• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the Amyloid Aβ42 with Accelerated Molecular Dynamics Simulations?

    2019-10-16 08:45:36KaiFangHuang黃開放ShuHengDong董淑衡SuSuZhong鐘素素HaoLi李皓andLiLiDuan段莉莉ShandongProvinceKeyLaboratoryofMedicalPhysicsandImageProcessingTechnologySchoolofPhysicsandElectronicsShandongNormalUniversityJinan25004China
    Communications in Theoretical Physics 2019年9期
    關(guān)鍵詞:李皓莉莉

    Kai-Fang Huang(黃開放),Shu-Heng Dong(董淑衡),Su-Su Zhong(鐘素素),Hao Li(李皓),,2,?and Li-Li Duan(段莉莉),?Shandong Province Key Laboratory of Medical Physics and Image Processing Technology,School of Physics and Electronics,Shandong Normal University,Jinan 25004,China

    2Department of Science and Technology,Shandong Normal University,Jinan 250014,China

    (Received March 9,2019;revised manuscript received May 16,2019)

    AbstractOne major cause of Alzheimer’s disease(AD)is evidently due to the aggregation and deposition of amyloid β peptides(Aβ)in the brain tissue of the patient.Preventing misfolding and self-aggregation of Aβ protein can reduce the formation of highly toxic polymer,which is important for the treatment of AD.Among them,the α-helix consisting of 42 residues(Aβ42)is the main component of senile plaques in AD.In this paper,500 ns accelerated molecular dynamics are performed at different temperatures(300 K,350 K,400 K,450 K)to study of the effect of temperature-induced conformation changes of Aβ42 protein during the unfolding process respectively.

    Key words:Amyloid protein,Alzheimer’s disease,accelerated molecular dynamics simulation,protein folding

    1 Introduction

    Molecular dynamics(MD)simulation of biological macromolecules,beginning in 1977,have opened a new era “from structure to function” for the research of biophysics.[1]MD simulation can provide the kinetic and thermodynamics information of proteins at the atomic level and reveal the important roles that protein dynamics played in many physiological processes.[2?8]In addition,MD also makes up the shortcoming of the experiments and has becoming a significant complementary tool in explaining the experimental phenomenon and uncovering the experimental nature.Predicting and guiding the process of experiment in theory,importantly,MD simulation has been successfully applied to many fields due to its rapid development.[9?13]Among them,the milestone event is the study for protein folding.Duan and Kollman firstly performed a 1μs folding simulation for Villin headpiece with 36 residues in explicit solvent using AMBER96 force field,and they obtained the middle state,which was similar with the native state.[14]The possible folding pathway of this protein is proposed in their study and from then that set of fa folding simulation boom with MD.Shaw group has developed a specialized supercomputer to simulate the folding of some protein,which provides a new platform for solving a series of problems about protein folding using MD simulation technology.[15?16]However,due to the limited computational power of computer,MD simulation is often hindered by poor phase-space sampling efficiency on bumpy potential energy surfaces.It is difficult to traverse the thorough sampling of the entire phase space in the limited simulation time,which results into that the large-scale conformational changes usually are not observed.

    To solve this problem many accelerated dynamics algorithms have been proposed.[17?24]Among them,accelerated molecular dynamics(AMD)has become one of the popular approaches for the protein folding simulation.[25]The AMD method first proposed by Voter,[26?27]improved by the McCammon Group,[28]recently,which is an effective way to enhance the spatial sampling.This method reduces the energy barrier by increasing the nonnegative boost potential,expanding the probability of transition between different low-energy states with the potential energy landscape.But it still retains important details,[28?31]and the most significant advantage of AMD is that it does not need any predefined reaction coordinates.This method has been successfully applied to many studies of systems including bovine pancreatic trypsin inhibitor(BPT1),[32]alanine dipeptide,[33]fastfolding proteins,[34]a silk-like polypeptide,[35]insulin,[36]and some alpha helix folding.[37]

    The accumulation of inside and outside the cell for protein can lead to a serious of diseases.Up to now,there are more than 20 kinds of human diseases,which are associated with the protein misfolding.Such as,the abnormal accumulation of amyloid-β (Aβ)is linked to neurodegenerative Alzheimer’s disease(AD).The length of Aβ polypeptide ranges from 39 to 43 residues.Among them,Aβ40 with 40 residues and Aβ42 with 42 residues have been extensively studied.Aβ40 is a normal soluble prod-uct in the meninges and cerebrospinal fluid,and Aβ42 is the main component of senile plaques(SPs).Nelson et al.assumed that the structure of Aβ in the case of aggregation is mainly the formation of β-sheet.[38]In contrast,Aβ is mainly coil structure in non-aggregated aqueous solution,and α-helical structure in biofilm or organic solvent.The misfolding of β-sheet promotes the aggregation of Aβ,which further forms the insoluble fibers.Therefore,this structure is not easily degraded by proteases,and finally results in the produce of the age spots.The conversion of Aβ from a soluble state to an insoluble state is a key factor of forming AD.[39]This misfolding results in the aggregation,and then forms small and strong deleterious oligomers.So Aβ42 is considered to be an important reason of causing the AD disease.

