• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Comparative study of pulsed laser diode end-pumped thulium-doped 2-μm Q-switched lasers?

    2021-03-19 03:20:38YaWen溫雅ZhenFan范震LinHaoShang尚林浩GuangYongJin金光勇WangChao王超XinYuChen陳薪羽andChunTingWu吳春婷
    Chinese Physics B 2021年3期
    關(guān)鍵詞:溫雅王超金光

    Ya Wen(溫雅), Zhen Fan(范震), Lin-Hao Shang(尚林浩), Guang-Yong Jin(金光勇),Wang Chao(王超), Xin-Yu Chen(陳薪羽), and Chun-Ting Wu(吳春婷)

    Jilin Key Laboratory of Solid Laser Technology and Application,College of Science,Changchun University of Science and Technology,Changchun 130022,China

    Keywords: thulium-doped crystal,bonded crystal,mixed crystal,2-μm laser

    1. Introduction

    The 2-μm lasers with small absorption in the atmospheric window and eye-safety band, which contains the absorption peaks of CO2and water molecules,are widely used in medical operations,laser ranging and lidar.The 2-μm lasers have good atmospheric transmission performance, which is of great significance in developing the optical communication and optical remote sensing,as well as lidar and laser communication.[1,2]The 2-μm lasers are useful pump sources for Mid-IR 3 μm-5μm optical parametric oscillators(OPOs),which are important for expanding the 3μm-5μm,8μm-12μm mid-and farinfrared lasers. Therefore, high efficiency, high energy, wide wavelength tuning range, and good stability are the main development direction of 2-μm lasers.[3-5]

    The radiation of 2-μm wavelength is obtained practically by lasers based on the active media doped with thulium,holmium or a mixture of thulium and holmium together or by 1-μm lasers pumped OPOs or the Ho-lasers pumped by Tmlasers.However,the process of generating 2-μm laser by OPO is complicated,which is not conducive to the development of miniaturized and integrated laser light source.[6,7]The Tm and Ho co-doped media with large emission cross section, which can meet the requirements of generating high peak power laser pulse,but they must be cooled to lower temperature,suffering more high up-conversion effects and energy transferring between Tm and Ho. However, it is difficult to obtain a 2-μm laser with large energy and high repetition rate at room temperature. Therefore, in this paper the 2-μm laser output with high-energy,high-repetition-frequency can be obtained by directly pumping single-doped Tm laser crystals with a laser diode(LD)at about 800 nm.

    Tm-doped 2-μm solid-state lasers are such as Tm:YAG laser, Tm:LuAG laser, Tm:YAP laser, Tm:YLF laser,Tm:GdVO4laser, etc. The representative yttrium aluminum garnet (YAG, Y3Al5O12) crystal of garnet crystal belongs to the cubic system, and the output band is mainly around 2013 nm-2025 nm.[8]The crystal of aluminum acid represented by yttrium aluminium oxide (YAP, YAlO3) is an optical negative biaxial crystal,which belongs to the orthorhombic system,and its output band is mainly in a range of 1938 nm-1990 nm,[9]the fluoride crystal represented by yttrium lithium fluoride (YLF, YiLF4) belongs to the tetragonal system, and the output band is mainly near 1900 nm.[10]The vanadate crystals represented by gadolinium vanadate(GdVO4)belong to tetragonal positive uniaxial crystals, and the output band is near 1910 nm.[11]In terms of material, the output wavelength of the garnet crystal is in a range of 2013 nm-2025 nm.Compared with other substrates,YAG crystal is close to 2μm.Therefore,this paper mainly studies the output characteristics of a single thulium-doped garnet crystal system.

    The solid solution (LuxY1?x)3Al5O12series with the garnet-type structure has attracted much attention in laser applications, and the end member compound YAG (Y3Al5O12)is well known,the end member compound LuAG(Lu3Al5O12)is considered to be a promising material for quasi-threelevel laser hosts. The Tm:YAG crystals’ center wavelength is 2014 nm, the Tm:LuAG crystals’ center wavelength is 2023 nm. The output wavelength of Tm:LuAG crystals deviates more from the absorption peak of water and CO2,and is closer to the effective wavelength of lidar. One point concerning the front-end part is that the small thermal conductivity of the LuAG matrix and the thermal lens effect of Tm:LuAG crystals are more serious than those of Tm:YAG,and it is difficult to obtain larger laser output.[12]With the improvement of crystal growth technology,the(LuxY1?x)3AG series of mixed crystals is gradually applied to experimental research. The main advantage of LuYAG mixed crystal is to reduce the content of Lu2O3in the matrix, the price of crystal and the freezing point temperature of LuAG grown in a crucible, to overcome the shortcomings of Tm:LuAG crystals, and to increase the content of Y3Al5O12for retaining the advantages of Tm:YAG crystals. Compared with LuAG crystals,the LuYAG crystals have a very attractive feature. When considering the center laser wavelength,the LuYAG crystals have another attractive feature compared with YAG crystals.[13]

