• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inflationary Cosmology with Quantum Gravitational Effects and Swampland Conjectures?

    2019-10-16 08:45:34QiangWu武強(qiáng)andTaoZhu朱濤
    Communications in Theoretical Physics 2019年9期
    關(guān)鍵詞:武強(qiáng)

    Qiang Wu(武強(qiáng))and Tao Zhu(朱濤)

    Institute for Theoretical Physics and Cosmology,Zhejiang University of Technology,Hangzhou 310032,China

    (Received April 4,2019;revised manuscript received April 21,2019)

    AbstractRecently proposed two swampland criteria that arising from string theory landscape leads to the important challenge of the realization of single-field inflationary models.Especially one of swampland criteria which implies a large tensor-to-scalar ratio is strongly in tension with recent observational results.In this paper,we explore the possibility the swampland conjectures could be compatible with single-field inflationary scenarios if the effects due to the quantum theory of gravity are considered.We show that the quantum gravitational effects due to the nonlinear dispersion relation provides significant modifications on the amplitude of both the scalar and tensor perturbation spectra.Such modifications could be either raise or reduce the perturbation spectra depending on the values of the parameters in the nonlinear terms of the dispersion relations.Therefore,these effects can reduce the tensor-to-scalar ratio to a smaller value,which helps to relax the tension between the swampland conjecture and observational data.

    Key words:inflation,quantum gravitational effects,swampland conjectures,uniform asymptotic approximation

    1 Introduction

    As one of the most promising candidates for an ultraviolet completed description of the quantum gravity that combines gauge and gravitational interactions,string/M theory is expected to provide possibilities for an explicit realization of the cosmological inflationary paradigm.Indeed,at effective level,there are a lot of phenomenological single scalar field inflation models that can arise from the String/M theory.However,in order to consistently embed such single scalar field inflation models into a quantum theory of gravity,it was proposed recently that they have to pass the two criteria of the swampland conjectures.[1?2]Specifically,the swampland conjectures includes two criteria,which state that the scalar inflaton field ? being consistent with a reasonable quantum description of gravity has to fulfill the following two conditions.

    ?The Swampland Criterion I(SCI):The excursion of the scalar field in the field space is bounded by[3]

    ?The Swampland Criterion II(SCII):The gradient of the scalar potential V(?)with V(?)>0 is limited by[4]

    where MPlis the reduced Planck mass and V?=dV(?)/d?.Here c1and c2are two positive constants of order unity.

    The first criterion is not surprise since it reflects the condition for the validity of the effective field theory of inflation and can be fulfilled by a lot of single scalar field inflation models.For the second criterion,it obviously violates the slow-roll condition,thus leads to a strong tension with the standard slow-roll inflation of the single scalar field inflationary models,[5?6]in which the slow-roll parameter ?Vis defined as

    ?The refined Swampland Criterion(rSCII):the derivatives of the scalar potential V(?)are limited by

    where V??=d2V/d?2and c3is a third positive constant with order one.This refined version of the swampland criterion is weaker than SCII and its implications on inflation and cosmology have been discussed extensively,see Refs.[33–40]for examples.For rSCI,it is observed that the original second swampland condition SCII now is included in rSCII as only one of possible conditions.It is because of rSCII,some of the single scalar field inflation models could be compatible with the swampland conjectures.However,SCII is still one of possible conditions and in the current research,we will concentrate on it and provide a proposal that could be used to relax its tension with observational data.

    In general,CMB temperature anisotropy derived from the inflation models are sensitive to the vacuum state of the perturbation modes.Since the energy scale of inflation at the earlier stage of the inflation is not far from the Planck energy,[41?42]one naturally expects that the effects of the quantum gravity can leave some effects on the perturbation modes,which could produce excited initial conditions for the inflationary perturbations.For instance,in loop quantum cosmology,an excited state on the primordial perturbation modes can be generated during the quantum bounce phase prior to the inflation.[43?47]A similar dynamics for quantum bounce can also be achieved in the framework of the effective field theory description of nonsingular bounce.[48]It is worth noting that the nonsingular bounces from the phenomenological considerations of the effective field theory analysis provides an alternative way to address the initial state issues of the primordial perturbations,see Refs.[48–51]for examples.In Hoava-Lifshitz theory of quantum gravity,such excited states can be produced by the contribution of high-order spatial derivative terms in the action of the theory,which also supply a nonlinear dispersion relation for the inflationary perturbations.[52?54]We note that such nonlinear dispersion relation can also arise from high-order extension of the effective field theory of inflation[55?59]and phenomenological consideration of achieving a nearly scaleinvariant power spectrum,[60]for examples.

