• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Mechanical Property of Short Carbon Fiber Reinforced Silicon Carbide Matrix Composites

    2019-10-10 02:09:36MENGXiangWeiWUXiShiPEIBingBingZHUYunZhouHUANGZhengRen
    無機材料學(xué)報 2019年9期
    關(guān)鍵詞:混料碳化硅漿料

    MENG Xiang-Wei, WU Xi-Shi, PEI Bing-Bing, ZHU Yun-Zhou, HUANG Zheng-Ren

    Preparation and Mechanical Property of Short Carbon Fiber Reinforced Silicon Carbide Matrix Composites

    MENG Xiang-Wei1,2, WU Xi-Shi1,2, PEI Bing-Bing1, ZHU Yun-Zhou1, HUANG Zheng-Ren1

    (1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100039, China)

    In this study, high-strength silicon carbide (SiC) matrix composites reinforced by short carbon fiber (Csf) (SiC/Csf) were fabricated by slip casting and reaction sintering. The effects of the dispersant (tetramethylammonium hydroxide, TMAH) content and mixing time on the viscosity of the slurry were investigated. In addition, the influences of the volume fraction of Csfand particle size of SiC powder on the mechanical property were also studied. It is found that the viscosity of slurry with 0.1wt% TMAH is the lowest and the mixing time is preferably controlled at 6 h. The composites with 35vol% Csfshows the highest flexural strength of (412±47) MPa. The composites with 5 μm SiC powder achieves the highest flexural strength of (387±40) MPa. Grain composition demonstrates that the sample prepared by a mixture of 5 and 50 μm SiC powder at a ratio of 2 to 1 shows relatively excellent mechanical properties with the flexural strength up to (357±41) MPa.

    Csf/SiC composites; slip casting; reaction sintering

    SiC ceramics have excellent properties such as high strength, high hardness and wear resistance, leading to lots of researches on its preparation methods and properties in recent years[1-3]. As reported by previous literature, the flexural strength of the SiC ceramics prepared by Suyama using the reaction sintering method has exceeded 1000 MPa[4]. However, the inherently high brittleness and large density (3.20 g/cm3) of SiC ceramics limit its application in many fields, including aerospace that requires high-strength and lightweighted structure design. Therefore, high-strength fiber was introduced into SiC ceramics to prepare high-strength, high-fracture, low-density SiC matrix composites[5-8].

    Currently, carbon fiber, carbon nanotube, SiC fiber, and the like are generally used as the reinforcing phase. For example, Zhu,[9]introduced SiC fiber into 2.5D fiber preforms and prepared SiC matrix composites by polymer impregnation and pyrolysis. The mechanical properties were excellent and the flexural strength could reach 441 MPa. Gbadeyan,[10]reported that multi-walled carbon nanotube and chopped carbon fiber were combined to enhance composites, demonstrating that the uniform dispersion and synergy of carbon fiber and multi-walled carbon nanotubes enabled a more stable structure. However, the costly SiC fiber and carbon nanotube mentioned in the above literatures give a restriction on the practical application. Therefore, many researchers use cheaper carbon fiber as the reinforced phase of SiC matrix ceramics.

    Chen,[11]reported long carbon fiber reinforced SiC matrix composites prepared by chemical vapor infiltration had superior performances and the flexural strength can reach (375±10) MPa. Later further improvement has been made by growing SiC nanowiresin the SiC matrix, which greatly enhanced the mechanical properties of the composites reinforced by longer carbon fiber. However, relatively obvious orientation was observed in long carbon fiber reinforced composites due to the special manufacturing process of the green body, resulting in certain limitations in practical applications. Therefore, it is considered to use short carbon fiber (Csf) as reinforcement to obtain a uniform and isotropic SiC matrix composites (Csf/SiC composites)[12-16].

    The Csfused in SiC matrix composites in the above literatures are relatively long and difficult to disperse homogeneously in SiC matrix, which goes against the isotropy and uniformity of the composites. The shape of the composites obtained by the common sintering methods is simple, such as hot press sintering and spark plasma sintering, which makes the subsequent processing more difficult and further tends to introduce defects into the material during the processing. Moreover, carbon fiber is easily oxidized under the high temperature required in sintering. Therefore, this study proposes to introduce micron-sized Csfas reinforcing phase into the SiC ceramic by slip casting and reaction sintering to obtain SiC composites with high performance and complex shape under low temperature. The effects and mechanism of volume fraction and size of SiC particles on the properties of composites were investigated in order to highly improve the performance of Csf/SiC composites.

    1 Experiment

    1.1 Materials

    The Csfused in the experiment is 400-mesh (37 μm) chopped fiber (12KT300, Yancheng Xiangsheng Carbon Fiber Co., Ltd.). The specification of short carbon fiber is about7 μm×50 μm, and the basic properties are shown in Table 1. The-SiC powders with different diameters (5, 10, 20 and 50 μm) are produced by Shanghai Shang-ma Abrasives Co., Ltd. Tetramethylammonium hydro-xide (TMAH, 25% aqueous solution, Shanghai Aladdin Biochemical Technology Co., Ltd.) acts as dispersant. Polyvinylpyrrolidone (PVP, model K29-32, molecular weight 58000, Adamas company) and polyvinyl alcohol (PVA, molecular weight 44.05, 1788 low viscosity, Shanghai Aladdin Biochemical Technology Co., Ltd.) are used as binder. The silicon powder used in the reaction sintering process is of high purity.

