• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inflationary Cosmology with Quantum Gravitational Effects and Swampland Conjectures?

    2019-10-16 08:45:34QiangWu武強(qiáng)andTaoZhu朱濤
    Communications in Theoretical Physics 2019年9期
    關(guān)鍵詞:武強(qiáng)

    Qiang Wu(武強(qiáng))and Tao Zhu(朱濤)

    Institute for Theoretical Physics and Cosmology,Zhejiang University of Technology,Hangzhou 310032,China

    (Received April 4,2019;revised manuscript received April 21,2019)

    AbstractRecently proposed two swampland criteria that arising from string theory landscape leads to the important challenge of the realization of single-field inflationary models.Especially one of swampland criteria which implies a large tensor-to-scalar ratio is strongly in tension with recent observational results.In this paper,we explore the possibility the swampland conjectures could be compatible with single-field inflationary scenarios if the effects due to the quantum theory of gravity are considered.We show that the quantum gravitational effects due to the nonlinear dispersion relation provides significant modifications on the amplitude of both the scalar and tensor perturbation spectra.Such modifications could be either raise or reduce the perturbation spectra depending on the values of the parameters in the nonlinear terms of the dispersion relations.Therefore,these effects can reduce the tensor-to-scalar ratio to a smaller value,which helps to relax the tension between the swampland conjecture and observational data.

    Key words:inflation,quantum gravitational effects,swampland conjectures,uniform asymptotic approximation

    1 Introduction

    As one of the most promising candidates for an ultraviolet completed description of the quantum gravity that combines gauge and gravitational interactions,string/M theory is expected to provide possibilities for an explicit realization of the cosmological inflationary paradigm.Indeed,at effective level,there are a lot of phenomenological single scalar field inflation models that can arise from the String/M theory.However,in order to consistently embed such single scalar field inflation models into a quantum theory of gravity,it was proposed recently that they have to pass the two criteria of the swampland conjectures.[1?2]Specifically,the swampland conjectures includes two criteria,which state that the scalar inflaton field ? being consistent with a reasonable quantum description of gravity has to fulfill the following two conditions.

    ?The Swampland Criterion I(SCI):The excursion of the scalar field in the field space is bounded by[3]

    ?The Swampland Criterion II(SCII):The gradient of the scalar potential V(?)with V(?)>0 is limited by[4]

    where MPlis the reduced Planck mass and V?=dV(?)/d?.Here c1and c2are two positive constants of order unity.

    The first criterion is not surprise since it reflects the condition for the validity of the effective field theory of inflation and can be fulfilled by a lot of single scalar field inflation models.For the second criterion,it obviously violates the slow-roll condition,thus leads to a strong tension with the standard slow-roll inflation of the single scalar field inflationary models,[5?6]in which the slow-roll parameter ?Vis defined as

    ?The refined Swampland Criterion(rSCII):the derivatives of the scalar potential V(?)are limited by

    where V??=d2V/d?2and c3is a third positive constant with order one.This refined version of the swampland criterion is weaker than SCII and its implications on inflation and cosmology have been discussed extensively,see Refs.[33–40]for examples.For rSCI,it is observed that the original second swampland condition SCII now is included in rSCII as only one of possible conditions.It is because of rSCII,some of the single scalar field inflation models could be compatible with the swampland conjectures.However,SCII is still one of possible conditions and in the current research,we will concentrate on it and provide a proposal that could be used to relax its tension with observational data.

    In general,CMB temperature anisotropy derived from the inflation models are sensitive to the vacuum state of the perturbation modes.Since the energy scale of inflation at the earlier stage of the inflation is not far from the Planck energy,[41?42]one naturally expects that the effects of the quantum gravity can leave some effects on the perturbation modes,which could produce excited initial conditions for the inflationary perturbations.For instance,in loop quantum cosmology,an excited state on the primordial perturbation modes can be generated during the quantum bounce phase prior to the inflation.[43?47]A similar dynamics for quantum bounce can also be achieved in the framework of the effective field theory description of nonsingular bounce.[48]It is worth noting that the nonsingular bounces from the phenomenological considerations of the effective field theory analysis provides an alternative way to address the initial state issues of the primordial perturbations,see Refs.[48–51]for examples.In Hoava-Lifshitz theory of quantum gravity,such excited states can be produced by the contribution of high-order spatial derivative terms in the action of the theory,which also supply a nonlinear dispersion relation for the inflationary perturbations.[52?54]We note that such nonlinear dispersion relation can also arise from high-order extension of the effective field theory of inflation[55?59]and phenomenological consideration of achieving a nearly scaleinvariant power spectrum,[60]for examples.

