• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative study of pulsed laser diode end-pumped thulium-doped 2-μm Q-switched lasers?

    2021-03-19 03:20:38YaWen溫雅ZhenFan范震LinHaoShang尚林浩GuangYongJin金光勇WangChao王超XinYuChen陳薪羽andChunTingWu吳春婷
    Chinese Physics B 2021年3期
    關(guān)鍵詞:溫雅王超金光

    Ya Wen(溫雅), Zhen Fan(范震), Lin-Hao Shang(尚林浩), Guang-Yong Jin(金光勇),Wang Chao(王超), Xin-Yu Chen(陳薪羽), and Chun-Ting Wu(吳春婷)

    Jilin Key Laboratory of Solid Laser Technology and Application,College of Science,Changchun University of Science and Technology,Changchun 130022,China

    Keywords: thulium-doped crystal,bonded crystal,mixed crystal,2-μm laser

    1. Introduction

    The 2-μm lasers with small absorption in the atmospheric window and eye-safety band, which contains the absorption peaks of CO2and water molecules,are widely used in medical operations,laser ranging and lidar.The 2-μm lasers have good atmospheric transmission performance, which is of great significance in developing the optical communication and optical remote sensing,as well as lidar and laser communication.[1,2]The 2-μm lasers are useful pump sources for Mid-IR 3 μm-5μm optical parametric oscillators(OPOs),which are important for expanding the 3μm-5μm,8μm-12μm mid-and farinfrared lasers. Therefore, high efficiency, high energy, wide wavelength tuning range, and good stability are the main development direction of 2-μm lasers.[3-5]

    The radiation of 2-μm wavelength is obtained practically by lasers based on the active media doped with thulium,holmium or a mixture of thulium and holmium together or by 1-μm lasers pumped OPOs or the Ho-lasers pumped by Tmlasers.However,the process of generating 2-μm laser by OPO is complicated,which is not conducive to the development of miniaturized and integrated laser light source.[6,7]The Tm and Ho co-doped media with large emission cross section, which can meet the requirements of generating high peak power laser pulse,but they must be cooled to lower temperature,suffering more high up-conversion effects and energy transferring between Tm and Ho. However, it is difficult to obtain a 2-μm laser with large energy and high repetition rate at room temperature. Therefore, in this paper the 2-μm laser output with high-energy,high-repetition-frequency can be obtained by directly pumping single-doped Tm laser crystals with a laser diode(LD)at about 800 nm.

    Tm-doped 2-μm solid-state lasers are such as Tm:YAG laser, Tm:LuAG laser, Tm:YAP laser, Tm:YLF laser,Tm:GdVO4laser, etc. The representative yttrium aluminum garnet (YAG, Y3Al5O12) crystal of garnet crystal belongs to the cubic system, and the output band is mainly around 2013 nm-2025 nm.[8]The crystal of aluminum acid represented by yttrium aluminium oxide (YAP, YAlO3) is an optical negative biaxial crystal,which belongs to the orthorhombic system,and its output band is mainly in a range of 1938 nm-1990 nm,[9]the fluoride crystal represented by yttrium lithium fluoride (YLF, YiLF4) belongs to the tetragonal system, and the output band is mainly near 1900 nm.[10]The vanadate crystals represented by gadolinium vanadate(GdVO4)belong to tetragonal positive uniaxial crystals, and the output band is near 1910 nm.[11]In terms of material, the output wavelength of the garnet crystal is in a range of 2013 nm-2025 nm.Compared with other substrates,YAG crystal is close to 2μm.Therefore,this paper mainly studies the output characteristics of a single thulium-doped garnet crystal system.

    The solid solution (LuxY1?x)3Al5O12series with the garnet-type structure has attracted much attention in laser applications, and the end member compound YAG (Y3Al5O12)is well known,the end member compound LuAG(Lu3Al5O12)is considered to be a promising material for quasi-threelevel laser hosts. The Tm:YAG crystals’ center wavelength is 2014 nm, the Tm:LuAG crystals’ center wavelength is 2023 nm. The output wavelength of Tm:LuAG crystals deviates more from the absorption peak of water and CO2,and is closer to the effective wavelength of lidar. One point concerning the front-end part is that the small thermal conductivity of the LuAG matrix and the thermal lens effect of Tm:LuAG crystals are more serious than those of Tm:YAG,and it is difficult to obtain larger laser output.[12]With the improvement of crystal growth technology,the(LuxY1?x)3AG series of mixed crystals is gradually applied to experimental research. The main advantage of LuYAG mixed crystal is to reduce the content of Lu2O3in the matrix, the price of crystal and the freezing point temperature of LuAG grown in a crucible, to overcome the shortcomings of Tm:LuAG crystals, and to increase the content of Y3Al5O12for retaining the advantages of Tm:YAG crystals. Compared with LuAG crystals,the LuYAG crystals have a very attractive feature. When considering the center laser wavelength,the LuYAG crystals have another attractive feature compared with YAG crystals.[13]