    1.2 Preparation of composites

    The SiC powder and the Csfwere mixed with various additives in a certain ratio by planetary ball miller with deionized water and SiC balls as the mixing medium. The mixed slurry was injected into the prepared mold after vacuum degassing, and the green body was dried and molded at room temperature with the water absorbed by the gypsum board. After 24 h, the obtained green body was released from the mold followed by completely drying at 40 ℃. Then the green body was kept at 900 ℃ for 30 min to remove the organics. The debonded green body was embedded in silicon powder and sintered at 1650 ℃. The prepared sample was obtained followed by post-processing and performance testing.

    Table 1 Physical property of the carbon fiber (12KT300)

    1.3 Performance characterization

    The bulk density and porosity of the composites were tested by the Archimedes Drainage Method. The micr-ostructure of the composites was observed using a scann-ing electron microscope from Feiner. The rheological properties of freshly prepared slurry were tested on a rotary rheometer (MCR 72, Anton Paar, Austria). The flexural strength was measured on a universal testing machine (Instron-5566, UK) using a three-point bending method with the sample size of 3 mm×4 mm×36 mm, the span of 30 mm, and loading rate of 0.5 mm/min. Each set of data was tested by 5 sample strips.

    2 Results and discussion

    2.1 Factors affecting the rheology of the slurry

    The viscosity of the slurry has a significant influence on the dispersibility of the raw material, the yield of the slurry, the efficiency of the injection molding, and the molding effect of the green body. In this experiment, tetramethylammonium hydroxide (TMAH) was used as the dispersant, and the influence of TMAH content and mixing time on the viscosity of the slurry was studied.

    As shown in Fig. 1, the viscosity of the slurry with 0.1wt% TMAH is the lowest and the viscosity tends to increase with TMAH content. Since TMAH is a strongly basic cationic inorganic electrolyte, an ionization reaction occurs when TMAH is added in an aqueous solution. The charged dispersant adsorbed on the surface of the powder enhances the electrostatic repulsion between the particles, improving the dispersion stability of the powder and reducing the viscosity of the slurry according to the electrostatic stabilization mechanism. Excessive dispersant increases the ion concentration in the slurry and lowers thickness of the double electron layer on surface of the particle, thereby increasing viscosity of the slurry.

    Fig. 1 Viscosity-shear rate curves of slurries with different TMAH content

    The apparent porosity and bulk density of the Csf/SiC green body with different TMAH are demonstrated in Fig. 2. The composites with 0.1wt% TMAH has the lowest apparent porosity and the highest bulk density. Fig. 3 is the SEM images of the composites with different contents of TMAH. Considering the relatively more uniform and disordered dispersion of Csfand SiC particles in samples with 0.1wt% and 0.3wt% TMAH than that with 0.05wt%, it is concluded that higher TMAH content is helpful to homogeneous microstru-cture and isotropic behaviors. However, excessive TMAH (0.5wt% in this work) results in higher viscosity, going against the uniform dispersion of Csfand SiC.

    The rheological properties of the slurry have a crucial influence on the injection molding, and the lower slurry viscosity contributes to the process of grouting. Table 2 is the formula table to study the effect of the mixing time on the composites.

    It can be seen from Fig. 4 that the viscosity of the slurry changes significantly with the mixing time. Longer mixing time helps to lower the viscosity of the slurry. But excessively long mixing time will result in more fragmented carbon fiber under the impact of SiC powder, which will weaken the enhancement of the reinforcing phase. What’s more, batching feeding under the same mixing time can slightly reduce the viscosity of the slurry because the slurry mixed in batches is more uniform.

    Fig. 2 Apparent porosity and bulk density of green body with different TMAH content

    Fig. 3 SEM images of green bodies with different contents of TMAH: (a-d) 0.05wt%, 0.1wt%, 0.3wt%, 0.5wt%, respectively

    Table 2 Effect of the mixing time on the composites

    Fig. 4 Viscosity-shear curves of slurries with different mixing time and feeding modes

    2.2 Effect of Csf volume fraction on the pro-perties of composites

    In order to explore the effect of different volume content of Csfon the performance of composites, three compositions were designed: 30vol%, 35vol%, and 40vol%, respectively. In this part, 5 μm SiC powderswere mixed with Csfto prepare the composites. In addition, other same components are listed as follows: 0.3wt% aqueous solution of TMAH, 2wt% PVP, and 0.6wt% PVA solution. As shown in Table 3, with Csfincreasing, the bulk density of the green body decreases, mainly resulting from that the density of the Csf(1.76- 1.80 g/cm3) is lower than that of SiC (3.20 g/cm3). Furthermore, the increase of Csfcontent leads to a significant "bridging" of the fibers, which brings about a larger sample porosity. The bulk density of the green body containing more Csfis relatively larger under the condition of constant solid content.