    For the nonlinear dispersion relations,normally it arises from the theory that violates the Lorentz symmetry at the high energy regime.For example,in Hoava-Lifshitz theory of quantum gravity,the Lorentz symmetry has to be violated when the high-order spatial derivative terms dominated at high energy regime,and restores in the low energy limit.[61?62]Since the swampland conjectures are based on the analysis that only restricts to the effective theory with Lorentz symmetry,it is important to see if the effects of the Lorentz violation can make the single scalar field inflation models compatible with the swampland conjectures.In fact,it is proposed very recently that the strong tension between the swampland conjecture SCII and the single field inflationary modes can be relaxed by the excited initial conditions on the perturbation modes.[12,21]As we mentioned,the nonlinear dispersion relation can provide a natural mechanism for generating excited initial states.

    In this paper,we consider concrete nonlinear dispersion relations for both the scalar and tensor perturbations and discuss their implications on the swampland conjectures.The nonlinear dispersion relations considered here can be concretely realized in the Hoava-Lifshitz theory of quantum gravity.We show that the nonlinear dispersion relation can modify both the scalar and tensor perturbation spectra but still keep the scale invariance.By using the analytical expressions of perturbation spectra derived from the uniform asymptotic approximation,it is shown that the modification of spectra by the nonlinear dispersion relation can significantly relax the strong tension between the swampland conjectures and the single field inflation.

    2 Effects of Nonlinear Dispersion Relations

    Inflationary theory of the early universe provides a natural mechanism for the generation of the formation of the large scale structure and anaistropies in the cosmic microwave background(CMB).However,it is still suffering from the trans-Planckian issue considering its energy scale at the earlier stage of the inflation is close to the Planck scale.[41?42]To address the trans-Planckian issue,one approach is to consider the nonlinear dispersion relations for both the inflationary scalar and tensor perturbations.[42,45,63?64]It is interesting to mention here that the nonlinear dispersion relation can arise naturally from the Hoava-Lifshitz theory of quantum gravity.[52?54,61?62]Recently it is also shown that such relations can arise from high-order extension of the effective field theory of inflation.[55]In this section,we show that the nonlinear dispersion relation can modify both the inflationary scalar and tensor spectra significantly,which could provide a mechanism to relax the tension between the SCII and Planck data.

    To proceed,let us start with the equations of motion for the scalar and tensor perturbations.With the nonlinear dispersion relation(η),the inflationary mode function uk(η)for perturbations(scalar or tensor)obeys the modified Mukhanov-Sasaki equation

    Here η represents the conformal time,′denotes derivatives of η,and z(η)is related to the slow-roll evolution of the background.We parametrize the nonlinear dispersion relation in the form of

    where M?is the relevant energy scale of trans-Planckian physics,k is the comoving wavenumber of the mode,b1and b2are dimensionless constants.In the Hoava-Lifshitz theory of quantum gravity,the coefficients b1and b2can be related to the coupling constants of the theory,[52?54,62]in whichis related to the sixth order spatial derivative terms andis related to the fourth order.In order to get a healthy ultraviolet limit,we require>0.

    For scalar or tensor modes the equation of motion described by Eq.(5)can be solved analytically by the uni-form asymptotic approximation developed in Refs.[65–66].We would like to mention that this mathematical method has been applied to the calculations of the primordial spectra in a lot of inflation modes with quantum gravitational effects,[65?72]calculations of quantum gravitational effects of loop quantum cosmology,[73?76]studying parametric resonance during inflation and reheating,[77]and derivation of quantization condition in quantum mechanics.[78]In the uniform asymptotic approximation,we use the dimensionless variable y= ?kη.Then the equation of motion Eq.(5)can be rewritten as[79?80]

    This is a second-order ordinary differential equation.Normally it’s solution is sensitive to the poles and turning points of g(y)and q(x).In the uniform asymptotic approximation,the functions g(y)and q(y)are determined by the behaviors of the corresponding error control function around the poles or turning points.[65,79?80]For the second-order ordinary differential equation(7),we find that g(y)and q(y)contain a second-order pole at the origin,i.e.,y=0.In order to ensure the corresponding error control function of the uniform asymptotic approximate solutions,[65,79?80]the functions g(y)and q(y)have to be chosen as,[65,79?80]

    We observe that the function g(y)defined in the above could also have turning points.According to the nature of these turning points,as depicted in Fig.1,g(y)can be normally divided into four physical cases.[79]We label the corresponding turning points of g(y)=0 by y0,y1and y2with y0

    With the analysis about the turning points of g(y)in the above,we can employ the uniform asymptotic approximation to construct the corresponding approximate solutions associated about each turning points,which have been presented in details in Ref.[65]).By imposing the Bunch-Davies vacuum as the initial state,[65]using the approximate solutions of mode function for both scalar and tensor perturbations,the corresponding power spectra can be casted formally in the form,[65]

    Fig.1 (Color online)The schematic plots of function g(y)in Eq.(9)for four representative cases.The number and nature of the turning points for each case are different.Case(a):three single real turning points(y0?y10.