    Due to the property of poor solubility,difficulty in crystallization and easy in aggregation,the needed time for the conformational transformation of Aβ is transient.The current experimental methods such as NMR and X-ray techniques can only provide the average structure,and they are hard to dynamically capture the misfolding process of Aβ.Therefore,it is impossible to explain the mechanism of aggregation from experiment at atomic level.With the rapid development of computer hardware and software technology in recent years,more and more research has focused on the conformational transformation of full sequence Aβ in theory.Jiang group pointed out that the conformational transformation of Aβ40 from α-helix to random coil undergoes the complex structure combined helix with β sheet under normal temperature and pressure.[40]However,Kirkitadze et al.thought that the above mixed structure is most likely the intermediate state of the Aβ oligomer.[41]Flock et al.performed an extensive MD simulation in various temperatures and pH conditions,which shows that helix 1(residues 8 to 25)can convert into π-helix,and helix 2(residues 28 to 39)can become random coils or β-sheet structures.[42]Olubiyi et al.used two different force fields(GROMOS96 43a2 and GROMOS96 53a6)to study the two systems of Aβ1-40 and Aβ1-42 under different pH conditions.Their study showed that the 10 residues in N-terminus are unordered,and the protonation of the three histidine accelerates the formation of the β-sheet structure via a reduction in electrostatic repulsion between the two terminal regions.[43]

    Through these studies find that the N-terminal(residues 1 to 10)were mainly unordered structures,and the hydrophobic core region(residues 10 to 21)was mainly α-helical structure,while the C-terminal(residues 30 to 42)are mainly β-sheet structures.Those residues 21 to 30 are the core parts of Aβ aggregation.However,because the conformational conversion of Aβ is relatively slow in traditional MD simulations,it is necessary to use the AMD method to speed up the Aβ conformational transformation’s process to obtain the detailed transient conformation.At the same time,we consider that it is usually difficult to obtain accurate canonical distribution at normal temperature,because those structures tend to tap in one of a large number of local minimum energy states.Importantly,it is still unclear that the effect of the different temperatures on the conformational change of Aβ42 and whether the temperature affects the aggregation of Aβ42.Therefore,AMD simulation at different temperatures is performed that allows the protein to pass through a higher energy barrier and obtains a wider sampling phase space than those conventional methods.

    In this study,the AMD simulation is performed for 500 ns with explicit water at four different temperatures(300 K,350 K,400 K,and 450 K)to study the effect of temperature-induced conformation changes of Aβ42 protein during the unfolding process.

    2 Methods

    Before AMD simulation,traditional MD simulation is performed to obtain four parameters,which is used to run AMD simulation.The four parameters are ED,αD,EP,and αPand they are used to define the AMD modification of potential by:

    While

    Here,V(r)is the actual potential,?V is the added potential energy and VD(r)is the actual dihedral torsion potential.EPand EDare threshold energies that we obtain from Eq.(3)and Eq.(5).EP′and ED′are the average potential energy and the dihedral potential energy,Nresand Natomare the number of residues and the total number of atoms per protein,respectively.a1and a2are set 3.5 and 0.2 kcal/mol by AMBER reference manual,respectively.The final results of the ED,αD,EP,and αPare shown in Table 1 under different temperatures.

    Table 1 Summary of the parameters of the simulations.

    The initial structure of the Aβ42 is obtained from the Protein Data Bank(PDB entry:1IYT).The structure consists of two helices in the residues 7-26(named helix 1)and 27-40(named helix 2),which are connected by the β-turn shown in Fig.1.AMD simulation is performed using AMBER12 package,and the AMBER12SB force field is employed in all simulations.The system is immersed in a truncated periodic TIP3P water box with 10buffer.In order to neutralize the charge of the system,counterions are placed around the protein.The system is relaxed in a two-step procedure.In the first step,only the protein is optimized using the steepest descent minimization followed by the conjugate gradient minimization with 500 kcal·mol?1?2harmonic constraint.In the second step,the system is optimized without any constraint until convergence is reached.After that,the system is heated from 0 to 300 K,350 K,400 K or 450 K over 300 ps with the weak restraint force constant of 10 kcal·mol?1?2harmonic constraint on all protein atoms,respectively.Langevin dynamics is used to regulate the temperature with a collision frequency of 1.0 ps?1.In order to obtain the initial parameters for AMD simulation,traditional MD simulation is firstly performed,then the system is simulated for 500 ns using AMD method at each temperature until the energy,density and root mean square deviation(RMSD)all reach to equilibrate.The SHAKE algorithm is used to constrain all bonds involving hydrogen atoms.[1]The 12cutoff is used for the van der Waals interaction and the particle mesh Ewald(PME)method is used to treat long range electrostatic interactions.[44]The time step is set for 2 fs.