    For the nonlinear dispersion relations,normally it arises from the theory that violates the Lorentz symmetry at the high energy regime.For example,in Hoava-Lifshitz theory of quantum gravity,the Lorentz symmetry has to be violated when the high-order spatial derivative terms dominated at high energy regime,and restores in the low energy limit.[61?62]Since the swampland conjectures are based on the analysis that only restricts to the effective theory with Lorentz symmetry,it is important to see if the effects of the Lorentz violation can make the single scalar field inflation models compatible with the swampland conjectures.In fact,it is proposed very recently that the strong tension between the swampland conjecture SCII and the single field inflationary modes can be relaxed by the excited initial conditions on the perturbation modes.[12,21]As we mentioned,the nonlinear dispersion relation can provide a natural mechanism for generating excited initial states.

    In this paper,we consider concrete nonlinear dispersion relations for both the scalar and tensor perturbations and discuss their implications on the swampland conjectures.The nonlinear dispersion relations considered here can be concretely realized in the Hoava-Lifshitz theory of quantum gravity.We show that the nonlinear dispersion relation can modify both the scalar and tensor perturbation spectra but still keep the scale invariance.By using the analytical expressions of perturbation spectra derived from the uniform asymptotic approximation,it is shown that the modification of spectra by the nonlinear dispersion relation can significantly relax the strong tension between the swampland conjectures and the single field inflation.

    2 Effects of Nonlinear Dispersion Relations

    Inflationary theory of the early universe provides a natural mechanism for the generation of the formation of the large scale structure and anaistropies in the cosmic microwave background(CMB).However,it is still suffering from the trans-Planckian issue considering its energy scale at the earlier stage of the inflation is close to the Planck scale.[41?42]To address the trans-Planckian issue,one approach is to consider the nonlinear dispersion relations for both the inflationary scalar and tensor perturbations.[42,45,63?64]It is interesting to mention here that the nonlinear dispersion relation can arise naturally from the Hoava-Lifshitz theory of quantum gravity.[52?54,61?62]Recently it is also shown that such relations can arise from high-order extension of the effective field theory of inflation.[55]In this section,we show that the nonlinear dispersion relation can modify both the inflationary scalar and tensor spectra significantly,which could provide a mechanism to relax the tension between the SCII and Planck data.

    To proceed,let us start with the equations of motion for the scalar and tensor perturbations.With the nonlinear dispersion relation(η),the inflationary mode function uk(η)for perturbations(scalar or tensor)obeys the modified Mukhanov-Sasaki equation

    Here η represents the conformal time,′denotes derivatives of η,and z(η)is related to the slow-roll evolution of the background.We parametrize the nonlinear dispersion relation in the form of

    where M?is the relevant energy scale of trans-Planckian physics,k is the comoving wavenumber of the mode,b1and b2are dimensionless constants.In the Hoava-Lifshitz theory of quantum gravity,the coefficients b1and b2can be related to the coupling constants of the theory,[52?54,62]in whichis related to the sixth order spatial derivative terms andis related to the fourth order.In order to get a healthy ultraviolet limit,we require>0.

    For scalar or tensor modes the equation of motion described by Eq.(5)can be solved analytically by the uni-form asymptotic approximation developed in Refs.[65–66].We would like to mention that this mathematical method has been applied to the calculations of the primordial spectra in a lot of inflation modes with quantum gravitational effects,[65?72]calculations of quantum gravitational effects of loop quantum cosmology,[73?76]studying parametric resonance during inflation and reheating,[77]and derivation of quantization condition in quantum mechanics.[78]In the uniform asymptotic approximation,we use the dimensionless variable y= ?kη.Then the equation of motion Eq.(5)can be rewritten as[79?80]

    This is a second-order ordinary differential equation.Normally it’s solution is sensitive to the poles and turning points of g(y)and q(x).In the uniform asymptotic approximation,the functions g(y)and q(y)are determined by the behaviors of the corresponding error control function around the poles or turning points.[65,79?80]For the second-order ordinary differential equation(7),we find that g(y)and q(y)contain a second-order pole at the origin,i.e.,y=0.In order to ensure the corresponding error control function of the uniform asymptotic approximate solutions,[65,79?80]the functions g(y)and q(y)have to be chosen as,[65,79?80]

    We observe that the function g(y)defined in the above could also have turning points.According to the nature of these turning points,as depicted in Fig.1,g(y)can be normally divided into four physical cases.[79]We label the corresponding turning points of g(y)=0 by y0,y1and y2with y0

    With the analysis about the turning points of g(y)in the above,we can employ the uniform asymptotic approximation to construct the corresponding approximate solutions associated about each turning points,which have been presented in details in Ref.[65]).By imposing the Bunch-Davies vacuum as the initial state,[65]using the approximate solutions of mode function for both scalar and tensor perturbations,the corresponding power spectra can be casted formally in the form,[65]

    Fig.1 (Color online)The schematic plots of function g(y)in Eq.(9)for four representative cases.The number and nature of the turning points for each case are different.Case(a):three single real turning points(y0?y10.