    where A represents the modification of the power spectra due to the presence of the nonlinear dispersion relation(6),which could be amplified by the non-adiabatic evolution of inflationary perturbations,and is given by

    with

    where ?(x) ≡ x/2? (x/4)lnx2+phΓ(ix+1/2)/2 with phΓ(ix+1/2)being the phase of the Gamma function Γ(ix+1/2),which is zero when x=0,and is determined by continuity otherwise.[65,79]Here αkand βkdenote the Bogoliubov coefficients of the excited state generated by the nonlinear dispersion relation.We see thatis related to the integral ofbetween y1and y2.When y1and y2are two real and single turning points of g(y),is positive,while it becomes negative if the two turning points are complex conjugated.Obviously,the perturbation spectra is amplified by the non-adiabatic evolution of the primordial perturbation since for this case the two turning points are both real and single.When the two turning points are complex conjugated,sinceis negatively large,the modified factor A is order of 1 and the violation of the adiabatic evolution of the primordial perturbation is strongly suppressed.

    Obviously the perturbation spectra can be modified due to nonlinear dispersion relation,which could arise from Hoava-Lifshitz theory of gravity.The effects can be described by two terms.One is determined by the modified factor A,which measures the non-adiabatic effects.Another is due to the exponential integration offrom y0to 0.To compare different effects,it is convenient to introduce the integral M0without the presence of the nonlinear terms in the dispersion relation(by setting b1=0=b2),

    When b1and b2terms are included,this integral now becomes

    With the help of M0and M,the primordial power spectra(10)can be expressed as

    To estimate the primordial power spectrum(16)with the presence of the nonlinear terms in the dispersion relation,let us study the integral in Eq.(15)in details.For primordial perturbation modes,the inflationary mode function uk(η)for the cosmological scalar perturbation can be related to the comoving curvature fluctuation aswhile for tensor perturbation we have.In these expression,the Hubble slow-roll parameter ? defined as ?=Then the ratio between the amplitudes of the tensor and scalar perturbation spectra can be calculated via

    where rGR=16? denotes the ratio between the amplitudes of the tensor and scalar perturbation spectra predicted in slow-roll inflation models when the nonlinear terms in the dispersion relation are set to zero.The quantity σkis expressed as

    where the superscript “s” and “t” denote the quantities for the scalar and tensor perturbations respectively.We note that we have usedIn the above expression,we observe that the effects due to the nonlinear terms in the dispersion relation is measured by the factor

    With SCII,we write the ratio between the amplitudes of the tensor and scalar perturbation spectra as

    The main purpose of the current paper is to justify that the above criterion can be fulfilled with the presence of the nonlinear terms in the modified dispersion relations.

    From Eq.(20),for the condition to be satisfied,one can either reduce the modified factor A or reduce σk.The former possibility is related to the non-adiabatic effects of the primordial perturbations due to the presence of the nonlinear terms in the modified dispersion relations.It is worth mentioning that when we consider the nonadiabatic effects,one assumes σk? 1 for simplicity,which can be easily achieved if? 1.

    However,once the non-adiabatic evolutions of the primordial perturbations are involved,as we mentioned,the corresponding perturbation modes are non longer at the Bunch-Davies vacuum states and can grow exponentially during the process.In this case,one has to be at caution about the question that whether the amplification of the non-adiabatic modes could be large enough to destroy the background evolution due to their back-reactions.This important issue has been discussed in details in Refs.[81–82],which shows that to avoid large back-reactions,the Bogoliubov coefficient βkhas to be constrained by

    where Hinfis the energy scale of the inflation which is constrained by Hinf/MPl≤ 2.7×10?5due to the most recent Planck 2018 results.[7?8]Thus,if we take Hinf/MPl2×10?3,one can infer that

    Then one has

    which leads to the constraint on|αk+ βk|2as,

    Using this constraint,it is obvious that the ratio between the modified factors Atfor the scalar perturbation and Asfor the tensor perturbation is restricted to be

    This condition provides a strong constraint on the nonadiabatic effects on the primordial perturbation spectrum.Clearly,from this condition,it is obvious that we have a large space for adjusting parameters b1and b2such that

    Another way to fulfill the condition(20)is to reduce the factor σk,which is related to two direct integrals of√from the turning point y0until the end of the slowroll inflation.Therefore,in order to achieve the condition(20),one has to properly adjust the parameters in the expression of the integrand.As we mentioned,when ??? 1,therefore the only way for this to be possible is to relax ??? 1 by requiring1.In order to show the effect of σkexplicitly,we considerIt is worth noting that this implies that the adiabatic condition is satisfied during inflation for the scalar and tensor perturbation modes.To estimate the integrals in the expression of σk,one observes that due to the nonlinear terms in the modified dispersion relation,the calculation becomes very much mathematics involved.However,for the purpose to show that the condition(20)can be fulfilled by reducing the value of σk,we plot the gs(y)and gt(y)in Fig.2 by specifying a set of values for the parameters in the dispersion relation.For scalar perturbation we choose>0,which leads to a shift of y0from ν for linear dispersion relation to a larger value,while for tensor perturbation we consider<0,which leads to y0<ν.With these reasons,one sees that the curve of g(y)for tensor perturbation is always beneath the scalar one,which implies that.Note that for the purpose to make the SCII to be consistent with observational data,one has to require thatand for the parameters chosen in Fig.2 we find σk~ 0.1.