    In recent years,the Tm:LuYAG lasers have experienced a rapid development. For example, in 1994, Kmetec et al.[14]reported the Tm:YAG, Tm:LuAG, and Tm:LuYAG lasers.The lasers’ operation by diode pumping, the pump source is 785 nm. When the pump power was about 12 W, the Tm:LuYAG laser obtained maximum output power of 3 W and a slope efficiency of 33%. At the room temperature,when the substitution concentration of Lu in YAG is 0%,50%,and 100%,the central wavelength of laser is 2013.3 nm,2022.7 nm, and 2020.3 nm respectively. In 2004, Kuwano et al.[15]successfully grew Tm:Lu0.5Y2.5AG crystal, and the central wavelength was 2022.7 nm.Compared with 2020.3 nm of Tm:LuAG and 2013.3 nm of Tm:YAG, the wavelength of Tm:LuYAG deviates greatly from the absorption band of water and CO2,and is very conducive to the transmission of laser in the atmosphere. In 2012,[16]Sun et al. reported that a 788-nm diode-pumped Tm:LuYAG was used to achieve 1935.3 nm-1994.9 nm continuous wave laser, and at 1999.7 nm they achieved 1.76-W output power, corresponding to a slope efficiency of 21.41%. In 2016,Zhao et al.[17]reported a 785-nm pumped Tm:LuYAG laser. Under continuous operation, the maximum output power was 3.05 W,the ramp efficiency was about 33%,and when the acoustic-optic Q-switched repetition frequency was 500 Hz,the maximum single pulse energy was 1.4 mJ,and the center wavelength was 2.02μm.

    It can be seen that Tm:LuYAG can be pumped by a variety of pump sources, and the use of different pump sources has a great influence on its output wavelength and characteristics. From the point of view of laser technology, the mixed crystal generally has a wider absorption and emission spectrum than the end member compound crystal. For the application of long-distance lidar remote sensing with eye safety,2-μm coherent lidar is the best matching wavelength, and the corresponding window wavelengths are 2065.48 nm and 2091.28 nm,respectively.And the closer to 2.1μm the matching wavelength, the smaller the absorption coefficient of atmospheric molecules, the weaker the signal attenuation, and the advantageous the lidar remote sensing technology will be.Due to the limitation of the output wavelengths of Tm:YAG laser and Tm:LuYAG laser, the hybrid crystal Tm:LuYAG is expected.

    There are few reports on Tm:LuYAG crystal, and the Q-switched Tm:LuYAG laser output characteristics of pulsed pump have not been reported. In this paper, we use 785-nm and 788-nm pulsed pump sources to pump Q-switched Tm:LuYAG laser, and compare it with the pulsed Tm:YAG laser and Tm:LuAG laser. We evaluate the output characteristics of Tm:YAG,Tm:LuAG,and Tm:LuYAG gain media at a wavelength of 2μm.

    2. Physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG

    In Tm3+metal ions, the phonon broadening of 4f electrons and the multiplicity of Stark energy levels provide the tunability ability near 2μm. The wavelength of 785 nm emitted by high power GaAlAs laser diode is used to pump the Tm3+-doped crystal. The 785-nm pumping radiation transfers the Tm3+from the3H6ground state to the3H4level. The ion transits from the3H4pump level to the upper level3F4via relaxation oscillation. The laser interaction takes place between the3F4level and the lower laser level of the3H6ground state multiple terahertz,and the wavelength of the output radiation is around 2μm.[18,19]

    When choosing the matrix doped with metal ions, it is necessary to ensure that the lattice position of the matrix crystal can accommodate the doped ions,and its local crystal field must have symmetry and the intensity necessary for sensing the desired spectral characteristics. The optical properties of the crystal after doping metal ions should be considered. The change of refractive index will lead to the uneven propagation of light in the crystal,resulting in poor beam quality,the mechanical and thermal properties of the matrix will affect the average power of the crystal, the thermal conductivity, hardness and crack resistance will affect the heat dissipation of the crystal to withstand the energy.

    The refractive index of laser crystal can be calculated by Sellmeiyer relation[20]

    where n is the refractive index of the laser crystal,λ is the output wavelength,A1,A2,A3,B1,B2,and B3are the Sellmeiyer constants, and the Sellmeiyer constants for YAG, LuAG, and LuYAG are shown in Table 1.[15]The ratio of Lu atom to Y atom in Tm:LuYAG is 1:1.

    Table 1. Sellmeiyer constants of YAG,LuAG,and LuYAG.

    According to the Sellmeiyer relation, the peak refractive index of Tm:YAG crystals is about 1.8 in a range of 2.0μm-2.1 μm, that of Tm:LuAG crystals is about 1.81 in a range of 2.0 μm-2.1 μm, and that of Tm:LuYAG crystals is about 1.805 in a range of 2.0μm-2.1μm.

    Fig.1. Curves of refractive index versus wavelength of YAG, LuAG, and LuYAG crystal.

    For lasers,the gain cross section of the laser medium can be estimated by the cross section of the laser medium,and the gain of the laser is judged accordingly. The absorption coefficient of the crystal can be expressed as[20]

    where l is the length of crystal, n is the refractive index of crystal,and T is the transmittance of crystal to pump light.

    The absorption cross section expression of laser medium is[21]

    where N is the number of Tm3+ions in unit volume. We are most concerned about the number of particles that transit at3H6-3H4when the absorption peak is 785 nm. The doping concentration of the Tm:YAG,Tm:LuAG,and Tm:LuYAG crystals used in the calculation and measurement are the same as the concentration used in the experiment,specifically,both are 3.5%.

    The fluorescence spectra of Tm:YAG, Tm:LuAG, and Tm:LuYAG crystal are measured under the action of pump light source as shown in Fig.2.

    Fig.2. Fluorescence spectrum of Tm:YAG,Tm:LuAG,and Tm:LuYAG.

    The study of the fluorescence spectrum of the single doped Tm3+laser medium is mainly about the transition of the Tm3+:3F4→3H6level.[22]The emission wavelength is in a range of 1800 nm-2100 nm. The energy level splitting[23]is shown in Fig.3.