    where A represents the modification of the power spectra due to the presence of the nonlinear dispersion relation(6),which could be amplified by the non-adiabatic evolution of inflationary perturbations,and is given by

    with

    where ?(x) ≡ x/2? (x/4)lnx2+phΓ(ix+1/2)/2 with phΓ(ix+1/2)being the phase of the Gamma function Γ(ix+1/2),which is zero when x=0,and is determined by continuity otherwise.[65,79]Here αkand βkdenote the Bogoliubov coefficients of the excited state generated by the nonlinear dispersion relation.We see thatis related to the integral ofbetween y1and y2.When y1and y2are two real and single turning points of g(y),is positive,while it becomes negative if the two turning points are complex conjugated.Obviously,the perturbation spectra is amplified by the non-adiabatic evolution of the primordial perturbation since for this case the two turning points are both real and single.When the two turning points are complex conjugated,sinceis negatively large,the modified factor A is order of 1 and the violation of the adiabatic evolution of the primordial perturbation is strongly suppressed.

    Obviously the perturbation spectra can be modified due to nonlinear dispersion relation,which could arise from Hoava-Lifshitz theory of gravity.The effects can be described by two terms.One is determined by the modified factor A,which measures the non-adiabatic effects.Another is due to the exponential integration offrom y0to 0.To compare different effects,it is convenient to introduce the integral M0without the presence of the nonlinear terms in the dispersion relation(by setting b1=0=b2),

    When b1and b2terms are included,this integral now becomes

    With the help of M0and M,the primordial power spectra(10)can be expressed as

    To estimate the primordial power spectrum(16)with the presence of the nonlinear terms in the dispersion relation,let us study the integral in Eq.(15)in details.For primordial perturbation modes,the inflationary mode function uk(η)for the cosmological scalar perturbation can be related to the comoving curvature fluctuation aswhile for tensor perturbation we have.In these expression,the Hubble slow-roll parameter ? defined as ?=Then the ratio between the amplitudes of the tensor and scalar perturbation spectra can be calculated via

    where rGR=16? denotes the ratio between the amplitudes of the tensor and scalar perturbation spectra predicted in slow-roll inflation models when the nonlinear terms in the dispersion relation are set to zero.The quantity σkis expressed as

    where the superscript “s” and “t” denote the quantities for the scalar and tensor perturbations respectively.We note that we have usedIn the above expression,we observe that the effects due to the nonlinear terms in the dispersion relation is measured by the factor

    With SCII,we write the ratio between the amplitudes of the tensor and scalar perturbation spectra as

    The main purpose of the current paper is to justify that the above criterion can be fulfilled with the presence of the nonlinear terms in the modified dispersion relations.

    From Eq.(20),for the condition to be satisfied,one can either reduce the modified factor A or reduce σk.The former possibility is related to the non-adiabatic effects of the primordial perturbations due to the presence of the nonlinear terms in the modified dispersion relations.It is worth mentioning that when we consider the nonadiabatic effects,one assumes σk? 1 for simplicity,which can be easily achieved if? 1.

    However,once the non-adiabatic evolutions of the primordial perturbations are involved,as we mentioned,the corresponding perturbation modes are non longer at the Bunch-Davies vacuum states and can grow exponentially during the process.In this case,one has to be at caution about the question that whether the amplification of the non-adiabatic modes could be large enough to destroy the background evolution due to their back-reactions.This important issue has been discussed in details in Refs.[81–82],which shows that to avoid large back-reactions,the Bogoliubov coefficient βkhas to be constrained by

    where Hinfis the energy scale of the inflation which is constrained by Hinf/MPl≤ 2.7×10?5due to the most recent Planck 2018 results.[7?8]Thus,if we take Hinf/MPl2×10?3,one can infer that

    Then one has

    which leads to the constraint on|αk+ βk|2as,

    Using this constraint,it is obvious that the ratio between the modified factors Atfor the scalar perturbation and Asfor the tensor perturbation is restricted to be

    This condition provides a strong constraint on the nonadiabatic effects on the primordial perturbation spectrum.Clearly,from this condition,it is obvious that we have a large space for adjusting parameters b1and b2such that

    Another way to fulfill the condition(20)is to reduce the factor σk,which is related to two direct integrals of√from the turning point y0until the end of the slowroll inflation.Therefore,in order to achieve the condition(20),one has to properly adjust the parameters in the expression of the integrand.As we mentioned,when ??? 1,therefore the only way for this to be possible is to relax ??? 1 by requiring1.In order to show the effect of σkexplicitly,we considerIt is worth noting that this implies that the adiabatic condition is satisfied during inflation for the scalar and tensor perturbation modes.To estimate the integrals in the expression of σk,one observes that due to the nonlinear terms in the modified dispersion relation,the calculation becomes very much mathematics involved.However,for the purpose to show that the condition(20)can be fulfilled by reducing the value of σk,we plot the gs(y)and gt(y)in Fig.2 by specifying a set of values for the parameters in the dispersion relation.For scalar perturbation we choose>0,which leads to a shift of y0from ν for linear dispersion relation to a larger value,while for tensor perturbation we consider<0,which leads to y0<ν.With these reasons,one sees that the curve of g(y)for tensor perturbation is always beneath the scalar one,which implies that.Note that for the purpose to make the SCII to be consistent with observational data,one has to require thatand for the parameters chosen in Fig.2 we find σk~ 0.1.