    In recent years,the Tm:LuYAG lasers have experienced a rapid development. For example, in 1994, Kmetec et al.[14]reported the Tm:YAG, Tm:LuAG, and Tm:LuYAG lasers.The lasers’ operation by diode pumping, the pump source is 785 nm. When the pump power was about 12 W, the Tm:LuYAG laser obtained maximum output power of 3 W and a slope efficiency of 33%. At the room temperature,when the substitution concentration of Lu in YAG is 0%,50%,and 100%,the central wavelength of laser is 2013.3 nm,2022.7 nm, and 2020.3 nm respectively. In 2004, Kuwano et al.[15]successfully grew Tm:Lu0.5Y2.5AG crystal, and the central wavelength was 2022.7 nm.Compared with 2020.3 nm of Tm:LuAG and 2013.3 nm of Tm:YAG, the wavelength of Tm:LuYAG deviates greatly from the absorption band of water and CO2,and is very conducive to the transmission of laser in the atmosphere. In 2012,[16]Sun et al. reported that a 788-nm diode-pumped Tm:LuYAG was used to achieve 1935.3 nm-1994.9 nm continuous wave laser, and at 1999.7 nm they achieved 1.76-W output power, corresponding to a slope efficiency of 21.41%. In 2016,Zhao et al.[17]reported a 785-nm pumped Tm:LuYAG laser. Under continuous operation, the maximum output power was 3.05 W,the ramp efficiency was about 33%,and when the acoustic-optic Q-switched repetition frequency was 500 Hz,the maximum single pulse energy was 1.4 mJ,and the center wavelength was 2.02μm.

    It can be seen that Tm:LuYAG can be pumped by a variety of pump sources, and the use of different pump sources has a great influence on its output wavelength and characteristics. From the point of view of laser technology, the mixed crystal generally has a wider absorption and emission spectrum than the end member compound crystal. For the application of long-distance lidar remote sensing with eye safety,2-μm coherent lidar is the best matching wavelength, and the corresponding window wavelengths are 2065.48 nm and 2091.28 nm,respectively.And the closer to 2.1μm the matching wavelength, the smaller the absorption coefficient of atmospheric molecules, the weaker the signal attenuation, and the advantageous the lidar remote sensing technology will be.Due to the limitation of the output wavelengths of Tm:YAG laser and Tm:LuYAG laser, the hybrid crystal Tm:LuYAG is expected.

    There are few reports on Tm:LuYAG crystal, and the Q-switched Tm:LuYAG laser output characteristics of pulsed pump have not been reported. In this paper, we use 785-nm and 788-nm pulsed pump sources to pump Q-switched Tm:LuYAG laser, and compare it with the pulsed Tm:YAG laser and Tm:LuAG laser. We evaluate the output characteristics of Tm:YAG,Tm:LuAG,and Tm:LuYAG gain media at a wavelength of 2μm.

    2. Physical properties and spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG

    In Tm3+metal ions, the phonon broadening of 4f electrons and the multiplicity of Stark energy levels provide the tunability ability near 2μm. The wavelength of 785 nm emitted by high power GaAlAs laser diode is used to pump the Tm3+-doped crystal. The 785-nm pumping radiation transfers the Tm3+from the3H6ground state to the3H4level. The ion transits from the3H4pump level to the upper level3F4via relaxation oscillation. The laser interaction takes place between the3F4level and the lower laser level of the3H6ground state multiple terahertz,and the wavelength of the output radiation is around 2μm.[18,19]

    When choosing the matrix doped with metal ions, it is necessary to ensure that the lattice position of the matrix crystal can accommodate the doped ions,and its local crystal field must have symmetry and the intensity necessary for sensing the desired spectral characteristics. The optical properties of the crystal after doping metal ions should be considered. The change of refractive index will lead to the uneven propagation of light in the crystal,resulting in poor beam quality,the mechanical and thermal properties of the matrix will affect the average power of the crystal, the thermal conductivity, hardness and crack resistance will affect the heat dissipation of the crystal to withstand the energy.

    The refractive index of laser crystal can be calculated by Sellmeiyer relation[20]

    where n is the refractive index of the laser crystal,λ is the output wavelength,A1,A2,A3,B1,B2,and B3are the Sellmeiyer constants, and the Sellmeiyer constants for YAG, LuAG, and LuYAG are shown in Table 1.[15]The ratio of Lu atom to Y atom in Tm:LuYAG is 1:1.

    Table 1. Sellmeiyer constants of YAG,LuAG,and LuYAG.

    According to the Sellmeiyer relation, the peak refractive index of Tm:YAG crystals is about 1.8 in a range of 2.0μm-2.1 μm, that of Tm:LuAG crystals is about 1.81 in a range of 2.0 μm-2.1 μm, and that of Tm:LuYAG crystals is about 1.805 in a range of 2.0μm-2.1μm.

    Fig.1. Curves of refractive index versus wavelength of YAG, LuAG, and LuYAG crystal.

    For lasers,the gain cross section of the laser medium can be estimated by the cross section of the laser medium,and the gain of the laser is judged accordingly. The absorption coefficient of the crystal can be expressed as[20]

    where l is the length of crystal, n is the refractive index of crystal,and T is the transmittance of crystal to pump light.

    The absorption cross section expression of laser medium is[21]

    where N is the number of Tm3+ions in unit volume. We are most concerned about the number of particles that transit at3H6-3H4when the absorption peak is 785 nm. The doping concentration of the Tm:YAG,Tm:LuAG,and Tm:LuYAG crystals used in the calculation and measurement are the same as the concentration used in the experiment,specifically,both are 3.5%.

    The fluorescence spectra of Tm:YAG, Tm:LuAG, and Tm:LuYAG crystal are measured under the action of pump light source as shown in Fig.2.

    Fig.2. Fluorescence spectrum of Tm:YAG,Tm:LuAG,and Tm:LuYAG.

    The study of the fluorescence spectrum of the single doped Tm3+laser medium is mainly about the transition of the Tm3+:3F4→3H6level.[22]The emission wavelength is in a range of 1800 nm-2100 nm. The energy level splitting[23]is shown in Fig.3.