    The fluorescence spectra of Tm:YAG, Tm:LuAG, and Tm:LuYAG crystal in the range of 1800 nm-2100 nm are very similar to each other. The central wavelength of fluorescence spectrum of Tm:YAG crystal is 2014 nm in a range of 2006 nm-2024 nm,the central wavelength of fluorescence spectrum of Tm:LuAG crystals is 2023 nm in a range of 2015 nm-2035 nm,and the central wavelength of fluorescence spectrum of Tm:LuYAG crystals is 2019 nm in a range of 2000 nm-2033 nm. It can be seen that the emission wavelength of Tm:LuAG crystals is closer to the atmospheric window,far from the absorption peaks of carbon dioxide and water. The spectrum of Tm:LuYAG crystals is related to the mixing ratio of Lu2O3to Y3Al5O12. It can be seen that the changing of the mixing ratio of Lu atom to Y atom has a great influence on the fluorescence emission wavelength of the crystal. There are few reports on the laser based on Tm:LuYAG crystals as the working material,and the performance evaluation is not comprehensive. However, in view of its huge potential in crystal growth cost and laser output performance,in this paper Tm:YAG and Tm:LuAG,the isomorphic crystals of Tm:LuYAG are used as the working materials to carry out the experimental research on them,and the output characteristics of the three kinds of crystals in the 2-μm band are compared and analyzed.

    The physical properties of Tm:YAG, Tm:LuAG, and Tm:LuYAG are shown in Table 2.

    Fig.3. Energy level diagram of Tm3+ lasers.

    Table 2. Physical properties of Tm:YAG,Tm:LuAG,and Tm:LuYAG laser crystal.

    Different matrix provides different crystal field for Tm3+and also affects the spectral parameters of the crystal. It is reported that the tuning range of 135 nm from 1938 nm to 2073 nm is achieved from Tm:YAG laser, and the tuning range of 95 nm from 1966 nm to 2061 nm is acquired from Tm:LuAG laser,[14]and the tuning range of 187 nm from 1935.3 nm to 2123.2 nm is obtained from Tm:LuAG laser.[9]Although the wavelength increase of Tm:LuYAG lasers is very small, it has a very important influence on the application of laser. The increase of wavelength greatly reduces the absorption of H2O and CO2in the atmosphere. Therefore,it is necessary to comparative analysis of the Tm:YAG, Tm:LuAG,and Tm:LuYAG lasers output characteristics,which can be selected in practical applications.

    3. Laser experiments

    In this experiment,two kinds of pump sources are used,.One type is NL-P4-60-0788, the fiber-coupled LD module can provide 60-W CW power with are petition frequency of 10 Hz-1 kHz,and the pulse width adjustment range is 1 ms-100 ms.The fiber diameter is 400μm and a numerical aperture is 0.22. The central wavelength of the LD is 785 nm,with the air cooling temperature being 22?C.The other type is WPL-788 nm-70 W,the fiber-coupled LD module can provide 70-W CW power with a repetition frequency of 100 Hz-1 kHz and a pulse width adjustment range of 1 ms-10 ms. The fiber diameter is 400 μm and a numerical aperture is 0.22. The central wavelength of the LD is 788 nm with a cooling water temperature of 20?C. Two pulsed LDs double-end-pump the Tm3+crystals at the same time. The Tm3+crystals are in the state of being pumped and stopped at the same time. The Tm3+crystal laser cavity configuration is shown in Fig.4.

    Fig.4. Schematic diagram of experimental setup.

    The pump beam is shaped by a beam integration system,and the pump waist of 800 μm in diameter is positioned on the crystal. The gain media are Tm:YAG, Tm:LuAG, and Tm:LuYAG laser rods, respectively, with doped YAG, LuAG and LuYAG double end caps with the same Tm3+doping concentration of 3.5%, the same rod diameter of 3 mm and the same doping length of 15 mm, and the same non-doped length of 5 mm. Each end face of the Tm:YAG crystals is of antireflection coated at the pump(785 nm)and laser wavelength (2000 nm-2050 m). Each end face of the Tm:LuAG crystals is of antireflection coated at the pump (788 nm) and laser wavelength (2000 nm-2100 nm). Each end face of the Tm:LuYAG crystals is of antireflection coated at the pump(785 nm-810 nm)and laser wavelength(2000 nm-2100 nm).Few researches on Tm:LuYAG crystals show that the crystals are coated with a wide antireflection membrane. In this paper,the output characteristics of Tm:LuYAG crystals prepared by two pump sources will be compared and analyzed.

    The water-cooled acousto-optic Q-switch produced by British Gooch Company is selected as an acousto-optic Qswitch system. Q-switch type is QS041-10M-HI8. The Qswitching crystal is a quartz crystal with 2 cm in light diameter and 46 mm in length,and its RF power is 40.68 MHz,driving mode: MQH041-50DM-A05.

    Pulsed LD double end pumped L-shaped acoustic-optic Q-switched Tm3+lasers are used in this experiment. The pulsed LD duty ratios are all 50%and the repetition frequencies are 100 Hz, 200 Hz, and 500 Hz. In the experiment,pulsed LD double end pumping is used. The repetition frequency of LD is 100 Hz and the duty cycle is 50%. Using one plano-concave resonator, the cavity length is 120 mm. High reflectivity mirror(HR)M1is broadband high reflected plane mirror in a range from nearly 2.0μm to 2.1μm(R >99.5%),antireflection coated at 785 nm-808 nm (R <0.5%); M2is 45?angle-of-incidence dichroic fold mirror with high transmittance(HT)coated at 785 nm-808 nm(T >99%)and HR coated at 2.0 μm-2.1 μm (R >99.5%). The output coupler(OC) M3is coated at 2.0 μm-2.1 μm with the reflectivity of 96%, the plane-concave lens has a radius of curvature of 150 mm.