    Here we would like to make some remarks about the modification on the scalar and tensor power spectra.First,as shown in Refs.[65,71–72],the effects due to the nonlinear terms in the dispersion relation in the form of Eq.(6)can only make modifications on the amplitudes of the primordial scalar and tensor spectrum.This implies that the non-adiabatic evolution of the primordial perturbations due to the nonlinear dispersion relation does not break the nearly scale invariance of the spectrum.Considering the observational data favors a nearly scale invariant scalar spectrum,therefore,the modifications on the power spectrum due to the nonlinear dispersion relation is consistent with the recent observational data.Second,the parameters b1and b2involved in the nonlinear terms of the dispersion relation(6)are related to the fourth and sixth order spatial derivative terms in Hoava-Lifshitz theory respectively.While the most of the consistency analysis are related to the parameter b2,the parameter b1is less constraint.As a result,we have a large parameter space for the parameter b1that does not lead any inconsistent issues.

    Fig.2 (Color online)Comparison of g(y)for primordial scalar perturbation and the tensor perturbation in the interval y∈(0,y0)for a set of values for the parameters in the dispersion relation(6).

    3 Conclusions

    In the current research,we discuss the implications of the quantum gravitational effects due to the nonlinear dispersion relations on relaxing the strong tension between the recent proposed swampland conjectures and the single field inflationary models.The nonlinear dispersion relations for both the scalar and tensor perturbations considered in this paper can arise naturally in the Hoava-Lifshitz theory of quantum gravity.We show that the quantum gravitational effects due to the nonlinear dispersion relation provide significant modifications on the amplitude of both the scalar and tensor power spectra.Such modifications could be either raise or reduce the power spectra depending on the parameters of the nonlinear dispersion relations.Therefore,these effects can reduce the tensor-to-scalar ratio to a smaller value,which helps to relax the tension between the swampland conjecture and Planck data.