    Here we would like to make some remarks about the modification on the scalar and tensor power spectra.First,as shown in Refs.[65,71–72],the effects due to the nonlinear terms in the dispersion relation in the form of Eq.(6)can only make modifications on the amplitudes of the primordial scalar and tensor spectrum.This implies that the non-adiabatic evolution of the primordial perturbations due to the nonlinear dispersion relation does not break the nearly scale invariance of the spectrum.Considering the observational data favors a nearly scale invariant scalar spectrum,therefore,the modifications on the power spectrum due to the nonlinear dispersion relation is consistent with the recent observational data.Second,the parameters b1and b2involved in the nonlinear terms of the dispersion relation(6)are related to the fourth and sixth order spatial derivative terms in Hoava-Lifshitz theory respectively.While the most of the consistency analysis are related to the parameter b2,the parameter b1is less constraint.As a result,we have a large parameter space for the parameter b1that does not lead any inconsistent issues.

    Fig.2 (Color online)Comparison of g(y)for primordial scalar perturbation and the tensor perturbation in the interval y∈(0,y0)for a set of values for the parameters in the dispersion relation(6).

    3 Conclusions

    In the current research,we discuss the implications of the quantum gravitational effects due to the nonlinear dispersion relations on relaxing the strong tension between the recent proposed swampland conjectures and the single field inflationary models.The nonlinear dispersion relations for both the scalar and tensor perturbations considered in this paper can arise naturally in the Hoava-Lifshitz theory of quantum gravity.We show that the quantum gravitational effects due to the nonlinear dispersion relation provide significant modifications on the amplitude of both the scalar and tensor power spectra.Such modifications could be either raise or reduce the power spectra depending on the parameters of the nonlinear dispersion relations.Therefore,these effects can reduce the tensor-to-scalar ratio to a smaller value,which helps to relax the tension between the swampland conjecture and Planck data.