    The fluorescence spectra of Tm:YAG, Tm:LuAG, and Tm:LuYAG crystal in the range of 1800 nm-2100 nm are very similar to each other. The central wavelength of fluorescence spectrum of Tm:YAG crystal is 2014 nm in a range of 2006 nm-2024 nm,the central wavelength of fluorescence spectrum of Tm:LuAG crystals is 2023 nm in a range of 2015 nm-2035 nm,and the central wavelength of fluorescence spectrum of Tm:LuYAG crystals is 2019 nm in a range of 2000 nm-2033 nm. It can be seen that the emission wavelength of Tm:LuAG crystals is closer to the atmospheric window,far from the absorption peaks of carbon dioxide and water. The spectrum of Tm:LuYAG crystals is related to the mixing ratio of Lu2O3to Y3Al5O12. It can be seen that the changing of the mixing ratio of Lu atom to Y atom has a great influence on the fluorescence emission wavelength of the crystal. There are few reports on the laser based on Tm:LuYAG crystals as the working material,and the performance evaluation is not comprehensive. However, in view of its huge potential in crystal growth cost and laser output performance,in this paper Tm:YAG and Tm:LuAG,the isomorphic crystals of Tm:LuYAG are used as the working materials to carry out the experimental research on them,and the output characteristics of the three kinds of crystals in the 2-μm band are compared and analyzed.

    The physical properties of Tm:YAG, Tm:LuAG, and Tm:LuYAG are shown in Table 2.

    Fig.3. Energy level diagram of Tm3+ lasers.

    Table 2. Physical properties of Tm:YAG,Tm:LuAG,and Tm:LuYAG laser crystal.

    Different matrix provides different crystal field for Tm3+and also affects the spectral parameters of the crystal. It is reported that the tuning range of 135 nm from 1938 nm to 2073 nm is achieved from Tm:YAG laser, and the tuning range of 95 nm from 1966 nm to 2061 nm is acquired from Tm:LuAG laser,[14]and the tuning range of 187 nm from 1935.3 nm to 2123.2 nm is obtained from Tm:LuAG laser.[9]Although the wavelength increase of Tm:LuYAG lasers is very small, it has a very important influence on the application of laser. The increase of wavelength greatly reduces the absorption of H2O and CO2in the atmosphere. Therefore,it is necessary to comparative analysis of the Tm:YAG, Tm:LuAG,and Tm:LuYAG lasers output characteristics,which can be selected in practical applications.

    3. Laser experiments

    In this experiment,two kinds of pump sources are used,.One type is NL-P4-60-0788, the fiber-coupled LD module can provide 60-W CW power with are petition frequency of 10 Hz-1 kHz,and the pulse width adjustment range is 1 ms-100 ms.The fiber diameter is 400μm and a numerical aperture is 0.22. The central wavelength of the LD is 785 nm,with the air cooling temperature being 22?C.The other type is WPL-788 nm-70 W,the fiber-coupled LD module can provide 70-W CW power with a repetition frequency of 100 Hz-1 kHz and a pulse width adjustment range of 1 ms-10 ms. The fiber diameter is 400 μm and a numerical aperture is 0.22. The central wavelength of the LD is 788 nm with a cooling water temperature of 20?C. Two pulsed LDs double-end-pump the Tm3+crystals at the same time. The Tm3+crystals are in the state of being pumped and stopped at the same time. The Tm3+crystal laser cavity configuration is shown in Fig.4.

    Fig.4. Schematic diagram of experimental setup.

    The pump beam is shaped by a beam integration system,and the pump waist of 800 μm in diameter is positioned on the crystal. The gain media are Tm:YAG, Tm:LuAG, and Tm:LuYAG laser rods, respectively, with doped YAG, LuAG and LuYAG double end caps with the same Tm3+doping concentration of 3.5%, the same rod diameter of 3 mm and the same doping length of 15 mm, and the same non-doped length of 5 mm. Each end face of the Tm:YAG crystals is of antireflection coated at the pump(785 nm)and laser wavelength (2000 nm-2050 m). Each end face of the Tm:LuAG crystals is of antireflection coated at the pump (788 nm) and laser wavelength (2000 nm-2100 nm). Each end face of the Tm:LuYAG crystals is of antireflection coated at the pump(785 nm-810 nm)and laser wavelength(2000 nm-2100 nm).Few researches on Tm:LuYAG crystals show that the crystals are coated with a wide antireflection membrane. In this paper,the output characteristics of Tm:LuYAG crystals prepared by two pump sources will be compared and analyzed.

    The water-cooled acousto-optic Q-switch produced by British Gooch Company is selected as an acousto-optic Qswitch system. Q-switch type is QS041-10M-HI8. The Qswitching crystal is a quartz crystal with 2 cm in light diameter and 46 mm in length,and its RF power is 40.68 MHz,driving mode: MQH041-50DM-A05.

    Pulsed LD double end pumped L-shaped acoustic-optic Q-switched Tm3+lasers are used in this experiment. The pulsed LD duty ratios are all 50%and the repetition frequencies are 100 Hz, 200 Hz, and 500 Hz. In the experiment,pulsed LD double end pumping is used. The repetition frequency of LD is 100 Hz and the duty cycle is 50%. Using one plano-concave resonator, the cavity length is 120 mm. High reflectivity mirror(HR)M1is broadband high reflected plane mirror in a range from nearly 2.0μm to 2.1μm(R >99.5%),antireflection coated at 785 nm-808 nm (R <0.5%); M2is 45?angle-of-incidence dichroic fold mirror with high transmittance(HT)coated at 785 nm-808 nm(T >99%)and HR coated at 2.0 μm-2.1 μm (R >99.5%). The output coupler(OC) M3is coated at 2.0 μm-2.1 μm with the reflectivity of 96%, the plane-concave lens has a radius of curvature of 150 mm.