    猜你喜歡
    武強(qiáng)
    吃老本
    吃老本
    小讀者(2023年12期)2023-07-01 00:12:40
    武強(qiáng)木板年畫的傳承、圖新與藝術(shù)生機(jī)
    論武強(qiáng)年畫急需再生性研究的緊迫性
    西部皮革(2021年8期)2021-05-13 03:00:46
    武強(qiáng)
    移動(dòng)電商助力“9+5”武強(qiáng)年畫發(fā)展探討
    俯視黃河
    詩潮(2019年8期)2019-08-23 05:39:48
    一帆風(fēng)雨
    鴨綠江(2016年8期)2016-11-14 23:25:49
    全國音樂教育服務(wù)項(xiàng)目交流暨聯(lián)盟示范基地評(píng)審活動(dòng)在武強(qiáng)舉辦
    衡水非物質(zhì)文化遺產(chǎn)保護(hù)與傳承探略:武強(qiáng)年畫
    高清日韩中文字幕在线| 亚洲av不卡在线观看| 国产一区有黄有色的免费视频 | 久久久成人免费电影| 视频中文字幕在线观看| 超碰97精品在线观看| 免费少妇av软件| 在线天堂最新版资源| 黄片wwwwww| 舔av片在线| 老司机影院成人| 国产亚洲av片在线观看秒播厂 | 一级二级三级毛片免费看| 一本一本综合久久| 成人一区二区视频在线观看| 麻豆久久精品国产亚洲av| 少妇丰满av| 免费大片18禁| a级毛色黄片| 国产伦精品一区二区三区四那| 免费观看在线日韩| 亚州av有码| videossex国产| 久久久久久久国产电影| 色综合色国产| 色综合亚洲欧美另类图片| 女人十人毛片免费观看3o分钟| 麻豆av噜噜一区二区三区| 少妇的逼水好多| 欧美精品一区二区大全| 男女边吃奶边做爰视频| 中文乱码字字幕精品一区二区三区 | 亚洲欧美一区二区三区黑人 | 久久久欧美国产精品| 纵有疾风起免费观看全集完整版 | 免费黄网站久久成人精品| 亚洲在久久综合| av在线观看视频网站免费| 爱豆传媒免费全集在线观看| 国产老妇伦熟女老妇高清| 最近最新中文字幕大全电影3| 欧美最新免费一区二区三区| 国产精品久久久久久精品电影| 在线观看免费高清a一片| 蜜桃亚洲精品一区二区三区| 99久久九九国产精品国产免费| 亚洲国产精品sss在线观看| 一级二级三级毛片免费看| 韩国高清视频一区二区三区| 久久鲁丝午夜福利片| 国产午夜精品久久久久久一区二区三区| 日韩强制内射视频| 成人鲁丝片一二三区免费| 亚洲精品一二三| 亚洲精品乱码久久久久久按摩| 九色成人免费人妻av| 日韩亚洲欧美综合| 少妇的逼水好多| 亚洲精品视频女| 国产精品爽爽va在线观看网站| 亚洲成人久久爱视频| 国产淫语在线视频| 国产av在哪里看| 搡老乐熟女国产| 韩国av在线不卡| 欧美高清成人免费视频www| 亚洲精品亚洲一区二区| 亚洲一区高清亚洲精品| 汤姆久久久久久久影院中文字幕 | 欧美丝袜亚洲另类| 国产91av在线免费观看| 免费人成在线观看视频色| 亚洲三级黄色毛片| 小蜜桃在线观看免费完整版高清| 又爽又黄a免费视频| a级毛色黄片| 亚洲va在线va天堂va国产| 午夜老司机福利剧场| 蜜桃久久精品国产亚洲av| 精品酒店卫生间| 九九久久精品国产亚洲av麻豆| 亚洲欧美日韩卡通动漫| 日日啪夜夜爽| 夫妻性生交免费视频一级片| 亚洲av成人av| 最近的中文字幕免费完整| 国产激情偷乱视频一区二区| 久久99精品国语久久久| 色播亚洲综合网| 精品久久久久久成人av| 夜夜看夜夜爽夜夜摸| 爱豆传媒免费全集在线观看| 午夜激情欧美在线| www.av在线官网国产| 男女下面进入的视频免费午夜| 亚洲国产精品成人综合色| 欧美高清性xxxxhd video| 国产精品一区二区三区四区免费观看| 亚洲一级一片aⅴ在线观看| 国产亚洲av嫩草精品影院| 精品久久久噜噜| 一区二区三区高清视频在线| 国产黄色小视频在线观看| 国产精品蜜桃在线观看| 国产精品.久久久| 高清日韩中文字幕在线| 水蜜桃什么品种好| 欧美激情国产日韩精品一区| 亚洲伊人久久精品综合| 国产人妻一区二区三区在| 成年女人在线观看亚洲视频 | 男女国产视频网站| 午夜精品国产一区二区电影 | 麻豆久久精品国产亚洲av| 夫妻午夜视频| 欧美极品一区二区三区四区| 国产一级毛片七仙女欲春2| 一边亲一边摸免费视频| 亚洲欧美一区二区三区国产| 麻豆成人av视频| av免费观看日本| 91久久精品国产一区二区成人| 久久久久久久久久久丰满| 大陆偷拍与自拍| 国产成年人精品一区二区| 成年人午夜在线观看视频 | 亚州av有码| 亚洲人与动物交配视频| 亚洲av二区三区四区| 国产 亚洲一区二区三区 | 最近手机中文字幕大全| 18+在线观看网站| 日韩欧美精品v在线| 