    Fig.1 The initial structure of Aβ42(PDB entry:1IYT).

    3 Results and Discussion

    Firstly,the RMSD values of backbone atoms relative to the native structure are calculated at four different temperatures.As shown in Fig.2,the RMSDs of the total system rapidly increase and finally fluctuate around 12regardless of the temperature,suggesting the conformation of the protein undergoes very changes.The beginning time is 22 ns,15 ns,9 ns,and 1.5 ns when the RMSD reaches 12at the temperature of 300 K,350 K,400 K,and 450 K,respectively.The result indicates that the effect of temperature on the protein structure is very significant,and the higher the temperature is,the faster the conformation changes.Since radius of gyration(Rg)of protein is usually used to describe the tightness of the protein system,Rg as the function of MD simulation time is furtherly calculated at different temperature.Figure 3 indicates that Rg rapidly decreases from the initial value of 16illustrating that the volume of protein occurs significant reduction.By the analysis of the simulated structure finds that the L-shaped of the protein in the native state has disappeared completely and the spatial configuration has been changed.At the temperature of 300 K,while Rg fluctuates around 10before the 250 ns,it rapidly drops in the next 250 ns and finally stabilized around 9This demonstrates that there are two conformational collapses occur in the protein structure.At the temperature of 350 K,Rg rapidly drops to 10at about 10 ns and fluctuates around it during the subsequent simulation.At the high temperatures of 400 K or 450 K,Rg is about 12with large fluctuation in the simulated process.The values of Rg is higher in the high temperature than that room temperature indicating that the protein becomes more stretch with the increasing of the temperature.

    Fig.2 Time-dependent RMSD of backbone atoms with respect to the native structure during the AMD simulation at four different temperatures.

    Fig.3 Time-dependent Rg during the AMD simulation at four different temperatures.

    By analyzing the RMSD and Rg,it can be found that the structure of the protein undergoes large changes after the long time AMD simulation at the four temperatures.At the room temperature of 300 K,the RMSD of Aβ42 compared to the native structure reaches 12and Rg decreases by about 6,which is in good consistent with the characteristic of the inherently disordered protein.That is to say,this structure is very unstable under physiological conditions.[45]The conformational collapse is very obvious at 350 K.When the temperature reaches to the 400 K or 450 K,this structure furtherly stretches after conformational collapse and those fluctuates of RMSD and Rg are very large.The above result indicates that the higher the temperature is,the faster the frequency of the conformational transition is.

    In order to investigate the conformational transition of Aβ42 in detail during the MD simulation,the instantaneous snapshots of Aβ42 at different temperatures as the function of time are shown in Fig.4.Due to the large flexibility of β-turn,the structure is easy to change in MD simulation.The angle between helix 1 and helix 2 gradually decreases at 300 K,which transfers from vertical to parallel at about 100 ns.In 200 ns,the helix 1 and helix 2 begin to denature.With the increasing of simulated time,the topology structure of helix 1 has large change.At 500 ns,while helix 1 changes from one α-helix to two helixes,structure of helix 2 almost completely extends.At the temperature of 350 K,the β-turn rapidly denatures and helix 1 changes two helix structure in which β-sheet structure is also formed by some residues.At the beginning of 200 ns,the helix structure of helix 1 is scarce and most of residues form irregular coiled structures followed by β-sheet structure.Until 500 ns,the helix 1 is partly unfolded,while helix 2 almost completely unfolded.At the high temperature of 400 K,the total protein is quickly denatured and only few residues form helix structure at 100 ns,while the β-sheet structure appears at about 200 ns.From this,the total conformation becomes irregular curl and β-turn structures.At 450 K,the β-sheet is again found and quickly is denatured due to the instability.The final structure simulated from 450 K is similar to that from 400 K,in which the total protein is composed of irregular curl and few helices.In summary,the conformation of Aβ42 has undergone large change during MD simulation,whether at the temperature of 300 K or a higher one.Although the topology of the protein has changed,the final helix content remains is very high at 300 K.However,the β-sheet structure appears following the less helix content at high temperature and the final structure is mainly irregular.In other word,under the high temperature,it can accelerate the process of unfolding for α-helix.

    Fig.4 Snapshots of the intermediate conformation of Aβ42 at four different temperatures.

    As previously mentioned,the formation of β-sheet is critical for the aggregation of Aβ42.Through Fig.4,we can clearly observe the rule of the formation for β-sheet structure.At room temperature,the β-sheet is not observed in the conformational transition of Aβ40 from α-helix to random coil.But along the temperature increased,we observed the β-sheet,which has also described by other experimenter.What is more,when the temperature reaches 450 K,the β-sheet structure appears earlier(about 200 ns)than other high temperatures,and its conformation is more complicated.This indicates that with the temperature increases,the misfolding process of β-sheet also accelerates,and this can accelerate the rate of Aβ42 aggregation.