    Fig. 5 Relationship between apparent porosity and mixing time (a), bulk density and mixing time (b) of slurries

    Table 3 Physical and mechanical properties of composites with different short carbon fiber contents

    Fig. 6 gives the flexural strengths of the prepared Csf/SiC composites with different content of Csf. It can be concluded that the composites with 35vol% Csfshows the largest flexural strength, namely (412±47) MPa. However, with the further increase of Csf(40vol%), the flexural strength of Csf/SiC composites decreases. It is considered that the excessive Csfreduces the packing coefficient of SiC particles and larger pores are generated in the green body during slip casting, which in turn causes a large amount of molten silicon to fill the excess pores during sintering. The increase in the brittle free silicon content weakens the flexural strength of the composites.

    Fig. 6 Variation of flexural strength of composites as a function of the carbon fiber volume fraction

    2.3 Effect of SiC particle size and particle size matching on the properties of composites

    In order to explore the effect of SiC particle size on the properties of composites, SiC powders with different particle sizes (5, 10, 20 and 50 μm, the mass ratio of two kinds of SiC powder was 2 : 1) were mixed with Csf. In addition, the solid content of the slurry was 70wt% and the volume fraction of Csfwas 35vol%, wherein 0.3wt% TMAH aqueous solution and 2wt% PVP were added. The apparent porosity and bulk density of the Csf/SiC composites are shown in Table 4.

    It can be seen from Table 4 that as the particle size of SiC increases, the apparent porosity of the green body gradually decreases, but the apparent porosity of the sample increases. The Csf/SiC composites prepared from 5 μm SiC fine powder has an low apparent porosity of 0.95%. The bulk density of the green body gradually increases, and the bulk density after sintering is similar.

    Fig. 7 indicates the flexural strength of composites with different particle sizes after reaction sintering. It can be seen from the figure that the flexural strength of Csf/SiC composites prepared from 5 μm SiC powder is the largest, which is (387±40) MPa. As shown in Fig. 8, it is concluded that all the Csf/SiC composites contain certain residual silicons, and the material defects (as indicated by the arrows) are found in Csf/SiC composites prepared from 50 μm SiC powder. Microcracks will develope when materials are under stress, whose causes severe performance degradation. It can be seen from Fig. 8 that the residual silicon in Csf/SiC composites prepared by 5 μm SiC powder is the smallest one among those four composites. Considering that microcracks tend to propagate in the location of silicon whose strength is lower than that of SiC, smaller silicon will effectively hinder the development trend of microcracks, helping to withstand the destruction. It is consistent with the theory mentioned in the literature[4]that the smaller size of the residual silicon leads to the greater flexural strength of the composites.

    Table 4 The bulk density and apparent porosity of green body and the sintered bulk containing SiC with different particle sizes

    Fig. 7 Flexural strength of Csf/SiC composites containing SiC with different particle sizes

    Fig. 8 SEM image of sintered composites containing SiC with different particle sizes: (a) 5 μm; (b) 10 μm; (c) 20 μm; (d) 50 μm

    In the slurries, the raw material particles spatially influence each other, and the mechanism is complicated in which the spherical SiC particles and the elongated Csfinteract with each other. Therefore, in order to explore the effect of the size of SiC particles on the performance, the composites with different grain compositions were prepared.

    Table 5 Bulk density and apparent porosity of green body and sintered bulk with different grain compositions

    Fig. 9 Flexural strength of composites with different grain compositions

    Table 5 shows the bulk density and apparent porosity of the composites with different grain compositions. From the table, it can be seen that as the particle size of the SiC powder in the green body increases, the apparent porosity in the green body slightly decreases, and the bulk density of the green body tends to increase. The apparent porosity of the composites after the reaction sintering is relatively low.

    Fig. 9 gives the flexural strengths of composites with different grain compositions. Among them, the compo-sites with 5 and 50 μm SiC powders demonstrate the highest flexural strength, reaching (357±41) MPa. It can be concluded that in the conducted experiments, the 5 μm SiC powders filled into the slurry containing 50 μm SiC powders and Csf,can significantly increase the bulk density of SiC and the space occupancy rate, promoting the penetration of molten silicon. What’s more, it also helps to reduce the content and the size of residual silicon to improve the performance of the Csf/SiC composites.

    3 Conclusions

    1) The content of TMAH and the mixing time of the slurry have great influence on the rheological property of the slurry. 0.1wt% of TMAH helps to make the slurry with the lowest viscosity. The right rheological properties of the slurry are obtained, and the damage of carbon fiber can be avoided greatly when the raw materials are mixed for 6 h.

    2) When the volume fraction of Csfis 35vol%, the flexural strength of the prepared Csf/SiC composites can reach (412±47) MPa. When the volume fraction of Csfis too high, the packing coefficient of SiC particles reduces with porosity increasing, resulting in a higher content of free silicon and weakened performance of the composite material.

    3) The residual silicon in the composites prepared by the 5 μm SiC particles has small size, and the performance reaches (387±40) MPa. After the SiC particles of different particle diameters grading, it is found that the composite material with 5 and 50 μm SiC powder exhibits more excellent performance.

    [1] BECHSTEDT F, K?CKELL P, ZYWIETZ A,. Polytypism and properties of silicon carbide., 1997, 202(1): 35–62.

    [2] LUTHRA K L. Some new perspectives on oxidation of silicon carbide and silicon nitride., 1991, 74(5): 1095–1103.