    In the experiments, the output power is measured by an F150A-BB-26 power meter(Ophir Photonics). A high-speed silicon photodiode(PCT-3TE-12,Vigo Inc.) is used to detecte Q-switched laser pulse and a digital oscilloscope (DPO3054,Tektronix Inc.) is used to record the pulse signal. The laser spectrum is measured by an optical spectrum analyzer(AQ6357,Yokogawa)with a resolution of 0.05 nm.

    4. Experimental results and discussion

    The 785-nm pulsed LD and 788-nm pulsed LD are used as the pumping sources to pump Tm:YAG laser and Tm:LuAG Q-switched laser, respectively. The 785-nm and 788-nm pulsed LDs are used to pump Q-switched Tm:LuYAG laser separately. The experimental results of the average power,pulse width and center wavelength of the laser output are obtained when the Q-switched repetition frequencies are 100 Hz,200 Hz,and 500 Hz,respectively.

    Fig.5. Variations of the output energy with the pump energy of Tm:YAG,Tm:LuAG,and Tm:LuYAG lasers at different repetition rates.

    Figure 5 shows the variations of output energy with pump energy of Tm:YAG,Tm:LuAG,and Tm:LuYAG lasers at different repetition rates and different pump sources. Table 3 summarizes the laser parameters of the investigated Tm:YAG,Tm:LuAG,and Tm:LuYAG crystals.

    It can be seen from Fig.5 and Table 3 that with the increase of repetition rate, the maximum pump energy, and output energy of the crystal decrease gradually. When the laser operates at the best repetition frequency, the efficiency of the crystal will be highest, and it is possible to obtain larger energy. The high energy level lifetime of Tm:YAG and Tm:LuAG crystals(13.9 ms,11.7 ms)determine that the best repetition rate of the laser is around 100 Hz, which makes it difficult to achieve an output with high repetition rate. The emission cross-section of Tm:LuAG crystal is small, which leads to a low gain, low energy extraction efficiency, and serious thermal effect. The Q-switched Tm:LuAG laser output properties are worse than those of the Q-switched Tm:YAG laser.

    Compared with the Tm:LuAG and Tm:LuYAG crystals, the Tm:YAG crystal is very suitable for high energy laser output, which possesses a larger absorption crosssection (6.5×10?21cm2) at pumping wavelength, a larger gain cross section (2.5×10?21cm2) and a larger thermal conductivity (0.13 W/(cm·K)). While, the absorption crosssection of Tm:LuAG crystals is 5.4×10?21cm2, the gain cross section is1.4×10?21cm2, and the thermal conductivity is 0.079 W/(cm·K). And for the Tm:LuYAG crystals, the absorption cross-section is 5.716×10?21cm2, the gain cross section is 1.4×10?21cm2, and the thermal conductivity is 0.075 W/(cm·K).Because Tm:LuAG and Tm:LuYAG crystals have similar optical and thermal properties, and their output energy values and efficiencies are close.

    Table 3. Laser parameters of investigated Tm:YAG,Tm:LuAG,and Tm:LuYAG crystals.

    Figure 6 shows a multiple pulse train of 788-nm LD pumped acoustic-optic Q-switched Tm:LuYAG laser pulses at 100 Hz. The Q-switched operation is quite stable and the power jitter is less than 2.5%.

    Fig.6. Pulse train of 788-nm LD pumped acoustic-optic Q-switched Tm:LuYAG laser.

    Figure 7 shows the variation of Tm:YAG,Tm:LuAG,and Tm:LuYAG laser pulse widths with output energy at a repetition rate of 100 Hz, showing that with the output energy increasing,the pulse width becomes narrow and tends to a stable value. This approximate stable value is determined by the lifetime of the photon in the cavity. The pulse width and peak power at the maximum output energy are shown in Table 4.

    The pulsed Tm:YAG laser obtains a maximum single pulse energy value and the narrowest pulse width. The single pulse energy obtained by the pulse Tm:LuYAG laser is higher than that of the pulse Tm:LuAG laser and lower than that of the pulse Tm:YAG laser,the pulse width is slightly larger than that of the pulse Tm:LuYAG laser and wider than that of the pulse Tm:YAG laser.Under the same conditions,the larger the cross-section of gain of laser medium,the narrower the output pulse width will be.

    Fig.7. Variations of output pulse width with output energy of Tm:YAG,Tm:LuAG,and Tm:LuYAG lasers.

    Table 4. Parameters of pulse width and peak power of Tm:YAG,Tm:LuAG,and Tm:LuYAG laser.

    Figure 8 shows the Tm:YAG,Tm:LuAG,and Tm:LuYAG laser’s central wavelengths at a repetition rate of 100 Hz with the single pulse energy being minimum. The pulsed Tm:YAG laser wavelength is centered at 2013.36 nm, and the pulsed Tm: LuAG laser wavelength is centered at 2023.65 nm. The absorption peak of Tm:LuYAG is at 785 nm, and the pulsed laser output wavelength is centered at 2017.89 nm. For the absorption peak of Tm:LuYAG at 788 nm,the pulsed laser output wavelength is centered at 2027.11 nm.

    Fig.8. Output spectra of Tm:YAG,Tm:LuAG,and Tm:LuYAG lasers.

    From Fig.3 it follows that the laser radiation at 2 μm takes place between the lower level of3F4and the higher level of3H6,including 610 cm?1and 730 cm?1.[23]When the central wavelengths of the pump are 785 nm and 788 nm,the ions transit from the lowest Stark sub-level in3F4at 5736 cm?1and 5556 cm?1to3H6level, resulting in the possible laser emissions at 2.01 μm-2.02 μm and 2.02 μm, respectively. The results show that different output central wavelengths can be achieved under different pumping wavelengths.

