精品免费观看国产| 最近最新免费中文字幕在线| 亚洲色图av天堂| 国产黄色小视频在线观看| 国产熟女xx| 听说在线观看完整版免费高清| 久久 成人 亚洲| 天堂动漫精品| 淫妇啪啪啪对白视频| 日韩欧美一区视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 一区二区日韩欧美中文字幕| 国产久久久一区二区三区| 国产主播在线观看一区二区| 国产亚洲欧美98| 此物有八面人人有两片| 黄色片一级片一级黄色片| 妹子高潮喷水视频| 国产av又大| 婷婷亚洲欧美| 男女视频在线观看网站免费 | 他把我摸到了高潮在线观看| 久久热在线av| 国产精品一区二区三区四区久久 | 欧美黑人精品巨大| 亚洲男人的天堂狠狠| 国内揄拍国产精品人妻在线 | 在线视频色国产色| www国产在线视频色| 97人妻精品一区二区三区麻豆 | 人人妻,人人澡人人爽秒播| 好男人在线观看高清免费视频 | 狂野欧美激情性xxxx| 亚洲av成人不卡在线观看播放网| 久99久视频精品免费| 黄色 视频免费看| 两性夫妻黄色片| 999精品在线视频| 男人操女人黄网站| ponron亚洲| 99精品久久久久人妻精品| 日本黄色视频三级网站网址| 午夜精品久久久久久毛片777| 妹子高潮喷水视频| 女警被强在线播放| 午夜福利高清视频| e午夜精品久久久久久久| 大型黄色视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 天天躁夜夜躁狠狠躁躁| 18禁黄网站禁片午夜丰满| 身体一侧抽搐| 中文字幕精品亚洲无线码一区 | 亚洲色图 男人天堂 中文字幕| 丝袜在线中文字幕| 亚洲欧美激情综合另类| 亚洲第一av免费看| 午夜成年电影在线免费观看| 免费av毛片视频| 精品第一国产精品| 男女床上黄色一级片免费看| 日本一本二区三区精品| 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 欧美黑人欧美精品刺激| 欧美最黄视频在线播放免费| 亚洲性夜色夜夜综合| 一级毛片高清免费大全| 国产精品精品国产色婷婷| 欧美乱码精品一区二区三区| 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲九九香蕉| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| 亚洲 欧美 日韩 在线 免费| 一级作爱视频免费观看| 午夜福利在线在线| 成年女人毛片免费观看观看9| 搡老岳熟女国产| 欧美成人免费av一区二区三区| 久热这里只有精品99| 久久国产精品人妻蜜桃| 哪里可以看免费的av片| 亚洲国产欧美网| 99国产综合亚洲精品| 欧美日本视频| 男女视频在线观看网站免费 | 亚洲久久久国产精品| 国产1区2区3区精品| 亚洲九九香蕉| 色老头精品视频在线观看| 亚洲国产精品成人综合色| 在线观看免费视频日本深夜| 午夜福利视频1000在线观看| 自线自在国产av| 性欧美人与动物交配| 一区福利在线观看| 九色国产91popny在线| 长腿黑丝高跟| 亚洲av成人一区二区三| 男女之事视频高清在线观看| 国产黄片美女视频| 久久九九热精品免费| 在线观看66精品国产| 母亲3免费完整高清在线观看| 男女床上黄色一级片免费看| 午夜久久久久精精品| 99热只有精品国产| 人人妻人人看人人澡| 亚洲欧美一区二区三区黑人| 婷婷精品国产亚洲av| 午夜精品在线福利| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 欧美黄色片欧美黄色片| 精品国产国语对白av| 男女之事视频高清在线观看| 婷婷亚洲欧美| 精品欧美国产一区二区三| 大型黄色视频在线免费观看| 首页视频小说图片口味搜索| 亚洲国产看品久久| 50天的宝宝边吃奶边哭怎么回事| 日日夜夜操网爽| 十八禁网站免费在线| 国产激情偷乱视频一区二区| 精品免费久久久久久久清纯| 女性被躁到高潮视频| 