    Fig.5 Comparison of occupation percentage of residues in α helix at four different temperatures.

    In order to furtherly investigate the structural change of α-helix with the temperature,the occupancy of residues formed α-helix are calculated under different temperature.And the defined secondary structure of proteins(DSSP)is used to identify the α-helix structure motif.[46]If a particular residue belonged to α-helix remains intact during 85%of the simulation time,its occupation percentage is 85%,and the numbers of residues formed α-helix can be grouped within a certain occupation percentage range(0?10%,10%?20%,...,90%?100%).The fractions of these residues versus their occupancy are plotted using a histogram.Figure 5 suggests that the comparison of the residues formed α-helix distributions obtained from MD simulation under four different temperatures,respectively.A significant difference is observed that the distribution of residues formed helix based on the simulation at room temperature is composed preferentially of high occupancy residues(80%?100%).However,the distribution is dominated by low occupancy residues(0?20%)with the increasing the temperature.In the four temperatures of 300 K,350 K,400 K,450 K,the ratios of proportions for the number of residues formed α-helix in high occupancy to the low occupancy are about 16/10,0/18,0/26,and 0/35,respectively,which indicates that the Aβ42 protein is mainly dominated by helical structure at room temperature and the protein becomes the unfolded state from the initial folded state at high temperature.

    4 Conclusions

    Protein folding is a significant and challenging scientific problem in the 21st century.Many diseases,such as Alzheimer’s disease,Parkinson’s disease,and mad cow disease,have been found to be related to protein misfolding.Therefore,it is extra significant to understand the folding pathway and folding mechanism of protein.However,the potential energy barriers are always very high during traditional MD simulation,so the systems are usually trapped in one or another local minimum for long simulation time.Meanwhile,the rates of the systems moving from one potential energy basin to another are quite low.In order to improve the efficiency and achieve thorough sampling of the conformational space of protein,we study the folding process of Aβ42,which is closely related to Alzheimer’s disease,by AMD simulation.In this paper,the AMD simulation is preformed up to 500 ns using AMBER12SB force field combined with the explicit water model under four different temperatures(300 K,350 K,400 K,and 450 K)to study the effect of the temperature on the conformational transfer of Aβ42.Our study asserts that the spatial configuration of protein undergoes very large change under four different temperatures,and there is no obvious stable structure obtained from the AMD simulation,indicating that the protein is inherently disordered protein.By the analysis of the structure and secondary structure occupancy in the process of MD simulation,it is found that although the initial topological structure disappears at room temperature,existing in the form of α-helix.However,founded in the high temperature suggesting it may accelerate the formation of β-sheet in high temperature,the β-sheet structure is easier to aggregate than α-helix structure.These results will be of great significance for understanding the pathogenesis of Alzheimer’s disease to ultimately achieve its early prevention,diagnosis,and treatment.