    5. Conclusions

    In this work, we demonstrate pulsed LD end-pumped pulsed Tm:YAG, Tm:LuAG, and Tm:LuYAG lasers. When using the 785-nm pulsed LD with a repetition frequency of 100 Hz, the single pulse energy of 15.9 mJ is obtained for pulsed Tm:YAG laser and 12.32 mJ is obtained for pulsed Tm:LuYAG laser. When using the 788-nm pulsed LD with a repetition frequency of 100 Hz, the single pulse energy of 11.8 mJ is obtained for the pulsed Tm:LuAG laser and 12.25 mJ is obtained for the pulsed Tm:LuYAG laser. The center wavelengths of Tm:LuYAG laser are 2017.89 nm and 2027.11 nm,when the pump sources are 785 nm and 788 nm in wavelength, respectively. The experimental results show that the doped Tm:LuYAG crystal has a wide absorption band,and the output wavelength is longer than that of Tm:YAG crystal,and the efficiency is equivalent to that of Tm:LuAG crystal. For the end member compound crystals, the Tm:LuYAG mixed crystals have higher research significance and practical application value.

    猜你喜歡
    溫雅王超金光
    午夜繁華
    王超美術(shù)作品
    金光現(xiàn)代學(xué)徒班感恩教育的實(shí)踐
    驚天大逆,女兒綁架父親背后黑影重重
    一次有趣的小實(shí)驗(yàn)
    呂金光
    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?
    游泳
    Use Propp Narrative Theoretical to Analysis Grimm’s Fairy Tales
    延伸小游戲
    99热这里只有是精品50| 日本爱情动作片www.在线观看| 好男人视频免费观看在线| 麻豆精品久久久久久蜜桃| 亚洲图色成人| 精品酒店卫生间| 两个人的视频大全免费| 七月丁香在线播放| 免费观看的影片在线观看| 丝瓜视频免费看黄片| 国产精品不卡视频一区二区| 日韩av在线免费看完整版不卡| 在线观看三级黄色| 日韩免费高清中文字幕av| 国产精品久久久久久精品古装| 国产探花在线观看一区二区| 亚洲欧美一区二区三区黑人 | 人妻制服诱惑在线中文字幕| 免费高清在线观看视频在线观看| 免费大片18禁| 天堂俺去俺来也www色官网| 成人午夜精彩视频在线观看| 日本黄大片高清| 99久久中文字幕三级久久日本| 国产成人免费无遮挡视频| 国产 精品1| 中文字幕制服av| 蜜桃久久精品国产亚洲av| 欧美 日韩 精品 国产| 国产精品一二三区在线看| 91精品国产九色| 又爽又黄a免费视频| 欧美潮喷喷水| 精品酒店卫生间| 男女啪啪激烈高潮av片| 国产精品福利在线免费观看| 亚洲欧洲国产日韩| 精品午夜福利在线看| 一级毛片久久久久久久久女| 亚洲高清免费不卡视频| 丝袜美腿在线中文| 高清午夜精品一区二区三区| 亚洲成人av在线免费| 成人亚洲欧美一区二区av| 我的老师免费观看完整版| 纵有疾风起免费观看全集完整版| 国产真实伦视频高清在线观看| 亚洲国产精品专区欧美| 99久久精品国产国产毛片| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| xxx大片免费视频| 婷婷色综合www| 亚洲天堂国产精品一区在线| 国产精品一区二区性色av| av又黄又爽大尺度在线免费看| 男插女下体视频免费在线播放| 又爽又黄a免费视频| 熟女电影av网| 日韩大片免费观看网站| 人妻少妇偷人精品九色| 秋霞伦理黄片| 亚洲精品乱码久久久久久按摩| 一级a做视频免费观看| 人妻少妇偷人精品九色| 内射极品少妇av片p| 街头女战士在线观看网站| 久久影院123| 久久99热6这里只有精品| 真实男女啪啪啪动态图| 国产成人a区在线观看| 国产高清有码在线观看视频| 国产成人福利小说| 97在线视频观看| 精品少妇久久久久久888优播| 日韩免费高清中文字幕av| 