    猜你喜歡
    武強(qiáng)
    吃老本
    吃老本
    小讀者(2023年12期)2023-07-01 00:12:40
    武強(qiáng)木板年畫的傳承、圖新與藝術(shù)生機(jī)
    論武強(qiáng)年畫急需再生性研究的緊迫性
    西部皮革(2021年8期)2021-05-13 03:00:46
    武強(qiáng)
    移動(dòng)電商助力“9+5”武強(qiáng)年畫發(fā)展探討
    俯視黃河
    詩潮(2019年8期)2019-08-23 05:39:48
    一帆風(fēng)雨
    鴨綠江(2016年8期)2016-11-14 23:25:49
    全國音樂教育服務(wù)項(xiàng)目交流暨聯(lián)盟示范基地評(píng)審活動(dòng)在武強(qiáng)舉辦
    衡水非物質(zhì)文化遺產(chǎn)保護(hù)與傳承探略:武強(qiáng)年畫
    亚洲精品日本国产第一区| 午夜福利视频1000在线观看| 国产美女午夜福利| 成人一区二区视频在线观看| 1000部很黄的大片| 国产精品一及| 卡戴珊不雅视频在线播放| 亚洲精品国产色婷婷电影| 国产色爽女视频免费观看| 中文乱码字字幕精品一区二区三区| 校园人妻丝袜中文字幕| 丰满乱子伦码专区| 亚洲内射少妇av| 久久久久久久午夜电影| 嫩草影院精品99| 精品久久久久久久末码| 成年人午夜在线观看视频| 国产黄色视频一区二区在线观看| 少妇熟女欧美另类| 熟妇人妻不卡中文字幕| 国产精品不卡视频一区二区| 欧美激情久久久久久爽电影| 欧美三级亚洲精品| 精华霜和精华液先用哪个| 2018国产大陆天天弄谢| 成人国产av品久久久| 成人无遮挡网站| 中国三级夫妇交换| 国产伦精品一区二区三区视频9| 国产成人a∨麻豆精品| av在线播放精品| 色婷婷久久久亚洲欧美| 久久久久久久国产电影| 国产欧美日韩精品一区二区| 国产伦在线观看视频一区| 国产女主播在线喷水免费视频网站| 亚洲欧美成人综合另类久久久| 久久ye,这里只有精品| 六月丁香七月| 国精品久久久久久国模美| 欧美日韩国产mv在线观看视频 | 国产成人精品婷婷| 亚洲av一区综合| 一本久久精品| 中文乱码字字幕精品一区二区三区| 美女视频免费永久观看网站| 亚洲精品456在线播放app| 人妻 亚洲 视频| 欧美区成人在线视频| 欧美日韩视频精品一区| 一本色道久久久久久精品综合| 久久久久久久久大av| 成人漫画全彩无遮挡| 久久久久精品性色| 中文在线观看免费www的网站| 十八禁网站网址无遮挡 | 性色avwww在线观看| 国产一级毛片在线| 波多野结衣巨乳人妻| 国产精品一区二区在线观看99| 男女无遮挡免费网站观看| 国产人妻一区二区三区在| 国产亚洲午夜精品一区二区久久 | 中文字幕制服av| 天堂网av新在线| 女人被狂操c到高潮| 丝袜脚勾引网站| 禁无遮挡网站| 国产伦精品一区二区三区视频9| 国产午夜精品久久久久久一区二区三区| 中文字幕av成人在线电影| 中文天堂在线官网| 国产女主播在线喷水免费视频网站| 人妻夜夜爽99麻豆av| 精华霜和精华液先用哪个| 日韩大片免费观看网站| 欧美bdsm另类| 22中文网久久字幕| 日本wwww免费看| 狂野欧美激情性xxxx在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲电影在线观看av| 永久网站在线| 国产精品.久久久| 国产熟女欧美一区二区| 久久久久久久久久久免费av| 欧美区成人在线视频| 九九在线视频观看精品| 夫妻性生交免费视频一级片| 全区人妻精品视频| 国产免费一级a男人的天堂| 亚洲成人精品中文字幕电影| 午夜免费鲁丝| 国产在线一区二区三区精| 少妇高潮的动态图| 26uuu在线亚洲综合色| 啦啦啦中文免费视频观看日本| 如何舔出高潮| 亚洲成人av在线免费| www.色视频.com| 精品久久久久久久末码| 日韩视频在线欧美| 2022亚洲国产成人精品| av国产精品久久久久影院| 国产精品蜜桃在线观看| 欧美区成人在线视频| av免费在线看不卡| 成年人午夜在线观看视频| 精品久久久久久久人妻蜜臀av| 91午夜精品亚洲一区二区三区| 综合色av麻豆| 超碰97精品在线观看| 中文资源天堂在线| 国产精品不卡视频一区二区| 久久鲁丝午夜福利片| 99re6热这里在线精品视频| 国产毛片在线视频| 免费观看在线日韩| 亚洲精品久久久久久婷婷小说| 纵有疾风起免费观看全集完整版| 九草在线视频观看| 国产av码专区亚洲av| 亚洲成色77777| 黄色配什么色好看| 99久久九九国产精品国产免费| 99精国产麻豆久久婷婷| 国产精品一区二区性色av| 