    猜你喜歡
    李皓莉莉
    山水
    家有坑娃的爹:一個(gè)學(xué)霸在暴動(dòng)
    二手爺爺
    誰在悄悄幫助莉莉呢?
    With you at that moment
    懷揣故鄉(xiāng)在異鄉(xiāng)釀制詩情
    歲月(2018年10期)2018-10-12 06:19:04
    不倒自行車
    謊言
    Look from the Anglo—American jury system of jury system in our country
    紅嘴鷗
    詩選刊(2015年4期)2015-10-26 08:45:28
    一区二区av电影网| 免费观看av网站的网址| 久久久久久久亚洲中文字幕| 妹子高潮喷水视频| 午夜免费鲁丝| 成人18禁高潮啪啪吃奶动态图| 日本vs欧美在线观看视频| 日产精品乱码卡一卡2卡三| 伦精品一区二区三区| 久久精品国产鲁丝片午夜精品| 久久精品夜色国产| 亚洲四区av| 男女高潮啪啪啪动态图| 亚洲国产av影院在线观看| 欧美xxⅹ黑人| 久久久久久久久久久免费av| 老汉色av国产亚洲站长工具| 亚洲,欧美,日韩| 亚洲欧美成人精品一区二区| 另类亚洲欧美激情| 国产淫语在线视频| 国产日韩欧美亚洲二区| 91成人精品电影| 国产色婷婷99| 久久久a久久爽久久v久久| 国产精品久久久av美女十八| 亚洲国产欧美日韩在线播放| 亚洲综合精品二区| 久久 成人 亚洲| 久久影院123| 亚洲欧洲日产国产| 黄色怎么调成土黄色| 久久精品久久精品一区二区三区| 2018国产大陆天天弄谢| 中国三级夫妇交换| 少妇人妻 视频| 1024视频免费在线观看| 两性夫妻黄色片| 大陆偷拍与自拍| 欧美黄色片欧美黄色片| 亚洲精品久久成人aⅴ小说| 国产亚洲av片在线观看秒播厂| 久久久久久久大尺度免费视频| 丝袜脚勾引网站| 春色校园在线视频观看| 午夜福利影视在线免费观看| 亚洲内射少妇av| av福利片在线| 香蕉国产在线看| av免费观看日本| 丝袜人妻中文字幕| 久久99一区二区三区| 亚洲成色77777| 久久久精品免费免费高清| av在线app专区| 蜜桃国产av成人99| 国产成人午夜福利电影在线观看| 巨乳人妻的诱惑在线观看| 韩国精品一区二区三区| 国产又爽黄色视频| 日韩电影二区| 亚洲精品久久成人aⅴ小说| 18+在线观看网站| 国产不卡av网站在线观看| 国产精品二区激情视频| 岛国毛片在线播放| 亚洲经典国产精华液单| 成人亚洲精品一区在线观看| 亚洲成人av在线免费| 男女下面插进去视频免费观看| 满18在线观看网站| 最近中文字幕2019免费版| 欧美最新免费一区二区三区| 伦理电影大哥的女人| www.av在线官网国产| 精品少妇黑人巨大在线播放| 国产淫语在线视频| 国产精品麻豆人妻色哟哟久久| 在线观看一区二区三区激情| 国产日韩欧美在线精品| a级片在线免费高清观看视频| 久久精品国产亚洲av涩爱| 不卡视频在线观看欧美| 老司机影院毛片| 成年美女黄网站色视频大全免费| 黑丝袜美女国产一区| 国产av精品麻豆| 黄频高清免费视频| av.在线天堂| 国产av精品麻豆| 色94色欧美一区二区| 久久久久精品人妻al黑| 亚洲人成77777在线视频| 捣出白浆h1v1| 宅男免费午夜| 亚洲,欧美精品.| 国产又爽黄色视频| 精品国产一区二区三区四区第35| 亚洲国产毛片av蜜桃av| 亚洲av在线观看美女高潮| 老汉色∧v一级毛片| 999精品在线视频| 另类精品久久| 狠狠精品人妻久久久久久综合| 午夜精品国产一区二区电影| 丁香六月天网| 国产日韩欧美在线精品| 人妻 亚洲 视频| 免费在线观看完整版高清| 热99久久久久精品小说推荐| 赤兔流量卡办理| 秋霞伦理黄片| 日韩一区二区视频免费看| 精品视频人人做人人爽| 亚洲欧美色中文字幕在线| 97在线人人人人妻| 韩国精品一区二区三区| 亚洲精品国产av蜜桃| 国产成人欧美| 老汉色∧v一级毛片| 国产精品蜜桃在线观看| 亚洲av综合色区一区| 婷婷色av中文字幕| 欧美成人午夜免费资源| 久久精品国产鲁丝片午夜精品| 亚洲美女搞黄在线观看| 中文字幕制服av| 免费黄网站久久成人精品| 国产日韩欧美亚洲二区| 91成人精品电影| 国产免费又黄又爽又色| 国产成人午夜福利电影在线观看| 老汉色av国产亚洲站长工具| 亚洲中文av在线| 天堂中文最新版在线下载| 亚洲一区二区三区欧美精品| av又黄又爽大尺度在线免费看| 观看美女的网站| 夜夜骑夜夜射夜夜干| 精品国产国语对白av| 久久国内精品自在自线图片| 女性被躁到高潮视频| 国语对白做爰xxxⅹ性视频网站| 久久国内精品自在自线图片| 综合色丁香网| 2018国产大陆天天弄谢| 美女国产视频在线观看| 国产精品成人在线| 看非洲黑人一级黄片| 亚洲伊人久久精品综合| 国产av码专区亚洲av| 亚洲精品一二三| 蜜桃在线观看..