熟女人妻精品中文字幕| 亚洲av不卡在线观看| 男人添女人高潮全过程视频| 午夜福利在线在线| 国精品久久久久久国模美| 国产69精品久久久久777片| 熟女av电影| 黄片无遮挡物在线观看| 亚洲精品影视一区二区三区av| av线在线观看网站| 国产女主播在线喷水免费视频网站| 久久久国产一区二区| 丝袜脚勾引网站| a级一级毛片免费在线观看| av网站免费在线观看视频| 大片电影免费在线观看免费| 成年人午夜在线观看视频| 国产精品国产三级国产专区5o| 免费电影在线观看免费观看| 国产成年人精品一区二区| 黑人高潮一二区| 免费观看无遮挡的男女| 国产人妻一区二区三区在| 五月天丁香电影| 又爽又黄无遮挡网站| 亚洲久久久久久中文字幕| 精品久久久噜噜| 国产精品人妻久久久久久| 国产精品一区二区在线观看99| 亚洲精品视频女| 黑人高潮一二区| 一级毛片久久久久久久久女| 蜜桃久久精品国产亚洲av| 成人免费观看视频高清| 搡女人真爽免费视频火全软件| 黑人高潮一二区| 老司机影院成人| 蜜桃亚洲精品一区二区三区| 高清视频免费观看一区二区| 99热网站在线观看| 97精品久久久久久久久久精品| 日韩在线高清观看一区二区三区| 成人国产麻豆网| 久久午夜福利片| 真实男女啪啪啪动态图| 国产黄频视频在线观看| 国产免费一区二区三区四区乱码| 80岁老熟妇乱子伦牲交| 少妇人妻一区二区三区视频| 男插女下体视频免费在线播放| 精品视频人人做人人爽| 美女主播在线视频| 禁无遮挡网站| 国产精品人妻久久久久久| 成人黄色视频免费在线看| 午夜福利视频精品| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看| 在线观看免费高清a一片| 久久精品国产a三级三级三级| 高清午夜精品一区二区三区| 亚洲av一区综合| 亚洲久久久久久中文字幕| 国产精品久久久久久久电影| 听说在线观看完整版免费高清| 亚洲精品456在线播放app| 久久女婷五月综合色啪小说 | 六月丁香七月| 国产色婷婷99| 2022亚洲国产成人精品| 久久午夜福利片| 欧美97在线视频| 婷婷色麻豆天堂久久| 校园人妻丝袜中文字幕| 青春草视频在线免费观看| 汤姆久久久久久久影院中文字幕| 午夜福利视频精品| 免费少妇av软件| 久久久午夜欧美精品| av国产精品久久久久影院| 老师上课跳d突然被开到最大视频| 寂寞人妻少妇视频99o| 国产精品爽爽va在线观看网站| 久久久久久久大尺度免费视频| 在线a可以看的网站| 国产亚洲91精品色在线| 嘟嘟电影网在线观看| 国产男女超爽视频在线观看| 色哟哟·www| 最近的中文字幕免费完整| 在线观看人妻少妇| 欧美变态另类bdsm刘玥| 国产精品一二三区在线看| 小蜜桃在线观看免费完整版高清| 国产高潮美女av| 久久精品国产自在天天线| 69人妻影院| 高清毛片免费看| 五月开心婷婷网| 亚洲综合色惰| av女优亚洲男人天堂| 免费少妇av软件| 我的老师免费观看完整版| 激情五月婷婷亚洲| 国产人妻一区二区三区在| 老师上课跳d突然被开到最大视频| 不卡视频在线观看欧美| 日韩av不卡免费在线播放| 精品午夜福利在线看| 久久6这里有精品| 亚洲欧美日韩另类电影网站 | 国产精品一区www在线观看| 内射极品少妇av片p| 丰满人妻一区二区三区视频av| 亚洲精品成人av观看孕妇| 看十八女毛片水多多多| 亚洲国产欧美人成| 国产大屁股一区二区在线视频| av网站免费在线观看视频| 免费观看性生交大片5| 免费黄频网站在线观看国产| 国产真实伦视频高清在线观看| 日韩免费高清中文字幕av| 中文字幕久久专区| 你懂的网址亚洲精品在线观看| 晚上一个人看的免费电影| 久久久久精品久久久久真实原创| 亚洲av成人精品一二三区| 夫妻午夜视频| 国内精品宾馆在线| 中文字幕免费在线视频6| 在线精品无人区一区二区三 | 亚洲精品国产色婷婷电影| 久久久久久久国产电影| 午夜福利网站1000一区二区三区| 国产高清有码在线观看视频| 国产精品人妻久久久久久| 亚洲美女视频黄频| 久久久久精品性色| 成年版毛片免费区| 久久人人爽av亚洲精品天堂 | 国产熟女欧美一区二区| 少妇人妻久久综合中文| 一区二区三区免费毛片| 国产91av在线免费观看| av在线亚洲专区| 天堂中文最新版在线下载 | 少妇猛男粗大的猛烈进出视频 | 亚洲精品自拍成人| 麻豆国产97在线/欧美| 狂野欧美激情性bbbbbb| av黄色大香蕉| 2021少妇久久久久久久久久久| 亚洲久久久久久中文字幕| 国产精品99久久久久久久久| 精品人妻偷拍中文字幕| 99热网站在线观看| 国产片特级美女逼逼视频| 久久精品熟女亚洲av麻豆精品| 一个人看的www免费观看视频| 久久久久精品久久久久真实原创| 天天躁日日操中文字幕| 久久精品国产鲁丝片午夜精品| 欧美区成人在线视频| 亚洲精品色激情综合| 老司机影院成人| 精品视频人人做人人爽| 精品酒店卫生间| 亚洲天堂av无毛| 亚洲精品国产色婷婷电影| 国产免费一区二区三区四区乱码| 可以在线观看毛片的网站| 日韩av在线免费看完整版不卡| 欧美国产精品一级二级三级 | 亚洲欧美成人精品一区二区| 国产爱豆传媒在线观看| 国产男女内射视频| 国产精品一区www在线观看| 