    In the experiments, the output power is measured by an F150A-BB-26 power meter(Ophir Photonics). A high-speed silicon photodiode(PCT-3TE-12,Vigo Inc.) is used to detecte Q-switched laser pulse and a digital oscilloscope (DPO3054,Tektronix Inc.) is used to record the pulse signal. The laser spectrum is measured by an optical spectrum analyzer(AQ6357,Yokogawa)with a resolution of 0.05 nm.

    4. Experimental results and discussion

    The 785-nm pulsed LD and 788-nm pulsed LD are used as the pumping sources to pump Tm:YAG laser and Tm:LuAG Q-switched laser, respectively. The 785-nm and 788-nm pulsed LDs are used to pump Q-switched Tm:LuYAG laser separately. The experimental results of the average power,pulse width and center wavelength of the laser output are obtained when the Q-switched repetition frequencies are 100 Hz,200 Hz,and 500 Hz,respectively.

    Fig.5. Variations of the output energy with the pump energy of Tm:YAG,Tm:LuAG,and Tm:LuYAG lasers at different repetition rates.

    Figure 5 shows the variations of output energy with pump energy of Tm:YAG,Tm:LuAG,and Tm:LuYAG lasers at different repetition rates and different pump sources. Table 3 summarizes the laser parameters of the investigated Tm:YAG,Tm:LuAG,and Tm:LuYAG crystals.

    It can be seen from Fig.5 and Table 3 that with the increase of repetition rate, the maximum pump energy, and output energy of the crystal decrease gradually. When the laser operates at the best repetition frequency, the efficiency of the crystal will be highest, and it is possible to obtain larger energy. The high energy level lifetime of Tm:YAG and Tm:LuAG crystals(13.9 ms,11.7 ms)determine that the best repetition rate of the laser is around 100 Hz, which makes it difficult to achieve an output with high repetition rate. The emission cross-section of Tm:LuAG crystal is small, which leads to a low gain, low energy extraction efficiency, and serious thermal effect. The Q-switched Tm:LuAG laser output properties are worse than those of the Q-switched Tm:YAG laser.

    Compared with the Tm:LuAG and Tm:LuYAG crystals, the Tm:YAG crystal is very suitable for high energy laser output, which possesses a larger absorption crosssection (6.5×10?21cm2) at pumping wavelength, a larger gain cross section (2.5×10?21cm2) and a larger thermal conductivity (0.13 W/(cm·K)). While, the absorption crosssection of Tm:LuAG crystals is 5.4×10?21cm2, the gain cross section is1.4×10?21cm2, and the thermal conductivity is 0.079 W/(cm·K). And for the Tm:LuYAG crystals, the absorption cross-section is 5.716×10?21cm2, the gain cross section is 1.4×10?21cm2, and the thermal conductivity is 0.075 W/(cm·K).Because Tm:LuAG and Tm:LuYAG crystals have similar optical and thermal properties, and their output energy values and efficiencies are close.

    Table 3. Laser parameters of investigated Tm:YAG,Tm:LuAG,and Tm:LuYAG crystals.

    Figure 6 shows a multiple pulse train of 788-nm LD pumped acoustic-optic Q-switched Tm:LuYAG laser pulses at 100 Hz. The Q-switched operation is quite stable and the power jitter is less than 2.5%.

    Fig.6. Pulse train of 788-nm LD pumped acoustic-optic Q-switched Tm:LuYAG laser.

    Figure 7 shows the variation of Tm:YAG,Tm:LuAG,and Tm:LuYAG laser pulse widths with output energy at a repetition rate of 100 Hz, showing that with the output energy increasing,the pulse width becomes narrow and tends to a stable value. This approximate stable value is determined by the lifetime of the photon in the cavity. The pulse width and peak power at the maximum output energy are shown in Table 4.

    The pulsed Tm:YAG laser obtains a maximum single pulse energy value and the narrowest pulse width. The single pulse energy obtained by the pulse Tm:LuYAG laser is higher than that of the pulse Tm:LuAG laser and lower than that of the pulse Tm:YAG laser,the pulse width is slightly larger than that of the pulse Tm:LuYAG laser and wider than that of the pulse Tm:YAG laser.Under the same conditions,the larger the cross-section of gain of laser medium,the narrower the output pulse width will be.

    Fig.7. Variations of output pulse width with output energy of Tm:YAG,Tm:LuAG,and Tm:LuYAG lasers.

    Table 4. Parameters of pulse width and peak power of Tm:YAG,Tm:LuAG,and Tm:LuYAG laser.

    Figure 8 shows the Tm:YAG,Tm:LuAG,and Tm:LuYAG laser’s central wavelengths at a repetition rate of 100 Hz with the single pulse energy being minimum. The pulsed Tm:YAG laser wavelength is centered at 2013.36 nm, and the pulsed Tm: LuAG laser wavelength is centered at 2023.65 nm. The absorption peak of Tm:LuYAG is at 785 nm, and the pulsed laser output wavelength is centered at 2017.89 nm. For the absorption peak of Tm:LuYAG at 788 nm,the pulsed laser output wavelength is centered at 2027.11 nm.

    Fig.8. Output spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG lasers.

    From Fig.3 it follows that the laser radiation at 2 μm takes place between the lower level of3F4and the higher level of3H6,including 610 cm?1and 730 cm?1.[23]When the central wavelengths of the pump are 785 nm and 788 nm,the ions transit from the lowest Stark sub-level in3F4at 5736 cm?1and 5556 cm?1to3H6level, resulting in the possible laser emissions at 2.01 μm-2.02 μm and 2.02 μm, respectively. The results show that different output central wavelengths can be achieved under different pumping wavelengths.