日韩av不卡免费在线播放| 亚洲av中文av极速乱| 26uuu在线亚洲综合色| 99久久精品热视频| 亚洲色图av天堂| 亚洲国产高清在线一区二区三| 亚洲精品乱久久久久久| 热re99久久精品国产66热6| 免费大片黄手机在线观看| 少妇人妻久久综合中文| 少妇人妻精品综合一区二区| 人人妻人人爽人人添夜夜欢视频 | 免费黄频网站在线观看国产| 亚洲精品日韩在线中文字幕| 国产成人免费无遮挡视频| 国产大屁股一区二区在线视频| 永久免费av网站大全| a级毛片免费高清观看在线播放| 欧美丝袜亚洲另类| 亚洲av二区三区四区| 亚州av有码| 最近2019中文字幕mv第一页| 亚洲色图av天堂| 国产欧美另类精品又又久久亚洲欧美| 少妇熟女欧美另类| 国产精品.久久久| 亚洲自偷自拍三级| 91精品国产九色| 大陆偷拍与自拍| 国产黄a三级三级三级人| 日韩 亚洲 欧美在线| 在线精品无人区一区二区三 | 91久久精品国产一区二区成人| 免费黄频网站在线观看国产| 国产午夜精品久久久久久一区二区三区| 卡戴珊不雅视频在线播放| 日本一本二区三区精品| 亚洲天堂av无毛| 欧美xxxx黑人xx丫x性爽| 国产成人a区在线观看| 国产黄色免费在线视频| 18禁裸乳无遮挡免费网站照片| 午夜免费观看性视频| 欧美日韩视频精品一区| 一区二区三区乱码不卡18| 99久久精品一区二区三区| 欧美日韩视频精品一区| 国产精品熟女久久久久浪| 欧美日本视频| 国产精品秋霞免费鲁丝片| av女优亚洲男人天堂| 精品少妇黑人巨大在线播放| 免费不卡的大黄色大毛片视频在线观看| 亚洲成人久久爱视频| 天天一区二区日本电影三级| 少妇的逼好多水| 嘟嘟电影网在线观看| 色网站视频免费| 丰满乱子伦码专区| 亚洲美女搞黄在线观看| 久久99精品国语久久久| 亚洲四区av| 国产精品不卡视频一区二区| 亚洲自偷自拍三级| 特大巨黑吊av在线直播| 男人舔奶头视频| 性插视频无遮挡在线免费观看| tube8黄色片| 亚洲av国产av综合av卡| 久久国内精品自在自线图片| 久久久久久久久久成人| 少妇的逼好多水| 欧美日韩亚洲高清精品| 亚洲电影在线观看av| 欧美性猛交╳xxx乱大交人| 久久久久久久久久久丰满| 日韩人妻高清精品专区| 亚洲精品国产av成人精品| 国产精品人妻久久久久久| 亚洲欧洲国产日韩| 水蜜桃什么品种好| 三级男女做爰猛烈吃奶摸视频| 国产亚洲午夜精品一区二区久久 | 国产成年人精品一区二区| 建设人人有责人人尽责人人享有的 | 女人十人毛片免费观看3o分钟| 成人综合一区亚洲| 哪个播放器可以免费观看大片| 午夜福利视频1000在线观看| 色综合色国产| 丰满乱子伦码专区| 久久久a久久爽久久v久久| 国产黄频视频在线观看| 日本欧美国产在线视频| 免费av不卡在线播放| 亚洲精品国产色婷婷电影| 尤物成人国产欧美一区二区三区| 国产午夜精品久久久久久一区二区三区| 美女cb高潮喷水在线观看| 色5月婷婷丁香| 亚洲精品乱久久久久久| 蜜桃久久精品国产亚洲av| 中文字幕av成人在线电影| 六月丁香七月| 欧美激情国产日韩精品一区| 777米奇影视久久| 晚上一个人看的免费电影| 麻豆久久精品国产亚洲av| 69av精品久久久久久| 日韩欧美一区视频在线观看 | 亚洲精品久久久久久婷婷小说| 国模一区二区三区四区视频| 中国美白少妇内射xxxbb| 亚洲精品乱久久久久久| 久久精品国产亚洲av天美| 亚洲av中文av极速乱| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频 | 在线天堂最新版资源| 一级毛片久久久久久久久女| 精品久久久久久久人妻蜜臀av| 亚洲美女视频黄频| 极品教师在线视频| 神马国产精品三级电影在线观看| 下体分泌物呈黄色| 久久女婷五月综合色啪小说 | 国产 一区 欧美 日韩| 欧美日韩在线观看h| 久久久久九九精品影院| 大又大粗又爽又黄少妇毛片口| 国产免费一级a男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 国产黄片视频在线免费观看| 韩国av在线不卡| 久热这里只有精品99| 男人舔奶头视频| 七月丁香在线播放| 亚洲色图综合在线观看| 久久久久久久国产电影| 超碰av人人做人人爽久久| 如何舔出高潮| 日韩成人伦理影院| 亚洲欧美精品自产自拍| 啦啦啦在线观看免费高清www| 好男人视频免费观看在线| 男人狂女人下面高潮的视频| 亚洲欧美日韩东京热| 欧美bdsm另类| 91精品伊人久久大香线蕉| 极品少妇高潮喷水抽搐| 日本免费在线观看一区| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 亚洲天堂av无毛| 51国产日韩欧美| 全区人妻精品视频| 