• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phototransistor Based on Single TaON Nanobelt and Its Photoresponse from Ultraviolet to Near-infrared

    2019-10-10 02:10:10TAOYouRongCHENJinQiangWUXingCai
    無機(jī)材料學(xué)報(bào) 2019年9期
    關(guān)鍵詞:場(chǎng)效應(yīng)單根偏壓

    TAO You-Rong, CHEN Jin-Qiang, WU Xing-Cai

    Phototransistor Based on Single TaON Nanobelt and Its Photoresponse from Ultraviolet to Near-infrared

    TAO You-Rong, CHEN Jin-Qiang, WU Xing-Cai

    (Key Laboratory of Mesoscopic Chemistry of MOE, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China)

    TaON nanobelts (NBs) were controllably synthesized by Ta2O5NBs template-conversion method. The typical NBs have cross-sections of 40 nm×200 nm–400 nm×5600 nm, and lengths up to about 0.5 cm. A field effect transistor (FET) based on single TaON NB was fabricated on SiO2/Si substrate. The electronic mobility and on-off ratio of the nanobelts are 9.53×10–4cm2/(V·s) and 3.4, respectively. The FET shows good photoresponses from 254 nm to 850 nm. Under irradiation of 405 nm light (42 mW/cm2), the responsivity is 249 mA/W at a bias of 5.0 V, and the photoswitch current ratio is 11. Therefore, the phototransistor shows a good photodetectivity, and TaON NBs may become good candidates for fabricating optoelectronic devices. Additionally, Ta2O5@TaON composite NBs were also synthesized, and a FET based on the single NB was fabricated. Under irradiation of the same light, its photoresponse is weaker than TaON NB, but it is still a good optoelectronic material.

    TaON nanobelt; template synthesis; field effect transistor; photodetector

    One-dimensional (1D) nanostructures of semiconductors have extensively been applied as functional building blocks for electronic and optoelectronic devices such as field-effect-transistors (FETs)[1], chemical sensors[2], ele-ctronic field emitters[3-4], photodetectors[5-7], solar cells[8], and supercapacitors[9], because the reduced dimension brings about new physical-chemical properties, and 1D nanostructures are suitable for nanofabrication. Research shows that the high photoconductive gains of the low dimensional semiconductor photodetectors depend on both their high surface-area-to-volume ratios (SVRs) and the reduced dimension of the effective conductive channel, because the high SVRs can increase the number of surface trap states and prolong photocarrier lifetime, whereas the reduced dimensionality can confine the active area of the charge carrier, and shorten the transit time[10]. Photodetector from the ultraviolet (UV) to the infrared (IR) is critical for industrial and scientific applications such as images sensing, communications, env-i-r-onmental monitoring, remote control, day-and- night-time surveillance, and chemical/biological sensing[11]. Al-th-ough a few photodetectors based on nanostructures of metal oxides[12-13], metal chalcogenides[14], transition metal dichalcogenides (TMDs)[15-16], and transition metal trichalcogenides (TMTs)[17-18], are reported, it is still a cha-ll-enge to develop low-cost, nontoxicity, high-detectivity and broadband response photodetector.

    TaON is a semiconductor with a band gap of 2.4 eV[19]. Its powders were once proposed as a nontoxic yellow pigment[20]. Recently, they have been used as visible- light-driven photocatalyts to split water[21]and oxidize methanol[22]. TaON powders could be prepared by calcination of Ta2O5powders in the flowing NH3, for example, Ta2O5could be totally converted to TaON in the flowing NH3of 10 mL/min at 800 ℃ for 10 h, while totally converted to Ta3N5in a flowing NH3of 1000 mL/min at 800 ℃ for 10 h[23]. We once synthesized Ta3N5nanobelts (NBs) by direct aminolysis of TaS3NBs at high temperature, and discovered its good photosensitive properties from 250 nm to 630 nm[24]. In order to develop new photosensitive materials, here a Ta2O5NB template conversion method was employed to synthesize TaON NBs, and reaction time was reduced to 3 h. Phototransistor based on single TaON NB shows good photoresponse from ultraviolet (UV) to near infrared (NIR), and have higher photoswitch current ratio (PCR) than Ta3N5NB photodetector[24].

    1 Experiment

    1.1 Preparation of TaON nanobelts

    Firstly, TaS3NBs were prepared by chemical vapor transport method[25-26]. In typical process, 825 mg of tantalum (Ta) foil (99.9%, 0.2 mm×5 mm×45 mm), 146 mg of sulfur (S) powders (99.99%), and 15 mg of iodine (I2) powders (99.8%) were sealed in a quartz ampoule in vacuum (0.6 cm×12 cm,10–2Pa). The Ta foils were adjusted at the center of the ampoule and then the ampoule was placed at the center of a conventional horizontal furnace (4 cm×32 cm) with a temperature gradient of10 ℃/cm from center to end. Then the furnace was heated to 550 ℃ at a rate of 10 ℃/min, kept at 550 ℃ for 8 h, and cooled naturally to room temperature. TaS3NBs on the Ta foils were extracted from the ampoule.