    [3] LAINE R M, BABONNEAU F. Preceramic polymer routes to silicon carbide., 1993, 5(3): 260–279.

    [4] SUYAMA S, KAMEDA T, ITOH Y,. Development of high-strength reaction-sintered silicon carbide., 2003, 12(3): 1201–1204.

    [5] VERRILLI M J, OPILA E J, CALOMINO A,. Effect of environment on the stress-supture behavior of a carbon-fiber-reinforced silicon carbide ceramic matrix composite., 2004, 87(8): 1536–1542.

    [6] VINCI A, ZOLI L, SCITI D. Influence of SiC content on the oxidation of carbon fibre reinforced ZrB2/SiC composites at 1500 and 1650 ℃ in air., 2018, 38(11): 3767–3776.

    [7] MARSHALL D B, OLIVER W C. Measurement of interfacial mechanical properties in fiber-reinforced ceramic composites., 1987, 70(8): 542–548.

    [8] QIANG X, LI H, ZHANG N,. Oxidation resistance of SiC nanowires reinforced SiC coating prepared by a CVD process on SiC-coated C/C composites., 2018, 15(5): 1100–1109.

    [9] ZHU Y Z, HUANG Z R, DONG S M,. Effect of active Al fillers on properties of PIP-derived SiCf/SiC composites., 2007, 22(5): 954–958.

    [10] GBADEYAN O, KRISHNAN K, MOHAN T P,. Tribological, mechanical, and microstructural of multiwalled carbon nanotubes/ short carbon fiber epoxy composites., 2017, 140(2): 022002.

    [11] CHEN L, YIN X, FAN X,. Mechanical and electromagnetic shielding properties of carbon fiber reinforced silicon carbide matrix composites., 2015, 95: 10–19.

    [12] HE F, LIU Y, TIAN Z,. Carbon fiber/SiC composites modified SiC nanowires with improved strength and toughness., 2018, 734: 374–384.

    [13] HE X, GUO Y K, YU Z M,. Study on microstructures and mechanical properties of short-carbon-fiber-reinforced SiC composites prepared by hot-pressing., 2009, 527(1): 334–338.

    [14] CHENG Y, LIU C, HU P,. Using PyC coated short chopped carbon fiber to tackle the dilemma between toughness and strength of ZrC-SiC., 2018, 45(1): 503–509.

    [15] TANG C, LI T H, BAI Y H,. Two-step method to deposit ZrO2coating on carbon fiber: preparation, characterization, and performance in SiC composites., 2018, 44(10): 11812–11819.

    [16] LI F, HUA Y, QU C B,. Effectively enhanced mechanical properties of injection molded short carbon fiber reinforced polyethersulfone composites by phenol-formaldehyde resin sizing., 2018, 139: 216–226.

    短碳纖維增強碳化硅基復(fù)合材料的制備與力學(xué)性能

    孟祥瑋1,2, 吳西士1,2, 裴兵兵1, 朱云洲1, 黃政仁1

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 上海 200050; 2. 中國科學(xué)院大學(xué), 北京 100039)

    利用注漿成型結(jié)合反應(yīng)燒結(jié)的方法制備了高強度短碳纖維增強碳化硅基復(fù)合材料, 研究了分散劑(四甲基氫氧化銨)的含量和混料時間對漿料粘度的影響; 短碳纖維的體積分數(shù)、碳化硅粉的粒徑對復(fù)合材料微觀結(jié)構(gòu)和力學(xué)性能的影響。結(jié)果表明, 添加0.1wt%的四甲基氫氧化銨得到的漿料粘度最低, 混料時間控制在6 h為佳。添加35vol%短碳纖維的復(fù)合材料的彎曲強度達到(412±47) MPa。由5 μm粒徑碳化硅粉制備的復(fù)合材料的力學(xué)性能最佳, 其彎曲強度可達(387±40) MPa。將5與50 μm粒徑的碳化硅粉進行2 : 1混合后得到的復(fù)合材料的力學(xué)性能優(yōu)異, 彎曲強度可達(357±41) MPa。

    Csf/SiC復(fù)合材料; 注漿成型; 反應(yīng)燒結(jié)

    TQ174

    A

    2018-12-11;

    2019-01-24

    Natural Science Foundation of Shanghai (16ZR1440900)

    MENG Xiang-Wei (1993-), male, candidate of Master degree. E-mail: mengxiangwei@student.sic.ac.cn

    HUANG Zheng-Ren, professor. E-mail: zhrhuang@mail.sic.ac.cn; ZHU Yun-Zhou, assistant professor. E-mail: yunzhouzhu@mail.sic.ac.cn