| 人妻 亚洲 视频| 97在线人人人人妻| 香蕉精品网在线| 久久99蜜桃精品久久| 一级毛片黄色毛片免费观看视频| 精品少妇黑人巨大在线播放| 欧美最新免费一区二区三区| 电影成人av| 一级片免费观看大全| 丝袜人妻中文字幕| 日本色播在线视频| 日本vs欧美在线观看视频| 精品人妻偷拍中文字幕| 中文天堂在线官网| 夫妻性生交免费视频一级片| 国产成人一区二区在线| 丁香六月天网| 久热久热在线精品观看| 狂野欧美激情性bbbbbb| 人妻人人澡人人爽人人| 国精品久久久久久国模美| 男女边吃奶边做爰视频| 久久久久精品久久久久真实原创| 欧美日韩精品成人综合77777| 人成视频在线观看免费观看| 波多野结衣一区麻豆| 大片电影免费在线观看免费| 99热网站在线观看| 国产精品秋霞免费鲁丝片| 国产极品粉嫩免费观看在线| freevideosex欧美| 欧美精品一区二区免费开放| 免费不卡的大黄色大毛片视频在线观看| 成人黄色视频免费在线看| 五月伊人婷婷丁香| 成人国产av品久久久| 国产男人的电影天堂91| 18禁裸乳无遮挡动漫免费视频| 国产精品亚洲av一区麻豆 | 天天躁夜夜躁狠狠久久av| 男的添女的下面高潮视频| 日韩一本色道免费dvd| av在线观看视频网站免费| 亚洲国产av新网站| 亚洲精品国产一区二区精华液| 我的亚洲天堂| 中文乱码字字幕精品一区二区三区| 黄网站色视频无遮挡免费观看| av线在线观看网站| 国产在线视频一区二区| 国产免费福利视频在线观看| 麻豆av在线久日| 久久免费观看电影| 亚洲欧洲国产日韩| 99热国产这里只有精品6| 中文字幕色久视频| 亚洲情色 制服丝袜| 妹子高潮喷水视频| 涩涩av久久男人的天堂| 午夜福利一区二区在线看| 美女高潮到喷水免费观看| 交换朋友夫妻互换小说| 午夜av观看不卡| 国产麻豆69| 欧美另类一区| 日日摸夜夜添夜夜爱| 中文乱码字字幕精品一区二区三区| 久久久久久久大尺度免费视频| 国产探花极品一区二区| 国产成人精品久久久久久| 日产精品乱码卡一卡2卡三| 久久精品久久久久久噜噜老黄| 久久人人爽av亚洲精品天堂| 卡戴珊不雅视频在线播放| 一级a爱视频在线免费观看| 久久精品夜色国产| 亚洲欧美色中文字幕在线| 国产有黄有色有爽视频| 久久久久久久久久久久大奶| 国产免费福利视频在线观看| 日韩伦理黄色片| 国产精品三级大全| 日韩成人av中文字幕在线观看| 免费看av在线观看网站| 久久久国产欧美日韩av| 另类亚洲欧美激情| 亚洲在久久综合| 国产成人一区二区在线| 热99久久久久精品小说推荐| 人妻一区二区av| 精品国产乱码久久久久久男人| 亚洲av中文av极速乱| 亚洲综合色惰| 亚洲国产欧美在线一区| 亚洲精品av麻豆狂野| 亚洲国产欧美网| 99热全是精品| 久久久久久久大尺度免费视频| 国产成人精品一,二区| 午夜免费观看性视频| 国产免费福利视频在线观看| 波多野结衣一区麻豆| √禁漫天堂资源中文www| 日韩欧美精品免费久久| 国产在线视频一区二区| 午夜福利在线观看免费完整高清在| 黑人猛操日本美女一级片| 两个人看的免费小视频| 一本大道久久a久久精品| 久久精品国产鲁丝片午夜精品| 国产av精品麻豆| 久久精品亚洲av国产电影网| 少妇人妻 视频| 最近中文字幕高清免费大全6| 国产精品99久久99久久久不卡 | 精品久久久久久电影网| 免费观看性生交大片5| 久久久久精品性色| 国产av一区二区精品久久| 汤姆久久久久久久影院中文字幕| 国产精品免费大片| 少妇 在线观看| 欧美+日韩+精品| 精品福利永久在线观看| www.熟女人妻精品国产| 人妻系列 视频| 日日啪夜夜爽| 免费女性裸体啪啪无遮挡网站| 亚洲一码二码三码区别大吗| 国产极品粉嫩免费观看在线| 搡老乐熟女国产| 啦啦啦啦在线视频资源| 97人妻天天添夜夜摸| 韩国精品一区二区三区| 久久久精品免费免费高清| 精品视频人人做人人爽| 看十八女毛片水多多多| 最黄视频免费看| 国产成人精品婷婷| 日日爽夜夜爽网站| 国产综合精华液| 国产 精品1| 1024香蕉在线观看| 国产精品.