波多野结衣巨乳人妻| 国产极品天堂在线| 午夜日本视频在线| 赤兔流量卡办理| 自拍偷自拍亚洲精品老妇| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 精品久久国产蜜桃| 韩国高清视频一区二区三区| 精品一区二区三卡| h日本视频在线播放| 亚洲国产欧美在线一区| 女的被弄到高潮叫床怎么办| 熟女av电影| 97人妻精品一区二区三区麻豆| 免费观看无遮挡的男女| 夜夜爽夜夜爽视频| 欧美日韩视频精品一区| 观看美女的网站| 欧美成人午夜免费资源| 欧美日韩一区二区视频在线观看视频在线 | 久久久久精品性色| 人人妻人人看人人澡| 欧美日韩精品成人综合77777| 色婷婷久久久亚洲欧美| 日韩成人伦理影院| 国产永久视频网站| 欧美性感艳星| 男女那种视频在线观看| 国产黄频视频在线观看| 男插女下体视频免费在线播放| av在线亚洲专区| 亚洲熟女精品中文字幕| 18禁裸乳无遮挡免费网站照片| 久久亚洲国产成人精品v| 免费电影在线观看免费观看| 人妻少妇偷人精品九色| 十八禁网站网址无遮挡 | 网址你懂的国产日韩在线| 各种免费的搞黄视频| 久久人人爽人人片av| 色5月婷婷丁香| 精华霜和精华液先用哪个| 国内精品宾馆在线| 伦精品一区二区三区| 国产成人免费观看mmmm| 欧美xxxx性猛交bbbb| 人妻制服诱惑在线中文字幕| av又黄又爽大尺度在线免费看| a级毛色黄片| 一个人看的www免费观看视频| 亚洲国产欧美人成| 中文字幕亚洲精品专区| 永久网站在线| 久久久精品欧美日韩精品| 国产在线一区二区三区精| 三级国产精品欧美在线观看| 卡戴珊不雅视频在线播放| 男人添女人高潮全过程视频| 欧美日韩在线观看h| 毛片一级片免费看久久久久| 成人欧美大片| 亚洲av成人精品一二三区| 秋霞在线观看毛片| 欧美日韩综合久久久久久| av在线天堂中文字幕| 99热6这里只有精品| 99re6热这里在线精品视频| 最新中文字幕久久久久| 亚洲av电影在线观看一区二区三区 | 欧美极品一区二区三区四区| 免费看光身美女| 草草在线视频免费看| 国产亚洲精品久久久com| 欧美老熟妇乱子伦牲交| 国产在线男女| 亚洲欧美成人精品一区二区| 哪个播放器可以免费观看大片| 亚洲精品影视一区二区三区av| 天堂网av新在线| 自拍偷自拍亚洲精品老妇| 欧美成人a在线观看| 日韩电影二区| 国产精品福利在线免费观看| 视频中文字幕在线观看| 一级av片app| 精品国产露脸久久av麻豆| 午夜亚洲福利在线播放| 联通29元200g的流量卡| 免费av毛片视频| 青春草国产在线视频| 一级毛片黄色毛片免费观看视频| 禁无遮挡网站| 国产免费福利视频在线观看| 久久久久精品性色| 久久精品人妻少妇| 人妻系列 视频| 男人舔奶头视频| 丝袜脚勾引网站| 两个人的视频大全免费| 日韩 亚洲 欧美在线| 欧美精品一区二区大全| 午夜爱爱视频在线播放| 日韩av不卡免费在线播放| 亚洲成人久久爱视频| 欧美精品人与动牲交sv欧美| 亚洲精品第二区| 亚洲一区二区三区欧美精品 | 日韩人妻高清精品专区| 下体分泌物呈黄色| 天天躁夜夜躁狠狠久久av| 亚洲国产精品成人久久小说| 久久精品人妻少妇| 建设人人有责人人尽责人人享有的 | 亚洲国产日韩一区二区| 女人十人毛片免费观看3o分钟| 欧美+日韩+精品| 午夜免费鲁丝| 不卡视频在线观看欧美| 在线观看免费高清a一片| 99久久九九国产精品国产免费| 欧美一区二区亚洲| 黄色配什么色好看| 一区二区三区免费毛片| 免费观看在线日韩| 五月天丁香电影| 国产女主播在线喷水免费视频网站| 国产片特级美女逼逼视频| 交换朋友夫妻互换小说| 久久精品国产亚洲网站| 91aial.com中文字幕在线观看| 免费看av在线观看网站| 26uuu在线亚洲综合色| 在线亚洲精品国产二区图片欧美 | 老女人水多毛片| 亚洲综合色惰| 欧美日韩亚洲高清精品| 久久女婷五月综合色啪小说 | 99热这里只有是精品在线观看| 国产爽快片一区二区三区| 一个人看视频在线观看www免费| 亚洲精品,欧美精品| 国产亚洲最大av| 亚洲欧美一区二区三区国产| 少妇的逼水好多| 国产 一区精品| 日韩欧美精品免费久久| 日本三级黄在线观看| 伦理电影大哥的女人| 国产精品无大码| 亚洲av电影在线观看一区二区三区 | 精品久久久久久久末码| 美女视频免费永久观看网站| 在线精品无人区一区二区三 | 成人亚洲欧美一区二区av| 九九久久精品国产亚洲av麻豆| 免费观看的影片在线观看| 国产探花极品一区二区| 久久久精品94久久精品| 亚洲在线观看片| 欧美bdsm另类| 免费看av在线观看网站| 国产黄色免费在线视频| 亚洲国产精品成人久久小说| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩卡通动漫| 麻豆成人av视频| 校园人妻丝袜中文字幕| .