69av精品久久久久久| av黄色大香蕉| freevideosex欧美| 性色avwww在线观看| 亚洲在线观看片| 在线观看av片永久免费下载| 久久97久久精品| 高清在线视频一区二区三区| 亚洲精品乱码久久久久久按摩| 欧美一区二区亚洲| 成人亚洲精品av一区二区| 在线a可以看的网站| 亚洲18禁久久av| 国产麻豆成人av免费视频| 欧美人与善性xxx| 免费播放大片免费观看视频在线观看| 男人和女人高潮做爰伦理| 午夜视频国产福利| 成人国产麻豆网| 高清欧美精品videossex| 联通29元200g的流量卡| 人人妻人人澡欧美一区二区| 能在线免费看毛片的网站| 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 丰满少妇做爰视频| 午夜视频国产福利| 大又大粗又爽又黄少妇毛片口| 人妻夜夜爽99麻豆av| 国产高清国产精品国产三级 | 少妇人妻精品综合一区二区| 白带黄色成豆腐渣| 成人特级av手机在线观看| 亚洲精品456在线播放app| 免费av不卡在线播放| 国产成人福利小说| 欧美高清性xxxxhd video| 国产精品一区二区性色av| 99九九线精品视频在线观看视频| 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 校园人妻丝袜中文字幕| 亚洲三级黄色毛片| eeuss影院久久| 男人和女人高潮做爰伦理| 亚洲无线观看免费| 日韩欧美三级三区| 亚洲精品456在线播放app| 国产精品久久久久久久电影| 综合色丁香网| 免费人成在线观看视频色| 免费观看a级毛片全部| 国精品久久久久久国模美| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版 | 国产成人午夜福利电影在线观看| 亚洲国产精品专区欧美| 啦啦啦啦在线视频资源| 麻豆久久精品国产亚洲av| 校园人妻丝袜中文字幕| 国产在线男女| 精品久久久久久电影网| 国产亚洲一区二区精品| 男的添女的下面高潮视频| 日本av手机在线免费观看| 乱码一卡2卡4卡精品| 男人舔奶头视频| 91精品伊人久久大香线蕉| 国产伦精品一区二区三区四那| 在线观看一区二区三区| 五月天丁香电影| 特级一级黄色大片| 麻豆国产97在线/欧美| 亚洲av电影不卡..在线观看| 午夜日本视频在线| 高清欧美精品videossex| 高清视频免费观看一区二区 | 91狼人影院| 亚洲国产精品专区欧美| 欧美成人精品欧美一级黄| 精品一区二区三区人妻视频| 亚洲欧美日韩卡通动漫| 久久久久免费精品人妻一区二区| 国产精品一区二区三区四区久久| 直男gayav资源| 久久精品人妻少妇| 禁无遮挡网站| .国产精品久久| 噜噜噜噜噜久久久久久91| 蜜桃亚洲精品一区二区三区| 久久久午夜欧美精品| 一个人观看的视频www高清免费观看| 国产探花在线观看一区二区| 亚洲伊人久久精品综合| 极品教师在线视频| 神马国产精品三级电影在线观看| 97热精品久久久久久| 国产亚洲精品av在线| 日韩欧美三级三区| 亚洲精品一区蜜桃| 男女下面进入的视频免费午夜| 亚洲人与动物交配视频| 国产精品一区二区性色av| 国产免费视频播放在线视频 | 久久韩国三级中文字幕| 久久久欧美国产精品| 久久99热这里只有精品18| 秋霞在线观看毛片| 人妻夜夜爽99麻豆av| 一夜夜www| 亚洲三级黄色毛片| 久久这里只有精品中国| 国产亚洲一区二区精品| 在线观看av片永久免费下载| 亚洲精品国产av成人精品| 国产伦在线观看视频一区| 亚洲精品成人久久久久久| 久久久色成人| 精品国产一区二区三区久久久樱花 | 午夜免费男女啪啪视频观看| 免费不卡的大黄色大毛片视频在线观看 | 三级男女做爰猛烈吃奶摸视频| 噜噜噜噜噜久久久久久91| 精品亚洲乱码少妇综合久久| 国产极品天堂在线| 国产美女午夜福利| 全区人妻精品视频| 毛片一级片免费看久久久久| 精品少妇黑人巨大在线播放| 男女边吃奶边做爰视频| 国产成人精品一,二区| 亚洲精品日韩av片在线观看| 最近的中文字幕免费完整| 人体艺术视频欧美日本| 欧美zozozo另类| 免费看不卡的av| 亚洲伊人久久精品综合| 成人亚洲精品av一区二区| 国产av在哪里看| 国产精品嫩草影院av在线观看| 国产成人freesex在线| av又黄又爽大尺度在线免费看| 韩国高清视频一区二区三区| 日日啪夜夜撸| 国产精品久久久久久精品电影小说 | 午夜福利成人在线免费观看| 黄片无遮挡物在线观看| 精品人妻熟女av久视频| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 日本熟妇午夜| 国产综合精华液| 啦啦啦韩国在线观看视频| 九九久久精品国产亚洲av麻豆| 色视频www国产| 寂寞人妻少妇视频99o| 两个人视频免费观看高清| 赤兔流量卡办理| 