    5. Conclusions

    In this work, we demonstrate pulsed LD end-pumped pulsed Tm:YAG, Tm:LuAG, and Tm:LuYAG lasers. When using the 785-nm pulsed LD with a repetition frequency of 100 Hz, the single pulse energy of 15.9 mJ is obtained for pulsed Tm:YAG laser and 12.32 mJ is obtained for pulsed Tm:LuYAG laser. When using the 788-nm pulsed LD with a repetition frequency of 100 Hz, the single pulse energy of 11.8 mJ is obtained for the pulsed Tm:LuAG laser and 12.25 mJ is obtained for the pulsed Tm:LuYAG laser. The center wavelengths of Tm:LuYAG laser are 2017.89 nm and 2027.11 nm,when the pump sources are 785 nm and 788 nm in wavelength, respectively. The experimental results show that the doped Tm:LuYAG crystal has a wide absorption band,and the output wavelength is longer than that of Tm:YAG crystal,and the efficiency is equivalent to that of Tm:LuAG crystal. For the end member compound crystals, the Tm:LuYAG mixed crystals have higher research significance and practical application value.

    猜你喜歡
    溫雅王超金光
    午夜繁華
    王超美術(shù)作品
    金光現(xiàn)代學(xué)徒班感恩教育的實(shí)踐
    驚天大逆,女兒綁架父親背后黑影重重
    一次有趣的小實(shí)驗(yàn)
    呂金光
    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?
    游泳
    Use Propp Narrative Theoretical to Analysis Grimm’s Fairy Tales
    延伸小游戲
    一个人免费在线观看电影 | 久久久久国产一级毛片高清牌| 精品久久久久久,| 12—13女人毛片做爰片一| 亚洲精品色激情综合| 亚洲无线在线观看| www国产在线视频色| 一二三四在线观看免费中文在| 大型黄色视频在线免费观看| 舔av片在线| 看片在线看免费视频| 久久天堂一区二区三区四区| 精品久久蜜臀av无| 日本五十路高清| 国产成人aa在线观看| 午夜两性在线视频| 亚洲av第一区精品v没综合| 99热精品在线国产| 国产精品一区二区三区四区久久| 日本撒尿小便嘘嘘汇集6| 麻豆成人av在线观看| 中文在线观看免费www的网站| 日本黄色片子视频| 18禁黄网站禁片午夜丰满| 国产一区在线观看成人免费| 无人区码免费观看不卡| 久久亚洲精品不卡| 一区二区三区激情视频| 叶爱在线成人免费视频播放| 天堂网av新在线| 在线永久观看黄色视频| 久久精品国产99精品国产亚洲性色| 黄色 视频免费看| 日本 欧美在线| 搞女人的毛片| 亚洲狠狠婷婷综合久久图片| 亚洲熟女毛片儿| 国产亚洲精品综合一区在线观看| a在线观看视频网站| 成人国产一区最新在线观看| 亚洲成人久久爱视频| 精品国产三级普通话版| 婷婷亚洲欧美| 观看美女的网站| 亚洲一区二区三区不卡视频| 欧美成人性av电影在线观看| 亚洲自偷自拍图片 自拍| 听说在线观看完整版免费高清| 午夜精品一区二区三区免费看| 97人妻精品一区二区三区麻豆| 18禁黄网站禁片午夜丰满| 精品一区二区三区视频在线观看免费| 综合色av麻豆| 日日夜夜操网爽| 99热只有精品国产| 亚洲精品乱码久久久v下载方式 | 国产单亲对白刺激| 一区二区三区高清视频在线| 日日干狠狠操夜夜爽| 91九色精品人成在线观看| 免费高清视频大片| 日韩欧美在线二视频| 国产真人三级小视频在线观看| 日韩有码中文字幕| 宅男免费午夜| 成人亚洲精品av一区二区| 国产视频一区二区在线看| 亚洲欧美一区二区三区黑人| 久久久久免费精品人妻一区二区| 女生性感内裤真人,穿戴方法视频| 午夜久久久久精精品| 色综合亚洲欧美另类图片| 特大巨黑吊av在线直播| 日本与韩国留学比较| 三级毛片av免费| 亚洲 国产 在线| 精品欧美国产一区二区三| 夜夜看夜夜爽夜夜摸| 久久中文字幕一级| 国产亚洲精品av在线| 国产av不卡久久| 免费在线观看日本一区| 亚洲熟妇熟女久久| 免费观看精品视频网站| 99精品欧美一区二区三区四区| 亚洲人成网站高清观看| 在线免费观看的www视频| 国产久久久一区二区三区| 国产一区在线观看成人免费| 精品日产1卡2卡| 亚洲男人的天堂狠狠| 欧美午夜高清在线| 97超级碰碰碰精品色视频在线观看| 国产精品1区2区在线观看.