    Secondly, TaS3NBs were directly oxidized into Ta2O5NBs at 650 ℃ for 2 h in air.

    Finally, the Ta2O5NBs were transferred into quartz coat, and placed in the center of the quartz tube of the horizontal furnace, then converted into green-yellow TaON NBs at 850 ℃ for 3 h in the flowing atmosphere of Ar (20 mL/min)/NH3(80 mL/min) with a rising temperature rate of 10 ℃/min.

    1.2 Characterization

    The products were characterized by X-ray diffra-c-tometer (XRD) under monochromatized Cu Kα-radiation (Shimadzu XRD-6000), LEO-1530VP scanning electron microscope (SEM), JEOL-JEM-2010 high-resolution electron microscope (HRTEM) using imaging and selected area electron diffraction (SAED) with an energy dispersive X-ray spectrometer (EDX). The UV-Vis absorbance spectra of the products were recorded by UV- 3600 spectrophotometer (Shimadzu UV-3600).

    1.3 Device fabrication and measurements

    To fabricate field-effect-transistor (FET) of single NB, the TaON NBs were suspended in ethanol by brief sonication and then deposited on Si substrate with 300 nm thick thermal oxide layer serving as gate oxide. The standard photolithography technique followed by Ti/Au (10 nm/100 nm) metal evaporation and lift off were used to define the source and drain electrodes electrically con-tacting the NBs. The current-voltage (-) and current- time (-) characteristics of the photodetector were measured by SM-4 probe system and Keithley 236 source meter. The spectroscopic response ranging from 350 nm to 900 nm was measured using a 300 W Xe lamp (HSXUV300), and a multi-grating monochromator (71SW151) with ordered sorting filters. Small Lasers and ultraviolet lights were also used. Optical powers were measured with FZ-A, UV-340B, and UV-B radiometers. All measurements were carried out in air at room temperature.

    2 Results and discussion

    A FET based on a single TaON NB is depicted in Fig. 3(a). AFM image of the FET is represented in Fig. 3(b), and the height profile of the corresponding NB is shown in inset. The nanobelt between two electrodes is 1.42 μm in width, 4.34 μm in length, and 92 nm in thickness. Fig. 3(c) displays-characteristics at gate voltage (g) from –20 V to 20 V. It shows that the conductance of the NB increases monotonically as gate voltage increases, indicating that TaON NB is an n-type semiconductor. The transfer characteristic of the FET at bias of 1 V is shown in Fig. 3(d). Theds-gplot shows a threshold voltage (th) of about 16 V, and a linear-region transconductancem(dds/dg) of 3.59×10–12A/V. An on-off ratio of 3.4 is measured. The electronic mobility () can be calculated from the following equations:=m/(0ds), whereandare width and length of channel, respectively, and0is the gate capacitance. Assuming a parallel plate capacitor model,0=0r/, whereis the dielectric constant (r=3.9 for SiO2,0= 8.854×10–12F/m), andis the thickness (300 nm) of the gate oxide layer[28]. From above equation, the mobility is calculated to be 9.53×10–4cm2/(V·s).

    Fig. 1 (a) XRD pattern, (b) low-magnification SEM image (inset: light photograph), and (c) high-magnification SEM image of TaON nanobelts; (d) TEM image of a single TaON nanobelt withinset in the middle showing corresponding HRTEM image, and inset on the upper right corner showing FFT pattern of HRTEM image

    Fig. 2 (a) XRD pattern (a peak with star representing Ta2O5, and the rest peaks representing TaON), (b) low-magnification SEM image (inset: light photograph), and (c) TEM image of Ta2O5@TaON composite nanobelts; (d) TEM image of a single Ta2O5@TaON nanobelt; (e, f) HRTEM images of square A and B in (d), respectively with insets showing FFT patterns of corresponding HRTEM images

    Fig. 3 (a) Scheme of FET based on a single TaON nanobelt; (b) Overlooked AFM image of the FET with inset showing size profile of the nanobelt; (c) Ids-Vds plots at different Vg; (d) Ids-Vg plot at Vds= 1 V