在线免费观看的www视频| 免费看日本二区| 日韩av在线免费看完整版不卡| 天天躁日日操中文字幕| 天天一区二区日本电影三级| 偷拍熟女少妇极品色| 国产色婷婷99| 日韩大片免费观看网站| 狠狠精品人妻久久久久久综合| 久久99蜜桃精品久久| 男人和女人高潮做爰伦理| h日本视频在线播放| 亚洲av一区综合| 日韩欧美一区视频在线观看 | 国产精品人妻久久久久久| 亚洲一级一片aⅴ在线观看| 亚洲美女搞黄在线观看| 日本午夜av视频| 国产精品国产三级国产专区5o| 国产午夜福利久久久久久| videossex国产| 黄色配什么色好看| 青青草视频在线视频观看| 国产淫语在线视频| 精品久久国产蜜桃| 可以在线观看毛片的网站| 最近中文字幕高清免费大全6| 久久这里有精品视频免费| 久久久久久久久大av| 91精品国产九色| 亚洲精品亚洲一区二区| 亚洲精品成人av观看孕妇| 天堂中文最新版在线下载 | 国产成人aa在线观看| 午夜福利在线观看免费完整高清在| 亚洲国产精品成人综合色| 久久精品国产亚洲av涩爱| 一级毛片电影观看| 久久精品熟女亚洲av麻豆精品 | 中文字幕制服av| 国产精品国产三级专区第一集| 男插女下体视频免费在线播放| 日韩成人伦理影院| 男女国产视频网站| 99久久精品一区二区三区| 日韩大片免费观看网站| 最近最新中文字幕大全电影3| 久久久成人免费电影| 国产69精品久久久久777片| 永久免费av网站大全| 高清欧美精品videossex| 夫妻性生交免费视频一级片| 久久韩国三级中文字幕| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 国产综合懂色| 亚洲av.av天堂| 嘟嘟电影网在线观看| 国产黄频视频在线观看| 国产69精品久久久久777片| 日韩人妻高清精品专区| 好男人在线观看高清免费视频| 国产熟女欧美一区二区| 97热精品久久久久久| www.av在线官网国产| 18禁在线播放成人免费| 欧美日本视频| 校园人妻丝袜中文字幕| 熟妇人妻久久中文字幕3abv| 国产综合精华液| 久久久久久久久久成人| 美女xxoo啪啪120秒动态图| 成人一区二区视频在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲精品视频女| 麻豆成人午夜福利视频| 亚洲欧美一区二区三区黑人 | 中文欧美无线码| 亚洲精品成人av观看孕妇| 亚洲精品日韩在线中文字幕| 水蜜桃什么品种好| 在线观看av片永久免费下载| 人妻系列 视频| 日韩人妻高清精品专区| 熟女人妻精品中文字幕| 在线观看av片永久免费下载| 三级国产精品片| 久久久久久九九精品二区国产| 亚洲av免费高清在线观看| 亚洲av日韩在线播放| 日本一二三区视频观看| 精品国产露脸久久av麻豆 | 高清视频免费观看一区二区 | 国产男女超爽视频在线观看| 性色avwww在线观看| 国产熟女欧美一区二区| 美女cb高潮喷水在线观看| 成人亚洲欧美一区二区av| 国产成人a∨麻豆精品| 免费av不卡在线播放| 少妇猛男粗大的猛烈进出视频 | 久久精品国产自在天天线| 18禁动态无遮挡网站| 国内揄拍国产精品人妻在线| 久久久久久久久久久丰满| 久久精品久久久久久噜噜老黄| 免费看av在线观看网站| 欧美日韩精品成人综合77777| 国产精品蜜桃在线观看| 免费播放大片免费观看视频在线观看| 中文在线观看免费www的网站| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 国产精品一区二区三区四区久久| 成年女人在线观看亚洲视频 | 亚洲欧美一区二区三区国产| 亚洲精品亚洲一区二区| 婷婷色av中文字幕| 亚洲熟女精品中文字幕| 麻豆av噜噜一区二区三区| 亚洲欧美日韩无卡精品| 晚上一个人看的免费电影| 美女大奶头视频| 亚洲精品456在线播放app| 在线观看一区二区三区| 别揉我奶头 嗯啊视频| 美女国产视频在线观看| 国产淫语在线视频| 久久久精品94久久精品| 91精品一卡2卡3卡4卡| av在线天堂中文字幕| 免费看不卡的av| 激情五月婷婷亚洲| 成人高潮视频无遮挡免费网站| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜 | 国产探花极品一区二区| 国产成人a∨麻豆精品| 全区人妻精品视频| 老司机影院成人| 永久免费av网站大全| 韩国av在线不卡| 亚洲真实伦在线观看| 干丝袜人妻中文字幕| 日韩精品有码人妻一区| 亚洲av电影不卡..在线观看| 久久99热这里只有精品18| 久久久久久久亚洲中文字幕| 国产精品一区二区三区四区久久| av专区在线播放| 狂野欧美激情性xxxx在线观看| 欧美变态另类bdsm刘玥| 偷拍熟女少妇极品色| 成人高潮视频无遮挡免费网站| 国产成人a∨麻豆精品| 夫妻性生交免费视频一级片| 国产精品嫩草影院av在线观看| av.