    1000-324X(2019)09-1015-06

    10.15541/jim20180578

    猜你喜歡
    混料碳化硅漿料
    鈉鹽添加劑對制備碳化硅的影響
    碳化硅復(fù)合包殼穩(wěn)態(tài)應(yīng)力與失效概率分析
    SiC晶須-ZrO2相變協(xié)同強韌化碳化硅陶瓷
    一種具有混料功能的橡膠射出成型機
    玻璃漿料鍵合中的孔洞抑制和微復(fù)合調(diào)控
    基于PLC的混料罐控制系統(tǒng)設(shè)計
    電子制作(2016年21期)2016-05-17 03:52:46
    一種新型的耐高溫碳化硅超結(jié)晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    聚丙烯/CaCO3共混料中CaCO3含量測定方法對比
    一類混料指數(shù)模型的D-最優(yōu)設(shè)計
    鋰離子電池漿料的研究
    9色porny在线观看| 国产成人精品福利久久| 欧美成人午夜精品| 精品卡一卡二卡四卡免费| 国产人伦9x9x在线观看| 日韩中文字幕视频在线看片| 免费观看a级毛片全部| 午夜av观看不卡| 男女边吃奶边做爰视频| 老司机亚洲免费影院| 99久久人妻综合| 国产又色又爽无遮挡免| 伊人亚洲综合成人网| 少妇人妻 视频| av天堂久久9| www日本在线高清视频| 伊人久久大香线蕉亚洲五| 久久亚洲国产成人精品v| 男女免费视频国产| 少妇人妻 视频| 久久久久久久精品精品| 免费看av在线观看网站| 亚洲国产精品999| 满18在线观看网站| 国产精品人妻久久久影院| 精品少妇内射三级| 老熟女久久久| 高清视频免费观看一区二区| 亚洲国产日韩一区二区| 亚洲成人国产一区在线观看 | 国产又爽黄色视频| 侵犯人妻中文字幕一二三四区| av卡一久久| 黄色怎么调成土黄色| 色综合欧美亚洲国产小说| 中国三级夫妇交换| 国产精品秋霞免费鲁丝片| 少妇人妻 视频| 精品一区二区三区av网在线观看 | 人人妻,人人澡人人爽秒播 | 天天操日日干夜夜撸| 电影成人av| www.自偷自拍.com| 亚洲伊人久久精品综合| 欧美亚洲 丝袜 人妻 在线| 国产熟女欧美一区二区| 最近中文字幕2019免费版| 香蕉丝袜av| 欧美日韩成人在线一区二区| 丰满迷人的少妇在线观看| 777久久人妻少妇嫩草av网站| tube8黄色片| 色网站视频免费| 久久这里只有精品19| 丁香六月欧美| 男女午夜视频在线观看| 午夜免费鲁丝| 国产精品一二三区在线看| 国产成人午夜福利电影在线观看| 如日韩欧美国产精品一区二区三区| 熟妇人妻不卡中文字幕| 亚洲第一青青草原| 一区在线观看完整版| 欧美日韩视频高清一区二区三区二| 青春草国产在线视频| 宅男免费午夜| 中文字幕人妻熟女乱码| 99九九在线精品视频| 久久精品国产a三级三级三级| 伦理电影大哥的女人| 最黄视频免费看| 看免费av毛片| 男女午夜视频在线观看| 欧美精品人与动牲交sv欧美| 青春草亚洲视频在线观看| 日韩一区二区三区影片| 看免费成人av毛片| 最新在线观看一区二区三区 | 国产精品免费大片| 欧美日韩av久久| 久久精品熟女亚洲av麻豆精品| 久久99一区二区三区| 一级片'在线观看视频| 在线 av 中文字幕| 蜜桃在线观看..| 18在线观看网站| av天堂久久9| 久久久精品区二区三区| 国产免费现黄频在线看| 在线观看三级黄色| 日韩一区二区三区影片| 亚洲av日韩精品久久久久久密 | 亚洲免费av在线视频| 美国免费a级毛片| 日本91视频免费播放| 国产伦人伦偷精品视频| 亚洲欧洲精品一区二区精品久久久 | 免费日韩欧美在线观看| av视频免费观看在线观看| 亚洲激情五月婷婷啪啪| 亚洲国产av影院在线观看| 国产精品秋霞免费鲁丝片| 国产精品蜜桃在线观看| 高清欧美精品videossex| 男女国产视频网站| 亚洲av电影在线观看一区二区三区| 制服人妻中文乱码| 观看美女的网站| 丝袜美足系列| 亚洲精品国产av成人精品| 国产成人a∨麻豆精品| 久久国产亚洲av麻豆专区| 各种免费的搞黄视频| 日韩中文字幕视频在线看片| 男女国产视频网站| 咕卡用的链子| 一二三四中文在线观看免费高清| 久久97久久精品| 欧美少妇被猛烈插入视频| 欧美亚洲 丝袜 人妻 在线| 男女边摸边吃奶| 人人妻人人澡人人爽人人夜夜| 80岁老熟妇乱子伦牲交| 熟女av电影| 巨乳人妻的诱惑在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产在线一区二区三区精| 亚洲图色成人| 国产成人精品久久二区二区91 | 伊人久久国产一区二区| 亚洲av欧美aⅴ国产| 日韩中文字幕欧美一区二区 | 国产极品粉嫩免费观看在线| 天天操日日干夜夜撸| 中国三级夫妇交换| a 毛片基地| 