久久久| 精品国产露脸久久av麻豆| 久久99精品国语久久久| 亚洲综合色惰| 2021少妇久久久久久久久久久| 国产成人aa在线观看| 少妇被粗大的猛进出69影院| 亚洲精品国产av蜜桃| 亚洲精品自拍成人| 亚洲av男天堂| 国精品久久久久久国模美| 午夜激情av网站| 巨乳人妻的诱惑在线观看| videosex国产| 大话2 男鬼变身卡| 国产精品亚洲av一区麻豆 | 亚洲精品美女久久av网站| 18在线观看网站| 精品少妇久久久久久888优播| 亚洲国产精品成人久久小说| 日本欧美视频一区| 香蕉国产在线看| 麻豆乱淫一区二区| 久久av网站| 亚洲国产av新网站| 另类精品久久| 国产成人精品无人区| 一本大道久久a久久精品| 少妇的逼水好多| xxx大片免费视频| 亚洲成人一二三区av| 日本免费在线观看一区| 久久精品国产综合久久久| 18禁动态无遮挡网站| 在线天堂最新版资源| 毛片一级片免费看久久久久| 国产伦理片在线播放av一区| 成人影院久久| 伊人久久国产一区二区| 欧美日韩一区二区视频在线观看视频在线| 日日爽夜夜爽网站| 国产又爽黄色视频| xxx大片免费视频| 韩国高清视频一区二区三区| 这个男人来自地球电影免费观看 | 亚洲欧洲精品一区二区精品久久久 | 一本—道久久a久久精品蜜桃钙片| 女的被弄到高潮叫床怎么办| 最新中文字幕久久久久| 婷婷成人精品国产| 少妇被粗大猛烈的视频| 亚洲精品国产av蜜桃| av免费观看日本| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 中国三级夫妇交换| 一级黄片播放器| 亚洲人成网站在线观看播放| 久久精品国产自在天天线| 少妇猛男粗大的猛烈进出视频| 精品人妻一区二区三区麻豆| 亚洲欧美成人精品一区二区| 亚洲精品美女久久久久99蜜臀 | 亚洲欧美一区二区三区国产| 黄片播放在线免费| 纯流量卡能插随身wifi吗| 久久人人97超碰香蕉20202| 另类亚洲欧美激情| 欧美日韩综合久久久久久| 久久99蜜桃精品久久| 人人澡人人妻人| 老女人水多毛片| 满18在线观看网站| 免费久久久久久久精品成人欧美视频| 男人爽女人下面视频在线观看| 在线看a的网站| 中文字幕最新亚洲高清| 久久久久久久亚洲中文字幕| 日本vs欧美在线观看视频| 亚洲精品中文字幕在线视频| av免费观看日本| 午夜激情av网站| 最近最新中文字幕大全免费视频 | 亚洲一区二区三区欧美精品| 亚洲五月色婷婷综合| 大陆偷拍与自拍| 美国免费a级毛片| 午夜福利一区二区在线看| av一本久久久久| 自线自在国产av| 满18在线观看网站| 97精品久久久久久久久久精品| 欧美日本中文国产一区发布| 亚洲色图 男人天堂 中文字幕| 激情视频va一区二区三区| 国产成人一区二区在线| 一边亲一边摸免费视频| 国产色婷婷99| 桃花免费在线播放| 国产日韩欧美在线精品| 亚洲国产av新网站| 免费黄频网站在线观看国产| 最新中文字幕久久久久| 亚洲国产精品国产精品| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 国产精品国产三级专区第一集| av卡一久久| 不卡视频在线观看欧美| 成人国语在线视频| 秋霞伦理黄片| 精品久久蜜臀av无| 欧美变态另类bdsm刘玥| 欧美日韩一级在线毛片| 国产日韩欧美亚洲二区| 成人黄色视频免费在线看| 在线亚洲精品国产二区图片欧美| 国产黄色免费在线视频| 香蕉精品网在线| 亚洲精品日韩在线中文字幕| 一区二区三区激情视频| 精品福利永久在线观看| 在线免费观看不下载黄p国产| 免费观看在线日韩| 亚洲四区av| 国产精品av久久久久免费| 王馨瑶露胸无遮挡在线观看| 欧美激情极品国产一区二区三区| 女人精品久久久久毛片| 欧美97在线视频| 七月丁香在线播放| 亚洲欧美色中文字幕在线| 日产精品乱码卡一卡2卡三| 天堂俺去俺来也www色官网| 久久久久久久久久久久大奶| 精品少妇内射三级| 久久99一区二区三区| 一区二区三区乱码不卡18| 国产免费福利视频在线观看| av电影中文网址| 边亲边吃奶的免费视频| 久久青草综合色| 亚洲av电影在线进入| 日韩大片免费观看网站| 亚洲图色成人| 国产国语露脸激情在线看| 韩国高清视频一区二区三区| 一级,二级,三级黄色视频| 午夜福利影视在线免费观看| 久久久a久久爽久久v久久| 男女啪啪激烈高潮av片| 国产精品蜜桃在线观看| 免费高清在线观看视频在线观看| 国产爽快片一区二区三区| 精品国产乱码久久久久久男人| 亚洲国产精品成人久久小说| 肉色欧美久久久久久久蜜桃| 一二三四在线观看免费中文在| 久久99一区二区三区| 