色精品久久人妻99蜜桃| 黄色成人免费大全| 国产精品 国内视频| 久热爱精品视频在线9| 午夜亚洲福利在线播放| 变态另类成人亚洲欧美熟女| 日韩有码中文字幕| 男人舔奶头视频| 国产亚洲欧美精品永久| 他把我摸到了高潮在线观看| 波多野结衣巨乳人妻| 亚洲一码二码三码区别大吗| 国产视频一区二区在线看| 两性夫妻黄色片| 日本五十路高清| 国产单亲对白刺激| 国内揄拍国产精品人妻在线 | 国产欧美日韩一区二区三| 国产片内射在线| 国产精品日韩av在线免费观看| 欧美乱色亚洲激情| 免费看十八禁软件| 夜夜看夜夜爽夜夜摸| 久久这里只有精品19| 久久精品夜夜夜夜夜久久蜜豆 | 欧美 亚洲 国产 日韩一| 日韩高清综合在线| 婷婷精品国产亚洲av在线| 午夜成年电影在线免费观看| 十八禁网站免费在线| 丁香六月欧美| 一夜夜www| 欧美精品亚洲一区二区| bbb黄色大片| 自线自在国产av| 国产精品久久电影中文字幕| 国产一区二区在线av高清观看| 一本大道久久a久久精品| 高清毛片免费观看视频网站| 波多野结衣高清无吗| 国产久久久一区二区三区| 国产精品九九99| 真人做人爱边吃奶动态| a级毛片a级免费在线| 成人国产综合亚洲| 欧美日韩一级在线毛片| 久久国产精品男人的天堂亚洲| 久久人妻av系列| av有码第一页| 亚洲午夜精品一区,二区,三区| 国产亚洲av嫩草精品影院| 国产亚洲精品第一综合不卡| 级片在线观看| 90打野战视频偷拍视频| 女性被躁到高潮视频| 麻豆成人午夜福利视频| 在线观看一区二区三区| 久久国产亚洲av麻豆专区| 亚洲国产精品成人综合色| 一进一出抽搐gif免费好疼| 婷婷丁香在线五月| 日韩欧美一区二区三区在线观看| 色播在线永久视频| 亚洲精品久久国产高清桃花| 亚洲精品一区av在线观看| 成人18禁高潮啪啪吃奶动态图| 极品教师在线免费播放| 又紧又爽又黄一区二区| 黄色片一级片一级黄色片| 日韩 欧美 亚洲 中文字幕| 久久久久久久久免费视频了| 欧美日韩乱码在线| 欧美亚洲日本最大视频资源| 久久久久国产一级毛片高清牌| 88av欧美| 欧美日韩瑟瑟在线播放| 99在线视频只有这里精品首页| 国产成人系列免费观看| 黄片播放在线免费| 久久精品国产亚洲av高清一级| 每晚都被弄得嗷嗷叫到高潮| 国产v大片淫在线免费观看| 天堂√8在线中文| 国产精品乱码一区二三区的特点| av福利片在线| 国产av一区二区精品久久| 成人精品一区二区免费| 国产精品 国内视频| 久久欧美精品欧美久久欧美| 成人18禁高潮啪啪吃奶动态图| 欧美日韩乱码在线| 成人av一区二区三区在线看| 可以免费在线观看a视频的电影网站| 国产精品,欧美在线| 熟妇人妻久久中文字幕3abv| 午夜精品在线福利| av在线播放免费不卡| 久久这里只有精品19| 午夜免费观看网址| 搞女人的毛片| 精品熟女少妇八av免费久了| 男女下面进入的视频免费午夜 | АⅤ资源中文在线天堂| 免费无遮挡裸体视频| 无人区码免费观看不卡| 亚洲成人国产一区在线观看| 美国免费a级毛片| 国产欧美日韩一区二区精品| 日韩成人在线观看一区二区三区| 国产在线精品亚洲第一网站| 香蕉丝袜av| 12—13女人毛片做爰片一| 色综合欧美亚洲国产小说| 国产av不卡久久| 亚洲欧美精品综合一区二区三区| 精品无人区乱码1区二区| 欧美黄色片欧美黄色片| 又黄又爽又免费观看的视频| 日本一区二区免费在线视频| 午夜福利一区二区在线看| netflix在线观看网站| 1024视频免费在线观看| 无遮挡黄片免费观看| 精品一区二区三区av网在线观看| 69av精品久久久久久| 99国产极品粉嫩在线观看| 制服人妻中文乱码| 久久精品国产亚洲av高清一级| 91字幕亚洲| 在线播放国产精品三级| 国产精品精品国产色婷婷| 老汉色∧v一级毛片| 成人18禁在线播放| 日韩视频一区二区在线观看| 麻豆成人av在线观看| 成年免费大片在线观看| 日韩三级视频一区二区三区| 日韩精品中文字幕看吧| xxxwww97欧美| 久久久水蜜桃国产精品网| 日韩精品中文字幕看吧|