国产成人一区二区在线| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品日本国产第一区| 久久久国产欧美日韩av| 午夜福利网站1000一区二区三区| 国产成人啪精品午夜网站| 久久 成人 亚洲| 高清在线视频一区二区三区| 国产伦人伦偷精品视频| 又大又爽又粗| 黄色一级大片看看| 国产日韩一区二区三区精品不卡| 久久天躁狠狠躁夜夜2o2o | 日日啪夜夜爽| 精品少妇久久久久久888优播| 人体艺术视频欧美日本| 岛国毛片在线播放| 国产一卡二卡三卡精品 | 国产一级毛片在线| 久久国产精品男人的天堂亚洲| 欧美激情 高清一区二区三区| 欧美亚洲 丝袜 人妻 在线| www.精华液| 国产精品99久久99久久久不卡 | 国产在线视频一区二区| 亚洲激情五月婷婷啪啪| 天堂8中文在线网| 最近的中文字幕免费完整| 免费少妇av软件| 欧美日韩亚洲综合一区二区三区_| 亚洲天堂av无毛| √禁漫天堂资源中文www| 美国免费a级毛片| 80岁老熟妇乱子伦牲交| 精品一区二区免费观看| 一本久久精品| 99re6热这里在线精品视频| 国产精品成人在线| 老司机影院成人| 在线观看一区二区三区激情| 久久免费观看电影| 亚洲国产最新在线播放| 极品少妇高潮喷水抽搐| 免费观看人在逋| www.熟女人妻精品国产| 日韩中文字幕欧美一区二区 | 亚洲精品美女久久久久99蜜臀 | 日韩人妻精品一区2区三区| 99热网站在线观看| 91精品国产国语对白视频| 纯流量卡能插随身wifi吗| 制服丝袜香蕉在线| 又粗又硬又长又爽又黄的视频| 咕卡用的链子| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 夫妻午夜视频| 黑人巨大精品欧美一区二区蜜桃| 成人亚洲精品一区在线观看| 久久久久久久久免费视频了| 国产精品久久久久久久久免| 国产成人精品无人区| 黄片播放在线免费| 成年av动漫网址| 成年人免费黄色播放视频| 国产精品秋霞免费鲁丝片| 久久国产亚洲av麻豆专区| 日韩一区二区视频免费看| 欧美精品一区二区大全| 国产男人的电影天堂91| 建设人人有责人人尽责人人享有的| 自线自在国产av| a级毛片在线看网站| 亚洲国产中文字幕在线视频| 三上悠亚av全集在线观看| 亚洲国产精品999| 这个男人来自地球电影免费观看 | 黑人巨大精品欧美一区二区蜜桃| 亚洲人成电影观看| 久久久久精品国产欧美久久久 | 一级毛片电影观看| 三上悠亚av全集在线观看| 欧美精品亚洲一区二区| 十八禁高潮呻吟视频| 日韩,欧美,国产一区二区三区| 天天躁夜夜躁狠狠久久av| 两性夫妻黄色片| 国产精品av久久久久免费| 精品国产一区二区三区四区第35| 亚洲成av片中文字幕在线观看| 成人免费观看视频高清| 亚洲国产日韩一区二区| 午夜免费观看性视频| 亚洲国产精品999| 中文字幕人妻丝袜制服| 免费高清在线观看视频在线观看| 亚洲成av片中文字幕在线观看| 国产成人精品久久久久久| 免费观看a级毛片全部| 亚洲一码二码三码区别大吗| 另类亚洲欧美激情| 黄色视频不卡| 91国产中文字幕| 人人澡人人妻人| 亚洲综合精品二区| 日韩一区二区视频免费看| 亚洲,欧美,日韩| 欧美日韩亚洲综合一区二区三区_| 视频在线观看一区二区三区| 亚洲国产中文字幕在线视频| 天堂8中文在线网| 咕卡用的链子| 天堂俺去俺来也www色官网| 国产日韩欧美在线精品| 如日韩欧美国产精品一区二区三区| 一二三四中文在线观看免费高清| 天天影视国产精品| 亚洲国产av新网站| 日韩 亚洲 欧美在线| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 麻豆乱淫一区二区| 亚洲精品美女久久久久99蜜臀 | 一本—道久久a久久精品蜜桃钙片| 18禁裸乳无遮挡动漫免费视频| 国产麻豆69| 欧美日韩一区二区视频在线观看视频在线| 视频在线观看一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩国产mv在线观看视频| 久久久久网色| 亚洲精华国产精华液的使用体验| 久久久久精品久久久久真实原创| 不卡av一区二区三区| 久久99热这里只频精品6学生| 久久久久久久国产电影| 久久久亚洲精品成人影院| 99九九在线精品视频| 男人添女人高潮全过程视频| 亚洲欧洲国产日韩| 丝袜脚勾引网站| 色94色欧美一区二区| 亚洲av福利一区| 亚洲欧美精品综合一区二区三区| 考比视频在线观看| 一本色道久久久久久精品综合| 一二三四在线观看免费中文在| 免费高清在线观看日韩| 午夜久久久在线观看| 亚洲国产精品国产精品| 免费观看人在逋| 91精品伊人久久大香线蕉| 亚洲美女搞黄在线观看| 亚洲色图 男人天堂 中文字幕| 色视频在线一区二区三区| 美国免费a级毛片| 