| 性色av乱码一区二区三区2| 中文字幕高清在线视频| 久久精品国产清高在天天线| 亚洲第一欧美日韩一区二区三区| 97碰自拍视频| 亚洲精品456在线播放app | 精品熟女少妇八av免费久了| 色哟哟哟哟哟哟| 在线观看免费午夜福利视频| 人人妻人人澡欧美一区二区| 男人和女人高潮做爰伦理| 不卡一级毛片| 国产精品美女特级片免费视频播放器 | 欧美日韩黄片免| 亚洲人成伊人成综合网2020| 久久天堂一区二区三区四区| 亚洲,欧美精品.| 久久久久亚洲av毛片大全| 国产午夜精品论理片| 成人18禁在线播放| 好男人在线观看高清免费视频| 99久久无色码亚洲精品果冻| 999久久久国产精品视频| 成人亚洲精品av一区二区| 一二三四社区在线视频社区8| 国产精品亚洲美女久久久| 午夜福利在线观看吧| 1000部很黄的大片| 老司机午夜福利在线观看视频| 国产蜜桃级精品一区二区三区| 脱女人内裤的视频| 俄罗斯特黄特色一大片| 国产精品影院久久| 美女被艹到高潮喷水动态| 国产美女午夜福利| 免费看美女性在线毛片视频| 小说图片视频综合网站| 国产午夜福利久久久久久| 亚洲专区中文字幕在线| 少妇人妻一区二区三区视频| 1000部很黄的大片| 悠悠久久av| 欧美国产日韩亚洲一区| 在线永久观看黄色视频| 久久精品国产综合久久久| 激情在线观看视频在线高清| 国产高清三级在线| 久久中文字幕人妻熟女| 亚洲成人免费电影在线观看| 欧美3d第一页| АⅤ资源中文在线天堂| 欧美日韩精品网址| 欧美乱妇无乱码| 日本与韩国留学比较| 国产高清三级在线| 国产黄色小视频在线观看| 亚洲精品在线美女| 成人三级做爰电影| 宅男免费午夜| 国产成+人综合+亚洲专区| 后天国语完整版免费观看| 色噜噜av男人的天堂激情| 亚洲av成人一区二区三| 午夜福利在线观看吧| 婷婷精品国产亚洲av在线| 国产aⅴ精品一区二区三区波| 性色av乱码一区二区三区2| 我的老师免费观看完整版| 熟女少妇亚洲综合色aaa.| 偷拍熟女少妇极品色| 成人av一区二区三区在线看| 久久久精品大字幕| 在线观看午夜福利视频| 免费看a级黄色片| 亚洲人成网站高清观看| 母亲3免费完整高清在线观看| 麻豆成人av在线观看| 精品国产乱码久久久久久男人| 高清在线国产一区| 欧美黑人欧美精品刺激| 国产精品98久久久久久宅男小说| 亚洲人成电影免费在线| 国产精品久久久人人做人人爽| 特级一级黄色大片| 欧美色视频一区免费| 国产免费av片在线观看野外av| 老司机深夜福利视频在线观看| 亚洲欧美日韩高清专用| 国产精品久久久久久精品电影| 国产伦一二天堂av在线观看| 黄色片一级片一级黄色片| 精品国产美女av久久久久小说| 日韩国内少妇激情av| 亚洲欧美激情综合另类| 久久久水蜜桃国产精品网| 午夜两性在线视频| 国内久久婷婷六月综合欲色啪| 最近最新中文字幕大全免费视频| 神马国产精品三级电影在线观看| 亚洲在线观看片| 青草久久国产| 国产精品九九99| 亚洲自拍偷在线| 精品福利观看| 一进一出好大好爽视频| 久久久久免费精品人妻一区二区| 欧美成人免费av一区二区三区| 99久久无色码亚洲精品果冻| avwww免费| 日韩国内少妇激情av| 欧美丝袜亚洲另类 | 久久亚洲精品不卡| 少妇熟女aⅴ在线视频| 狂野欧美激情性xxxx| 香蕉丝袜av| 一边摸一边抽搐一进一小说| 夜夜夜夜夜久久久久| av女优亚洲男人天堂 | 高潮久久久久久久久久久不卡| 色尼玛亚洲综合影院| 欧美激情在线99| av国产免费在线观看| 一本综合久久免费| 国产69精品久久久久777片 | 免费搜索国产男女视频| 巨乳人妻的诱惑在线观看| 国产成人精品久久二区二区免费| 麻豆成人午夜福利视频| 精品久久久久久久毛片微露脸| 噜噜噜噜噜久久久久久91| 十八禁人妻一区二区| 又爽又黄无遮挡网站| 亚洲av成人一区二区三| 不卡一级毛片| 色吧在线观看| 一边摸一边抽搐一进一小说| 别揉我奶头~嗯~啊~动态视频| 国产久久久一区二区三区| 一本综合久久免费| 日韩欧美国产一区二区入口| 日本精品一区二区三区蜜桃| 亚洲欧美日韩卡通动漫| 亚洲一区高清亚洲精品| 久久人妻av系列| 亚洲专区字幕在线| 悠悠久久av| 午夜福利欧美成人| 91麻豆精品激情在线观看国产| 综合色av麻豆| 欧美xxxx黑人xx丫x性爽| 久久中文字幕一级| 欧美乱妇无乱码| 亚洲精品乱码久久久v下载方式 | 性欧美人与动物交配| 日本一本二区三区精品| 九九在线视频观看精品| 午夜福利18| 亚洲av电影在线进入| 免费在线观看成人毛片| 午夜久久久久精精品| 国产乱人伦免费视频| 日本五十路高清| 99在线人妻在线中文字幕| 男插女下体视频免费在线播放| 午夜精品一区二区三区免费看| 香蕉久久夜色| 国产精品野战在线观看| 天堂av国产一区二区熟女人妻| 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线| 