在线天堂| 成人无遮挡网站| 欧美日韩综合久久久久久| 亚洲欧美清纯卡通| 久久久久久九九精品二区国产| 精品人妻熟女av久视频| 国产亚洲5aaaaa淫片| 国产精品国产三级国产专区5o| 3wmmmm亚洲av在线观看| 精品亚洲乱码少妇综合久久| 又粗又硬又长又爽又黄的视频| 亚洲欧美成人精品一区二区| 偷拍熟女少妇极品色| 九草在线视频观看| 国内精品宾馆在线| 永久免费av网站大全| 国产精品美女特级片免费视频播放器| 街头女战士在线观看网站| 国产v大片淫在线免费观看| 最新中文字幕久久久久| 久久久久久久亚洲中文字幕| 最近视频中文字幕2019在线8| 国产精品99久久久久久久久| 欧美zozozo另类| 午夜福利在线观看免费完整高清在| 国产淫片久久久久久久久| av网站免费在线观看视频 | 成人毛片60女人毛片免费| 亚洲国产色片| 国产av在哪里看| 亚洲精品国产av蜜桃| 色吧在线观看| 欧美一级a爱片免费观看看| 国产精品三级大全| 岛国毛片在线播放| 能在线免费看毛片的网站| 亚洲电影在线观看av| 亚洲欧美一区二区三区国产| av国产免费在线观看| 高清毛片免费看| 国产av不卡久久| 精品久久久久久久人妻蜜臀av| 狂野欧美激情性xxxx在线观看| 大香蕉久久网| 性色avwww在线观看| 欧美不卡视频在线免费观看| 亚洲欧美日韩卡通动漫| 天堂中文最新版在线下载 | 欧美97在线视频| 乱人视频在线观看| 看免费成人av毛片| 婷婷色综合www| 久久精品人妻少妇| 亚洲精品456在线播放app| 日日撸夜夜添| 看黄色毛片网站| 一级毛片久久久久久久久女| 一个人看的www免费观看视频| 在线免费十八禁| 日日啪夜夜撸| 欧美成人午夜免费资源| 亚洲国产欧美人成| 国产探花极品一区二区| 午夜精品在线福利| 亚洲自拍偷在线| 成年av动漫网址| 777米奇影视久久| 国产精品人妻久久久久久| 日日干狠狠操夜夜爽| 免费观看在线日韩| 成人二区视频| 亚洲av.av天堂| 少妇的逼水好多| 一二三四中文在线观看免费高清| 成年女人看的毛片在线观看| 超碰97精品在线观看| 亚洲av男天堂| 欧美高清成人免费视频www| 91久久精品国产一区二区成人| 肉色欧美久久久久久久蜜桃 | 日日摸夜夜添夜夜添av毛片| 久久午夜福利片| 91久久精品电影网| 中文字幕亚洲精品专区| 中文精品一卡2卡3卡4更新| 免费av观看视频| 色播亚洲综合网| 国产永久视频网站| 99热6这里只有精品| av免费观看日本| 联通29元200g的流量卡| 亚洲av一区综合| 大陆偷拍与自拍| 国产视频内射| 日韩大片免费观看网站| 97超碰精品成人国产| 18禁在线无遮挡免费观看视频| 亚洲av中文av极速乱| 午夜精品国产一区二区电影 | 日本爱情动作片www.在线观看| 欧美三级亚洲精品| 建设人人有责人人尽责人人享有的 | 国产免费又黄又爽又色| 深爱激情五月婷婷| 你懂的网址亚洲精品在线观看| 午夜激情福利司机影院| 日韩精品有码人妻一区| 午夜免费男女啪啪视频观看| 91精品伊人久久大香线蕉| 22中文网久久字幕| 九九爱精品视频在线观看| xxx大片免费视频| 十八禁网站网址无遮挡 | 黄片无遮挡物在线观看| 日本一本二区三区精品| 97在线视频观看| 夫妻性生交免费视频一级片| 韩国av在线不卡| 国产成人免费观看mmmm| 欧美激情国产日韩精品一区| 午夜免费激情av| 街头女战士在线观看网站| 欧美一级a爱片免费观看看| 69人妻影院| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| xxx大片免费视频| 少妇高潮的动态图| 简卡轻食公司| 亚洲国产精品专区欧美| 欧美日本视频| 国产亚洲av嫩草精品影院| 欧美日韩精品成人综合77777| 亚洲在线观看片| 国产免费视频播放在线视频 | 晚上一个人看的免费电影| 国产国拍精品亚洲av在线观看| 免费看光身美女| 精品欧美国产一区二区三| 久久精品夜夜夜夜夜久久蜜豆| 青春草视频在线免费观看| 性插视频无遮挡在线免费观看| 中文字幕av成人在线电影| 蜜桃久久精品国产亚洲av| 乱人视频在线观看| 国产熟女欧美一区二区| 欧美日韩亚洲高清精品| 国产亚洲午夜精品一区二区久久 | 99久久中文字幕三级久久日本| 麻豆成人av视频| 国产人妻一区二区三区在| 精品久久久久久久久亚洲| 久久这里有精品视频免费| 午夜福利在线观看吧| 久久99蜜桃精品久久| 一级毛片aaaaaa免费看小| 欧美激情在线99| 日韩精品青青久久久久久| 久久精品国产鲁丝片午夜精品| 一级二级三级毛片免费看| 国内精品美女久久久久久| 欧美 日韩 精品 国产| 床上黄色一级片| 国产av码专区亚洲av| 成人鲁丝片一二三区免费| 高清av免费在线| 插逼视频在线观看|