免费少妇av软件| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产色婷婷电影| av在线老鸭窝| 欧美亚洲 丝袜 人妻 在线| 久久青草综合色| tube8黄色片| 国产精品国产三级专区第一集| 看免费av毛片| 18禁国产床啪视频网站| 日日撸夜夜添| 人人妻,人人澡人人爽秒播 | 日韩熟女老妇一区二区性免费视频| 最近最新中文字幕免费大全7| 如何舔出高潮| 纵有疾风起免费观看全集完整版| 午夜福利影视在线免费观看| 亚洲久久久国产精品| 夫妻午夜视频| 十八禁高潮呻吟视频| 人体艺术视频欧美日本| 毛片一级片免费看久久久久| 国产精品久久久人人做人人爽| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 1024香蕉在线观看| 七月丁香在线播放| 久久久精品区二区三区| 国产精品一区二区在线观看99| 777米奇影视久久| 日韩 亚洲 欧美在线| 亚洲在久久综合| 日本vs欧美在线观看视频| 色婷婷久久久亚洲欧美| 黄色视频不卡| 久久久国产一区二区| 精品国产超薄肉色丝袜足j| 免费高清在线观看日韩| 哪个播放器可以免费观看大片| 一边摸一边做爽爽视频免费| 女性生殖器流出的白浆| 国产精品一区二区在线不卡| 十八禁高潮呻吟视频| 精品免费久久久久久久清纯 | 精品国产一区二区三区久久久樱花| 美女扒开内裤让男人捅视频| 免费黄网站久久成人精品| 中文字幕人妻丝袜制服| 91老司机精品| 亚洲国产精品国产精品| 久久久精品国产亚洲av高清涩受| 丝袜脚勾引网站| 啦啦啦 在线观看视频| 18禁裸乳无遮挡动漫免费视频| 最近的中文字幕免费完整| 中文天堂在线官网| 毛片一级片免费看久久久久| 1024香蕉在线观看| 久久这里只有精品19| 嫩草影视91久久| 高清黄色对白视频在线免费看| 我要看黄色一级片免费的| 色网站视频免费| 激情五月婷婷亚洲| 亚洲精品久久成人aⅴ小说| 日本午夜av视频| 妹子高潮喷水视频| 肉色欧美久久久久久久蜜桃| 在线 av 中文字幕| 久久国产精品大桥未久av| 国产免费一区二区三区四区乱码| 久久国产精品大桥未久av| 国产精品欧美亚洲77777| 日韩电影二区| 爱豆传媒免费全集在线观看| videos熟女内射| 91国产中文字幕| 国产精品熟女久久久久浪| 女性生殖器流出的白浆| 午夜激情久久久久久久| 伊人久久大香线蕉亚洲五| 午夜老司机福利片| 涩涩av久久男人的天堂| 色综合欧美亚洲国产小说| 美女午夜性视频免费| 久久久国产一区二区| 日韩精品免费视频一区二区三区| 夫妻午夜视频| 午夜福利,免费看| 91老司机精品| 亚洲中文av在线| 热re99久久国产66热| 人人妻人人澡人人爽人人夜夜| 王馨瑶露胸无遮挡在线观看| 精品国产露脸久久av麻豆| 高清欧美精品videossex| 制服丝袜香蕉在线| 国产精品免费视频内射| 国产精品偷伦视频观看了| 丰满饥渴人妻一区二区三| 丝袜人妻中文字幕| 亚洲av综合色区一区| 亚洲熟女精品中文字幕| 亚洲av成人不卡在线观看播放网 | 国产精品 国内视频| a 毛片基地| 男女边摸边吃奶| 在线免费观看不下载黄p国产| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| 人人妻人人澡人人爽人人夜夜| 青青草视频在线视频观看| 99re6热这里在线精品视频| 国产高清国产精品国产三级| 精品人妻在线不人妻| 久久久精品94久久精品| 欧美人与善性xxx| 亚洲精品久久午夜乱码| 国产男女超爽视频在线观看| 女性被躁到高潮视频| 人体艺术视频欧美日本| 亚洲国产精品一区三区| 欧美日韩精品网址| 国产一区二区三区综合在线观看| 麻豆av在线久日| 亚洲色图综合在线观看| 国产精品久久久久久久久免| 亚洲成色77777| 精品久久蜜臀av无| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 欧美日韩一区二区视频在线观看视频在线| 高清av免费在线| 久久久久网色| 亚洲成色77777| 亚洲伊人久久精品综合| 一本大道久久a久久精品| 无遮挡黄片免费观看| 妹子高潮喷水视频| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 国产精品久久久人人做人人爽| 国产一区二区 视频在线| 自线自在国产av| 18禁裸乳无遮挡动漫免费视频| 国产精品蜜桃在线观看| 欧美xxⅹ黑人| 久久 成人 亚洲| 久久精品国产亚洲av涩爱| 免费久久久久久久精品成人欧美视频| 午夜福利,免费看| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| 丝袜人妻中文字幕| 亚洲av综合色区一区| 国产成人精品无人区| 国语对白做爰xxxⅹ性视频网站| 欧美激情高清一区二区三区 | 日本av手机在线免费观看| 性高湖久久久久久久久免费观看| 