俄罗斯特黄特色一大片| 香蕉国产在线看| 亚洲人成网站高清观看| 熟女电影av网| 88av欧美| 午夜福利视频1000在线观看| 久久国产精品人妻蜜桃| 国产伦一二天堂av在线观看| 国产野战对白在线观看| 亚洲性夜色夜夜综合| 99久久国产精品久久久| 日日夜夜操网爽| 两个人的视频大全免费| 国产主播在线观看一区二区| 欧美日韩乱码在线| 一进一出抽搐动态| 成人欧美大片| 久久精品91蜜桃| 99热只有精品国产| 男插女下体视频免费在线播放| 三级国产精品欧美在线观看 | 网址你懂的国产日韩在线| 欧美+亚洲+日韩+国产| 成在线人永久免费视频| 国产单亲对白刺激| 欧美乱码精品一区二区三区| 丰满的人妻完整版| 欧美成狂野欧美在线观看| 怎么达到女性高潮| 婷婷精品国产亚洲av在线| 久久久久久久精品吃奶| 99热这里只有精品一区 | 波多野结衣高清作品| 99久久国产精品久久久| 国产免费男女视频| 精品国产三级普通话版| 一本久久中文字幕| 波多野结衣巨乳人妻| 美女午夜性视频免费| 男人和女人高潮做爰伦理| 无限看片的www在线观看| 久久久水蜜桃国产精品网| 中文在线观看免费www的网站| 少妇丰满av| 欧美中文日本在线观看视频| 日韩欧美精品v在线| 精品一区二区三区四区五区乱码| 91字幕亚洲| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区mp4| 亚洲aⅴ乱码一区二区在线播放| 久久久久免费精品人妻一区二区| av在线天堂中文字幕| 狂野欧美激情性xxxx| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 999久久久精品免费观看国产| 欧美成人一区二区免费高清观看 | 桃红色精品国产亚洲av| 成人特级黄色片久久久久久久| 99国产精品一区二区蜜桃av| 欧美日韩瑟瑟在线播放| 成人午夜高清在线视频| 激情在线观看视频在线高清| 夜夜爽天天搞| 黄色日韩在线| 久久久久国内视频| 免费无遮挡裸体视频| 91在线精品国自产拍蜜月 | 国产精品久久久av美女十八| 99久国产av精品| 村上凉子中文字幕在线| 99久久精品国产亚洲精品| 亚洲 国产 在线| 成人av在线播放网站| 两个人的视频大全免费| 日韩有码中文字幕| 欧美+亚洲+日韩+国产| 别揉我奶头~嗯~啊~动态视频| 精品国产亚洲在线| 真人一进一出gif抽搐免费| 中文亚洲av片在线观看爽| 欧美xxxx黑人xx丫x性爽| 精品福利观看| 麻豆av在线久日| 特级一级黄色大片| 88av欧美| 国产成人欧美在线观看| 日本黄色视频三级网站网址| 欧美一区二区国产精品久久精品| 首页视频小说图片口味搜索| 别揉我奶头~嗯~啊~动态视频| 欧美绝顶高潮抽搐喷水| 欧美午夜高清在线| 桃色一区二区三区在线观看| 久久香蕉精品热| 制服丝袜大香蕉在线| 午夜精品一区二区三区免费看| 巨乳人妻的诱惑在线观看| 亚洲色图 男人天堂 中文字幕| 成人高潮视频无遮挡免费网站| 老汉色av国产亚洲站长工具| 成人亚洲精品av一区二区| 国产爱豆传媒在线观看| a级毛片在线看网站| 国产成人精品久久二区二区免费| 香蕉av资源在线| 久久久久性生活片| 成年女人看的毛片在线观看| 亚洲欧美日韩卡通动漫| 在线国产一区二区在线| 国产私拍福利视频在线观看| 成人三级做爰电影| 成人国产一区最新在线观看| 嫁个100分男人电影在线观看| 国语自产精品视频在线第100页| 成人午夜高清在线视频| 黄色成人免费大全| 国产亚洲av嫩草精品影院| 亚洲精品在线美女| 久99久视频精品免费| 亚洲 国产 在线| 在线免费观看不下载黄p国产 | 色综合欧美亚洲国产小说| 国产精品久久久av美女十八| 一卡2卡三卡四卡精品乱码亚洲| 亚洲真实伦在线观看| xxxwww97欧美| 91av网一区二区| 午夜福利成人在线免费观看| 国产蜜桃级精品一区二区三区| av黄色大香蕉| 中文字幕人妻丝袜一区二区| 亚洲av中文字字幕乱码综合| 国产一区二区在线av高清观看| 一级毛片女人18水好多| www.999成人在线观看| 精品久久久久久久久久免费视频| 国产一区二区在线av高清观看| 99国产精品99久久久久| 制服丝袜大香蕉在线| 亚洲国产精品合色在线| 这个男人来自地球电影免费观看| 1000部很黄的大片| 免费在线观看成人毛片| 美女午夜性视频免费| 国产久久久一区二区三区| 午夜免费观看网址| 天堂网av新在线| 亚洲精品国产精品久久久不卡| 国产成人精品久久二区二区免费| 国产伦人伦偷精品视频| 国产精品1区2区在线观看.| 俺也久久电影网| 全区人妻精品视频| 国产真实乱freesex| 波多野结衣高清无吗| 国产精品亚洲av一区麻豆| 中文字幕人成人乱码亚洲影| 高清在线国产一区| 国产av不卡久久| 色综合婷婷激情| 一个人免费在线观看电影 | 国产真实乱freesex| www.