国产精品久久| 亚洲欧美清纯卡通| 午夜福利高清视频| 99热这里只有是精品在线观看| 深夜a级毛片| 亚洲av不卡在线观看| 一区二区av电影网| 免费黄频网站在线观看国产| 男女边吃奶边做爰视频| 久久久久久久久久成人| 亚洲国产精品成人综合色| 色网站视频免费| 99久国产av精品国产电影| 男的添女的下面高潮视频| 秋霞在线观看毛片| 精品久久久久久久久亚洲| 亚洲av在线观看美女高潮| 亚洲精品乱久久久久久| 亚洲人成网站在线观看播放| 久久人人爽av亚洲精品天堂 | 男女下面进入的视频免费午夜| 午夜免费男女啪啪视频观看| 在线a可以看的网站| 亚洲精品国产成人久久av| 亚洲在线观看片| 亚洲美女视频黄频| 少妇 在线观看| 亚洲国产高清在线一区二区三| 欧美zozozo另类| 国产精品99久久久久久久久| 亚洲av电影在线观看一区二区三区 | 国产精品一区二区在线观看99| 一级a做视频免费观看| 国产色爽女视频免费观看| 精品久久久久久电影网| 久久精品久久久久久久性| 国产有黄有色有爽视频| 在线观看免费高清a一片| 日韩,欧美,国产一区二区三区| 一级毛片电影观看| 国产成人a区在线观看| 亚洲欧洲国产日韩| 美女高潮的动态| 久久热精品热| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 亚洲欧美清纯卡通| 99热这里只有是精品在线观看| 国产老妇女一区| 亚洲最大成人av| 欧美潮喷喷水| 爱豆传媒免费全集在线观看| 久久精品国产亚洲av天美| 亚洲精品日韩av片在线观看| 免费在线观看成人毛片| 纵有疾风起免费观看全集完整版| 精品久久久久久久末码| 精品国产露脸久久av麻豆| 大香蕉97超碰在线| 成人毛片60女人毛片免费| 午夜老司机福利剧场| 99re6热这里在线精品视频| 大片免费播放器 马上看| 寂寞人妻少妇视频99o| 狂野欧美白嫩少妇大欣赏| 22中文网久久字幕| 日本黄色片子视频| 精华霜和精华液先用哪个| 免费看日本二区| 亚洲av.av天堂| 欧美97在线视频| 一级毛片久久久久久久久女| 色网站视频免费| 亚洲成人久久爱视频| av免费观看日本| 丝袜喷水一区| 深爱激情五月婷婷| 亚洲国产日韩一区二区| 男人和女人高潮做爰伦理| 国产极品天堂在线| 直男gayav资源| 大码成人一级视频| 青春草视频在线免费观看| 午夜激情久久久久久久| 成人综合一区亚洲| 国产国拍精品亚洲av在线观看| 夜夜爽夜夜爽视频| 亚洲内射少妇av| 99久久精品一区二区三区| 亚洲欧洲日产国产| 国产精品国产av在线观看| 久久久久久国产a免费观看| 久久这里有精品视频免费| 2018国产大陆天天弄谢| 成人午夜精彩视频在线观看| 亚洲最大成人av| 中国美白少妇内射xxxbb| 国产精品精品国产色婷婷| 在线播放无遮挡| 国产高清国产精品国产三级 | 免费黄网站久久成人精品| 又大又黄又爽视频免费| 亚洲精品乱码久久久v下载方式| 日韩不卡一区二区三区视频在线| 亚洲精品一区蜜桃| 亚洲精品乱久久久久久| 免费少妇av软件| 精品久久久久久久久av| 免费av观看视频| 偷拍熟女少妇极品色| 在线播放无遮挡| 日韩成人av中文字幕在线观看| 黄色配什么色好看| 欧美日韩国产mv在线观看视频 | 久久精品国产自在天天线| 联通29元200g的流量卡| 亚洲国产精品成人综合色| av网站免费在线观看视频| 欧美日韩亚洲高清精品| 色哟哟·www| 人人妻人人澡人人爽人人夜夜| 少妇 在线观看| 少妇人妻久久综合中文| 免费看不卡的av| videossex国产| 蜜臀久久99精品久久宅男| 乱码一卡2卡4卡精品| 久久人人爽av亚洲精品天堂 | 国产精品一区二区三区四区免费观看| 日韩欧美一区视频在线观看 | 99热这里只有是精品50| 亚洲一级一片aⅴ在线观看| 成人欧美大片| 黄色怎么调成土黄色| 色网站视频免费| 亚洲欧美中文字幕日韩二区| 久久久久久九九精品二区国产| 亚洲成人久久爱视频| 黄片无遮挡物在线观看| av线在线观看网站| 国产成年人精品一区二区| 国产色婷婷99| 久久影院123| 亚洲性久久影院| 最近中文字幕高清免费大全6| 日本熟妇午夜| 性色avwww在线观看| 中文字幕av成人在线电影| 国产一级毛片在线| 九九久久精品国产亚洲av麻豆| 涩涩av久久男人的天堂| 免费不卡的大黄色大毛片视频在线观看| tube8黄色片| 五月玫瑰六月丁香| 联通29元200g的流量卡| 精品久久国产蜜桃| 国产欧美日韩精品一区二区| 在线观看国产h片| 亚洲精品一二三| 日韩成人av中文字幕在线观看| 国产成人freesex在线| 一个人观看的视频www高清免费观看| 高清午夜精品一区二区三区| 下体分泌物呈黄色| 久久99蜜桃精品久久| 亚洲久久久久久中文字幕| 免费电影在线观看免费观看| 91狼人影院| 久久久久网色| 国产精品av视频在线免费观看| 国产伦理片在线播放av一区| 日本欧美国产在线视频| 日韩精品有码人妻一区| 亚洲欧美成人精品一区二区| 国产成人a∨麻豆精品| 蜜臀久久99精品久久宅男| 国产免费又黄又爽又色| 大片免费播放器 马上看| 日韩一本色道免费dvd| 国产亚洲av片在线观看秒播厂| 99九九线精品视频在线观看视频| av在线蜜桃| 伊人久久国产一区二区| 欧美日韩视频高清一区二区三区二| 午夜福利网站1000一区二区三区| 亚洲精品一区蜜桃| 黄色怎么调成土黄色| 久久精品人妻少妇| 久久久久久久亚洲中文字幕| 国产免费视频播放在线视频| 日本与韩国留学比较| av专区在线播放|