成人漫画全彩无遮挡| 99热网站在线观看| 一边摸一边做爽爽视频免费| 大陆偷拍与自拍| 不卡av一区二区三区| 亚洲精品视频女| 精品卡一卡二卡四卡免费| 亚洲国产精品一区二区三区在线| 国产黄色视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 亚洲国产精品成人久久小说| 国产熟女欧美一区二区| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区二区三区在线| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| 999精品在线视频| 男女边摸边吃奶| 国产精品久久久久久久久免| 日本av免费视频播放| 亚洲av在线观看美女高潮| 一区在线观看完整版| videos熟女内射| 国产成人免费观看mmmm| 久久毛片免费看一区二区三区| av片东京热男人的天堂| 午夜福利一区二区在线看| 在线观看三级黄色| 亚洲成av片中文字幕在线观看| 久久影院123| 成人亚洲精品一区在线观看| 久久韩国三级中文字幕| 天天操日日干夜夜撸| 亚洲国产欧美网| 男女之事视频高清在线观看 | 91精品伊人久久大香线蕉| 久久精品国产亚洲av涩爱| 美国免费a级毛片| 久久国产精品大桥未久av| 9热在线视频观看99| 亚洲av日韩在线播放| 国产精品国产三级国产专区5o| 久久久久久久久久久久大奶| 18禁动态无遮挡网站| 亚洲色图 男人天堂 中文字幕| 精品亚洲成a人片在线观看| bbb黄色大片| 精品国产一区二区三区四区第35| 午夜久久久在线观看| 捣出白浆h1v1| 日本av手机在线免费观看| 免费观看人在逋| 99久久99久久久精品蜜桃| 天天躁夜夜躁狠狠久久av| 老司机影院成人| 国产一区二区三区av在线| 九色亚洲精品在线播放| 久久精品久久久久久噜噜老黄| 亚洲成人一二三区av| 一本色道久久久久久精品综合| 91成人精品电影| www.精华液| 999久久久国产精品视频| 观看av在线不卡| 少妇人妻精品综合一区二区| 亚洲一码二码三码区别大吗| 亚洲四区av| 欧美精品一区二区免费开放| 日韩一区二区三区影片| 天天添夜夜摸| 国产国语露脸激情在线看| 97人妻天天添夜夜摸| 岛国毛片在线播放| 伦理电影免费视频| 熟女av电影| 一区二区三区乱码不卡18| 免费高清在线观看日韩| 卡戴珊不雅视频在线播放| 亚洲精华国产精华液的使用体验| 国产精品三级大全| 精品视频人人做人人爽| 我的亚洲天堂| 啦啦啦 在线观看视频| 久久 成人 亚洲| 母亲3免费完整高清在线观看| 美女国产高潮福利片在线看| 51午夜福利影视在线观看| 亚洲,一卡二卡三卡| 欧美在线一区亚洲| 国产1区2区3区精品| 日韩电影二区| 国产精品.久久久| 欧美人与性动交α欧美精品济南到| 男女国产视频网站| 美女视频免费永久观看网站| 欧美日韩亚洲综合一区二区三区_| 久久久久国产一级毛片高清牌| 精品少妇一区二区三区视频日本电影 | 亚洲欧洲日产国产| 一个人免费看片子| av在线观看视频网站免费| 中国国产av一级| 在线观看人妻少妇| 成人手机av| 精品国产国语对白av| 一个人免费看片子| 纵有疾风起免费观看全集完整版| 老司机深夜福利视频在线观看 | 99精国产麻豆久久婷婷| 亚洲国产中文字幕在线视频| 丝袜喷水一区| 一区在线观看完整版| 一边摸一边抽搐一进一出视频| 午夜福利在线免费观看网站| 国产精品三级大全| 韩国精品一区二区三区| 精品国产露脸久久av麻豆| 校园人妻丝袜中文字幕| 在线观看一区二区三区激情| 看非洲黑人一级黄片| av国产久精品久网站免费入址| 精品人妻熟女毛片av久久网站| 亚洲国产中文字幕在线视频| 国产亚洲精品第一综合不卡| 天天躁夜夜躁狠狠久久av| 久久精品亚洲熟妇少妇任你| 亚洲精品美女久久av网站| svipshipincom国产片| tube8黄色片| 国产欧美日韩综合在线一区二区| 我要看黄色一级片免费的| 久久久欧美国产精品| 亚洲av成人精品一二三区| 777久久人妻少妇嫩草av网站| 国产av码专区亚洲av| 亚洲精品av麻豆狂野| 午夜福利一区二区在线看| 亚洲精品乱久久久久久| 免费在线观看完整版高清| 极品人妻少妇av视频| 999精品在线视频| 一级片免费观看大全| 国产在视频线精品| 免费高清在线观看日韩| 国产一区二区 视频在线| 老汉色∧v一级毛片| 久久人妻熟女aⅴ| 久久久久久久精品精品| videos熟女内射| 电影成人av| 久久韩国三级中文字幕| 午夜福利视频在线观看免费| 街头女战士在线观看网站| 高清欧美精品videossex| 在线观看人妻少妇| 国产成人精品久久二区二区91 | 伊人亚洲综合成人网| 最近手机中文字幕大全| 免费在线观看完整版高清| 精品一区二区免费观看| a级毛片黄视频| 波野结衣二区三区在线| 黄色怎么调成土黄色|