自偷自拍.com| 99久国产av精品| 久久精品国产亚洲av香蕉五月| 最新美女视频免费是黄的| АⅤ资源中文在线天堂| 亚洲午夜理论影院| 日日干狠狠操夜夜爽| av福利片在线观看| 亚洲国产色片| 午夜福利18| 99热这里只有精品一区 | 一卡2卡三卡四卡精品乱码亚洲| 国产精品久久久人人做人人爽| 国产高清三级在线| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 他把我摸到了高潮在线观看| 精品国内亚洲2022精品成人| 欧美性猛交╳xxx乱大交人| 欧美日韩瑟瑟在线播放| 午夜福利视频1000在线观看| 两个人的视频大全免费| 国产麻豆成人av免费视频| 亚洲自拍偷在线| 熟女少妇亚洲综合色aaa.| 国产精品,欧美在线| 久久午夜综合久久蜜桃| 视频区欧美日本亚洲| 熟妇人妻久久中文字幕3abv| 久久天躁狠狠躁夜夜2o2o| 亚洲熟女毛片儿| 日韩有码中文字幕| av国产免费在线观看| 天堂影院成人在线观看| 色综合站精品国产| 免费在线观看视频国产中文字幕亚洲| 亚洲aⅴ乱码一区二区在线播放| 精品福利观看| 久久久色成人| 村上凉子中文字幕在线| 亚洲国产精品久久男人天堂| 日韩三级视频一区二区三区| 特级一级黄色大片| 俺也久久电影网| 18禁观看日本| 人妻久久中文字幕网| 亚洲激情在线av| 脱女人内裤的视频| 搡老妇女老女人老熟妇| 亚洲 欧美 日韩 在线 免费| 热99re8久久精品国产| 啦啦啦免费观看视频1| 制服人妻中文乱码| 国产精品日韩av在线免费观看| 日韩国内少妇激情av| 俺也久久电影网| 欧美+亚洲+日韩+国产| 人妻久久中文字幕网| 亚洲精品色激情综合| 99久久99久久久精品蜜桃| cao死你这个sao货| 两个人的视频大全免费| 精品久久蜜臀av无| 男女床上黄色一级片免费看| 国产精品亚洲美女久久久| 免费看十八禁软件| 亚洲av成人不卡在线观看播放网| 欧美极品一区二区三区四区| 深夜精品福利| 香蕉久久夜色| 午夜免费激情av| 国产精品影院久久| 亚洲精品乱码久久久v下载方式 | 18禁黄网站禁片午夜丰满| av国产免费在线观看| 99热这里只有是精品50| 国产精品av久久久久免费| 亚洲专区国产一区二区| 国产精品美女特级片免费视频播放器 | 搡老妇女老女人老熟妇| 动漫黄色视频在线观看| 女人被狂操c到高潮| 香蕉av资源在线| 国产亚洲精品综合一区在线观看| 麻豆av在线久日| 嫩草影视91久久| 欧美极品一区二区三区四区| АⅤ资源中文在线天堂| 在线十欧美十亚洲十日本专区| 亚洲成av人片免费观看| 亚洲国产精品sss在线观看| 两个人看的免费小视频| 国产精品女同一区二区软件 | 免费在线观看亚洲国产| 免费av毛片视频| 亚洲av成人一区二区三| 一边摸一边抽搐一进一小说| 国产精品影院久久| 国产久久久一区二区三区| 国产亚洲欧美在线一区二区| 激情在线观看视频在线高清| 亚洲成人久久爱视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线精品亚洲第一网站| 性色av乱码一区二区三区2| 午夜福利在线观看免费完整高清在 | 琪琪午夜伦伦电影理论片6080| 国内精品一区二区在线观看| 午夜精品久久久久久毛片777| 国产一区二区在线观看日韩 | 好看av亚洲va欧美ⅴa在| 亚洲精华国产精华精| www.自偷自拍.com| 国产高清videossex| 国产精品自产拍在线观看55亚洲| 变态另类成人亚洲欧美熟女| 国产日本99.免费观看| 18禁国产床啪视频网站| 亚洲无线观看免费| 国产亚洲av嫩草精品影院| 最好的美女福利视频网| 精品久久久久久久久久久久久| 视频区欧美日本亚洲| 在线观看66精品国产| 午夜激情欧美在线| 最新中文字幕久久久久 | 村上凉子中文字幕在线| 淫妇啪啪啪对白视频| 制服丝袜大香蕉在线| 色哟哟哟哟哟哟| 午夜福利成人在线免费观看| 琪琪午夜伦伦电影理论片6080| 黄色成人免费大全| 两人在一起打扑克的视频| 欧美黄色片欧美黄色片| 亚洲最大成人中文| 18禁黄网站禁片午夜丰满| 国产伦精品一区二区三区视频9 | 亚洲专区国产一区二区| 97超级碰碰碰精品色视频在线观看| 免费电影在线观看免费观看| 成人永久免费在线观看视频| 好男人在线观看高清免费视频| 国产精品香港三级国产av潘金莲| 国产成人精品久久二区二区免费| 一本久久中文字幕| 丁香欧美五月| 国产欧美日韩精品一区二区| 麻豆av在线久日| 久久人人精品亚洲av| 亚洲在线自拍视频| 成人午夜高清在线视频| 嫩草影视91久久| 最近最新中文字幕大全电影3| 性色av乱码一区二区三区2| 日韩欧美 国产精品| 亚洲第一电影网av| 91av网站免费观看| 日韩欧美 国产精品| 国产精品 欧美亚洲| 久久中文字幕一级| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美在线二视频| 叶爱在线成人免费视频播放| 人妻夜夜爽99麻豆av| 国产精品 欧美亚洲| 久久中文字幕一级| 国产高清视频在线播放一区| 在线播放国产精品三级| 一个人免费在线观看电影 | 色av中文字幕| or卡值多少钱| 色哟哟哟哟哟哟| 日本三级黄在线观看| 在线观看美女被高潮喷水网站 | 成人欧美大片| www.www免费av| 五月伊人婷婷丁香| 在线国产一区二区在线| 国产亚洲精品久久久com| avwww免费| 欧美日韩国产亚洲二区| 成人av在线播放网站| 国产精品一及| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产色片| 免费电影在线观看免费观看|