精品少妇一区二区三区视频日本电影 | 国产精品国产三级国产专区5o| 国产成人精品久久二区二区91 | 综合色丁香网| 考比视频在线观看| 美女xxoo啪啪120秒动态图| 国产精品国产av在线观看| 欧美日韩亚洲国产一区二区在线观看 | kizo精华| 中文字幕av电影在线播放| 一级毛片黄色毛片免费观看视频| 97精品久久久久久久久久精品| 一区在线观看完整版| 女人高潮潮喷娇喘18禁视频| 多毛熟女@视频| 国产探花极品一区二区| 一本久久精品| 久久免费观看电影| 久久久久久久国产电影| 永久网站在线| 9热在线视频观看99| 中文欧美无线码| 国产在线一区二区三区精| 久久久国产一区二区| 18禁国产床啪视频网站| 丝袜美足系列| 天天躁夜夜躁狠狠久久av| 蜜桃国产av成人99| 久久久久久伊人网av| 久久这里有精品视频免费| 久久久久久久精品精品| 国产熟女欧美一区二区| 国产精品免费视频内射| 26uuu在线亚洲综合色| 一级爰片在线观看| 丰满迷人的少妇在线观看| 久久久久久久久久久免费av| 曰老女人黄片| 中文字幕人妻熟女乱码| 国产一区有黄有色的免费视频| 亚洲国产欧美在线一区| 欧美+日韩+精品| 99九九在线精品视频| 亚洲欧美精品自产自拍| 热re99久久精品国产66热6| 性少妇av在线| 久久毛片免费看一区二区三区| 啦啦啦视频在线资源免费观看| 亚洲欧美一区二区三区黑人 | 精品一区二区三区四区五区乱码 | 亚洲一区中文字幕在线| 国产精品成人在线| 亚洲少妇的诱惑av| 男女国产视频网站| 国产成人精品福利久久| a级毛片黄视频| av免费观看日本| 在线观看一区二区三区激情| 天堂8中文在线网| 最近中文字幕2019免费版| 少妇人妻精品综合一区二区| freevideosex欧美| 性色av一级| 91aial.com中文字幕在线观看| 麻豆精品久久久久久蜜桃| 亚洲一区二区三区欧美精品| 中文字幕精品免费在线观看视频| 最近中文字幕2019免费版| 午夜91福利影院| 免费高清在线观看日韩| 亚洲国产最新在线播放| 99国产综合亚洲精品| 99久久精品国产国产毛片| 成年美女黄网站色视频大全免费| 热99国产精品久久久久久7| 制服丝袜香蕉在线| 欧美人与性动交α欧美软件| 免费观看av网站的网址| 在现免费观看毛片| 精品福利永久在线观看| 男人爽女人下面视频在线观看| 母亲3免费完整高清在线观看 | 久久久欧美国产精品| 黑人欧美特级aaaaaa片| 日本黄色日本黄色录像| 69精品国产乱码久久久| 久久久久久人妻| 亚洲国产av影院在线观看| 久久精品国产鲁丝片午夜精品| 1024视频免费在线观看| 久久精品夜色国产| 亚洲人成电影观看| 午夜福利视频在线观看免费| av又黄又爽大尺度在线免费看| 不卡视频在线观看欧美| www.熟女人妻精品国产| 亚洲国产日韩一区二区| 欧美日韩精品网址| 一级,二级,三级黄色视频| 国产在线一区二区三区精| 丰满乱子伦码专区| 欧美+日韩+精品| 国产精品熟女久久久久浪| 女人被躁到高潮嗷嗷叫费观| 国产成人精品婷婷| 美女高潮到喷水免费观看| 欧美日韩精品网址| 国产欧美日韩综合在线一区二区| 新久久久久国产一级毛片| 成人漫画全彩无遮挡| 欧美最新免费一区二区三区| 久久韩国三级中文字幕| 亚洲一区二区三区欧美精品| 日韩制服丝袜自拍偷拍| 日本wwww免费看| 免费看不卡的av| 久久热在线av| 成人亚洲欧美一区二区av| 人妻人人澡人人爽人人| 成人手机av| 黄色 视频免费看| 2018国产大陆天天弄谢| 免费大片黄手机在线观看| 色播在线永久视频| 大香蕉久久成人网| 久久精品久久久久久久性| 精品久久蜜臀av无| 丁香六月天网| 高清av免费在线| 日韩熟女老妇一区二区性免费视频| 中文字幕av电影在线播放| 国产伦理片在线播放av一区| 午夜老司机福利剧场| 香蕉丝袜av| 黄色 视频免费看| 亚洲美女视频黄频| 欧美老熟妇乱子伦牲交| 精品国产国语对白av| 亚洲av日韩在线播放| 天天躁夜夜躁狠狠躁躁| 国产 一区精品| 午夜福利乱码中文字幕| 毛片一级片免费看久久久久| 大话2 男鬼变身卡| 999久久久国产精品视频| av一本久久久久| 中文字幕另类日韩欧美亚洲嫩草| 老汉色∧v一级毛片| www.精华液| 考比视频在线观看| 国产1区2区3区精品| 亚洲精品日韩在线中文字幕| 亚洲精品成人av观看孕妇| 十分钟在线观看高清视频www| 久久狼人影院| 大片电影免费在线观看免费| 国产一区二区激情短视频 | 丝袜美足系列| 2022亚洲国产成人精品| 国产在视频线精品|