国产免费视频播放在线视频| 国产伦理片在线播放av一区| 激情五月婷婷亚洲| 午夜免费观看性视频| 免费不卡的大黄色大毛片视频在线观看| 中文字幕亚洲精品专区| 久久国产乱子免费精品| 亚洲成人一二三区av| 日韩一本色道免费dvd| 春色校园在线视频观看| av福利片在线观看| 欧美成人a在线观看| 在线精品无人区一区二区三 | 久久久久网色| 日本黄大片高清| 在线观看免费高清a一片| 中国美白少妇内射xxxbb| 久久人人爽人人爽人人片va| 久久久久久久亚洲中文字幕| 日本wwww免费看| 免费看av在线观看网站| 国产精品成人在线| 97精品久久久久久久久久精品| 天堂中文最新版在线下载 | 欧美+日韩+精品| 色哟哟·www| 日本一本二区三区精品| 亚洲精品乱久久久久久| 日本一本二区三区精品| 精品一区二区免费观看| 99热这里只有精品一区| 日韩伦理黄色片| 超碰97精品在线观看| 亚洲av中文av极速乱| 久久久久精品性色| 中文天堂在线官网| 国内精品宾馆在线| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 欧美激情国产日韩精品一区| 噜噜噜噜噜久久久久久91| 可以在线观看毛片的网站| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲精品日韩av片在线观看| 91精品国产九色| 免费看a级黄色片| 精品人妻熟女av久视频| 22中文网久久字幕| 色婷婷久久久亚洲欧美| 日本-黄色视频高清免费观看| 国产免费一区二区三区四区乱码| 夫妻性生交免费视频一级片| 国模一区二区三区四区视频| 人体艺术视频欧美日本| 禁无遮挡网站| 欧美区成人在线视频| 六月丁香七月| 精品国产一区二区三区久久久樱花 | 大片电影免费在线观看免费| 日韩电影二区| 国产黄a三级三级三级人| 国产色婷婷99| 国产成人福利小说| 精品视频人人做人人爽| 少妇的逼好多水| 国产免费又黄又爽又色| 免费不卡的大黄色大毛片视频在线观看| 伊人久久国产一区二区| 七月丁香在线播放| 成人美女网站在线观看视频| 啦啦啦在线观看免费高清www| 国产色爽女视频免费观看| 七月丁香在线播放| 久久久久久久亚洲中文字幕| 国产亚洲91精品色在线| av专区在线播放| 国产成人福利小说| 国产欧美日韩精品一区二区| 久久久精品94久久精品| 久久亚洲国产成人精品v| 亚洲最大成人av| 亚洲精品一二三| 亚洲av电影在线观看一区二区三区 | 丰满人妻一区二区三区视频av| 国产大屁股一区二区在线视频| 七月丁香在线播放| 黄色欧美视频在线观看| 久久精品综合一区二区三区| 日日摸夜夜添夜夜添av毛片| 久久久久久久精品精品| 久久久久久久久久久免费av| 午夜老司机福利剧场| 美女脱内裤让男人舔精品视频| 成人无遮挡网站| 美女脱内裤让男人舔精品视频| 亚洲国产最新在线播放| 免费观看在线日韩| 五月天丁香电影| 永久免费av网站大全| 下体分泌物呈黄色| 日韩av在线免费看完整版不卡| 乱系列少妇在线播放| 国产永久视频网站| 免费在线观看成人毛片| 亚洲精品视频女| 少妇熟女欧美另类| 亚洲天堂av无毛| 中文字幕制服av| 99热国产这里只有精品6| 国产爽快片一区二区三区| 草草在线视频免费看| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久影院| 欧美97在线视频| 九色成人免费人妻av| 国产精品国产三级国产av玫瑰| av在线app专区| 亚洲一级一片aⅴ在线观看| 国产成人精品一,二区| 国产成人精品婷婷| 午夜视频国产福利| 青青草视频在线视频观看| 久久久久久久久久成人| 一个人观看的视频www高清免费观看| h日本视频在线播放| 毛片一级片免费看久久久久| 夫妻性生交免费视频一级片| 国产精品熟女久久久久浪| 日韩欧美 国产精品| 亚洲成人久久爱视频| 日日啪夜夜撸| 国产精品蜜桃在线观看| 久久久成人免费电影| 在线观看人妻少妇| 国产成人精品婷婷| 久久亚洲国产成人精品v| 黄色怎么调成土黄色| 日本熟妇午夜| 能在线免费看毛片的网站| 国产午夜福利久久久久久| 老司机影院成人| 天天躁夜夜躁狠狠久久av| 韩国av在线不卡| 欧美日韩视频精品一区| 成人亚洲精品av一区二区| 日韩不卡一区二区三区视频在线| av在线老鸭窝| 欧美另类一区| 国产成人freesex在线| 国产成人a∨麻豆精品| 欧美区成人在线视频| 在现免费观看毛片| 2022亚洲国产成人精品| 18禁动态无遮挡网站| 久久久成人免费电影| 国产成人精品一,二区| 色哟哟·www| 日日摸夜夜添夜夜添av毛片| 国产免费视频播放在线视频| 日本-黄色视频高清免费观看| 亚洲精品日本国产第一区| 亚洲精品自拍成人| 晚上一个人看的免费电影| 欧美日韩在线观看h| 久久精品夜色国产| 亚洲成人精品中文字幕电影| 内地一区二区视频在线| 大码成人一级视频| 欧美老熟妇乱子伦牲交| 久久6这里有精品| 欧美区成人在线视频| 久久久久网色| av播播在线观看一区| 熟妇人妻不卡中文字幕| 国产精品人妻久久久影院| 小蜜桃在线观看免费完整版高清| 国产黄片视频在线免费观看| 最近中文字幕2019免费版| 亚洲精品日本国产第一区| 婷婷色麻豆天堂久久| 欧美 日韩 精品 国产| 久久久久久久久大av| 亚洲av成人精品一区久久| 久久久精品94久久精品| 免费看光身美女| 97热精品久久久久久| 两个人的视频大全免费| 性色av一级| 搡女人真爽免费视频火全软件| 亚洲人成网站高清观看| 青春草亚洲视频在线观看| 大香蕉久久网| 色婷婷久久久亚洲欧美| av播播在线观看一区| 国产久久久一区二区三区| 国产男人的电影天堂91| 高清视频免费观看一区二区| 亚洲高清免费不卡视频| 午夜福利高清视频| 如何舔出高潮| 黑人高潮一二区| 免费看不卡的av| 日日摸夜夜添夜夜爱| 亚洲第一区二区三区不卡| 少妇熟女欧美另类| 又大又黄又爽视频免费| 亚洲三级黄色毛片| 黄色怎么调成土黄色| .国产精品久久| 下体分泌物呈黄色| 亚洲熟女精品中文字幕| 国产色爽女视频免费观看| 国产视频首页在线观看| 日本熟妇午夜| 男人和女人高潮做爰伦理| 亚洲真实伦在线观看| 日本三级黄在线观看| 亚洲内射少妇av| 十八禁网站网址无遮挡 | 久久ye,这里只有精品| 大香蕉久久网| 国产淫片久久久久久久久| 国产真实伦视频高清在线观看| 精品人妻一区二区三区麻豆| 亚洲精品国产成人久久av| 网址你懂的国产日韩在线| 丝袜脚勾引网站| 国产一区二区在线观看日韩| 青春草视频在线免费观看| 午夜免费鲁丝| 寂寞人妻少妇视频99o| 亚洲成人一二三区av| 国产精品国产三级国产av玫瑰| 国产精品不卡视频一区二区| 一级毛片我不卡| 国产极品天堂在线| 新久久久久国产一级毛片| 日韩强制内射视频| 国产老妇女一区| 少妇人妻精品综合一区二区| 久久久成人免费电影| 国产精品国产av在线观看| 亚洲精品影视一区二区三区av| 中文字幕av成人在线电影| 免费黄网站久久成人精品| 日本猛色少妇xxxxx猛交久久| www.av在线官网国产| av女优亚洲男人天堂| 少妇被粗大猛烈的视频| 秋霞伦理黄片| 六月丁香七月| 2022亚洲国产成人精品| 中文在线观看免费www的网站| 舔av片在线| 国产av码专区亚洲av| 亚洲欧美日韩另类电影网站 | a级毛片免费高清观看在线播放| h日本视频在线播放| 97精品久久久久久久久久精品| 搡女人真爽免费视频火全软件| 国产在线男女| 丰满少妇做爰视频| 国产精品成人在线| 成人美女网站在线观看视频| 亚洲色图综合在线观看| 22中文网久久字幕| 精品亚洲乱码少妇综合久久| 青春草亚洲视频在线观看| 在线天堂最新版资源| 女人被狂操c到高潮| 中文精品一卡2卡3卡4更新| 黄色配什么色好看| 好男人在线观看高清免费视频| 成人黄色视频免费在线看| 国产探花在线观看一区二区| 久久韩国三级中文字幕| 日韩av在线免费看完整版不卡| 亚洲精品一区蜜桃| 国产精品女同一区二区软件| 亚洲第一区二区三区不卡| 国产一级毛片在线| 精品久久国产蜜桃| 成人亚洲欧美一区二区av| 性色av一级| 国产亚洲91精品色在线| 亚洲色图av天堂| 免费在线观看成人毛片| 爱豆传媒免费全集在线观看| 久久久久国产网址| 最近2019中文字幕mv第一页| 亚洲av男天堂| 亚洲在久久综合| 精品一区二区三区视频在线| 哪个播放器可以免费观看大片| 亚洲丝袜综合中文字幕| 精品久久久久久久末码| 日韩av在线免费看完整版不卡| 亚洲精品一区蜜桃| 青青草视频在线视频观看| 人妻夜夜爽99麻豆av| 亚洲美女搞黄在线观看| 欧美性猛交╳xxx乱大交人| 日本黄大片高清| 欧美高清性xxxxhd video| 在线观看国产h片| 国产免费福利视频在线观看| 99热这里只有精品一区| 在线观看国产h片| 国产免费福利视频在线观看| 熟妇人妻不卡中文字幕| 国产精品精品国产色婷婷| 身体一侧抽搐| 直男gayav资源| 视频中文字幕在线观看| 男的添女的下面高潮视频| 精品人妻一区二区三区麻豆| 黄色怎么调成土黄色| 日韩av不卡免费在线播放| 最近最新中文字幕大全电影3| av国产精品久久久久影院| 亚洲一区二区三区欧美精品 | 欧美一区二区亚洲| 欧美精品一区二区大全| 中文字幕人妻熟人妻熟丝袜美| 国产黄片视频在线免费观看| 亚洲精品亚洲一区二区| 国产成人a区在线观看| 毛片一级片免费看久久久久| 街头女战士在线观看网站| 午夜免费观看性视频| 午夜福利视频1000在线观看|