    Fig. 4(a) shows a TaON NB FET which the channel is 0.71 μm in width and 8.5 μm in length, respectively. Fig. 4(b) is the-curves of the TaON NB FET exposed to different wavelength light and under dark conditions, which exhibits good photoresponse from 254 nm to 850 nm. Based on the data, responsivities to 254, 365, 405, 532, 650, 780 and 850 nm at a bias of 5 V are 199, 237, 347, 53, 45, 28, and 47 mA/W, respectively. The responsivity (R) and external quantum efficiency () are related to the number of electron-hole pairs excited by one absor-bed photon, so highRandcorrespond to the high sensitivity.R= Δ/(PS), and=hcR/(), where Δis the difference between the illumination current and the dark current,is the light power intensity,is the irradiated area, andis the light wavelength[24]. Fig. 4(c) shows the responsivities of the FET from 350 nm to 900 nm, so the cut-off wavelength is about 900 nm. As wave-length increases, the change trend is similar to UV-Vis absorption spectrum of the NBs (inset in Fig. 4(c)). Fig. 4(d) shows the-curve of the FET under illumination of 405 nm light with a power of 42 mW/cm2at a bias of 5 V with a photo-switch period of 1 s. Based on data of Fig. 4(d),405 nm= 249 mA/W,=7.2×105%, and PCR is 11. Here the responsivity is lower than that of Fig. 4(b), which can be attributed to the fact that current recovery needs more time under photoswitch. Fig. 4(e) displays the local-magnitude curve from 3.2 s to 5.6 s in Fig. 4(d), showing that the rise and recovery time of the photoswitch current are less than 0.2 s, limited by instrument. Fig. 4(f) is the-curve of the FET under illumination of 405 nm light with the same power and bias voltage with a photoswitch period of 50 s, showing good stability of the photodetector.

    Fig. 5(a) reveals micrograph of the FET based on a single Ta2O5@TaON NB. The nanobelt between two electrodes is 1.4 μm wide and 7.1 μm long, respectively. Fig. 5(b) exhibts the responsivities of the FET to different wavelength light, showing the cut-off wavelength of about 900 nm. The change trend is similar to UV-Vis absorption spectrum of the NBs (inset). Here the responsivity at 350 nm approaches that at 400 nm, which may be attributed to the fact that photogenerating electrons of Ta2O5join in photocurrents because Ta2O5has only strong absorption at UV region. Fig. 5(c) shows the-curves of the FET exposed to different-wavelength light. It also shows good photosensitive properties from 254 nm to 850nm. Fig. 5(d) shows the-curve of the FET under illumination of 405 nm light (42 mW/cm2) at a bias of 5 V with a photoswitch period of 50 s. Here405 nm,, andare 3.9 mA/W, 1.1×104%, and 2, respectively, and rise and decay time of the photoswitch currents is less than 0.2 s, limited by instrument. For comparison, a few results are included in Table 1. Based on Table 1, single TaON NB photodetector has higher responsivity than single-layer MoS2and single GaS-nanobelt. Compared with Ta3N5-NB photodetector, the TaON NB photo-dete-ctor has lower responsivity, but higher, so it is still good photodetector. Under the same illumination condi-tions, the single TaON NB photodetector higherand responsivity than the single Ta2O5@ TaON NB photo-detector, so the former is superior to the latter. It may be attributed that Ta2O5@TaON NB contains less TaON than TaON NB, and bandgap of Ta2O5(3.9 eV) is greater than that of TaON (2.2 eV), so that photogenerating electrons of the composite NB reduce under illumination of the same light, so the photoresponse dwindles.

    Fig. 4 (a) Photograph of a single TaON nanobelt FET, (b) I-V characteristics of the FET illuminated and unilluminated with different wavelength light, (c) responsivities of the FET to different wavelengths with inset showing UV-Vis absorption spectrum of TaON NBs, (d, f) transient photoresponses of the FET illuminated by 405 nm (42 mW/cm2) light pulse chopped with a photoswitch period of 1 and 50 s at bias of 5 V and (e) local magnification of (d) from 3.2 s to 5.6 s

    3 Conclusion

    In the work, a Ta2O5NB template-synthesis route to TaON NB has been provided, which confirms that template- conversion is an efficient way to prepare nano-wires (or NBs). Ta2O5@TaON composite NBs can be also prepared by controlling conditions. The phototransistors based on both individual nanobelts show good responses from 254 nm to 850 nm. Compared with Ta2O5@TaON NB, TaON NB shows higher responsivity and, but both may still become good candidates for optoelectronic devices, and can even be used in photocatalysis field.

    Fig. 5 (a) Photography of FET based on a single Ta2O5@TaON nanobelt, (b) photoresponsivities of the FET to different wavelengths with inset showing UV-Vis absorption spectrum of Ta2O5@TaON NBs, (c) I-V characteristics of the FET unilluminated illuminated with different wavelength light, and (d) transient responses of the FET illuminated with a 405 nm (42 mW/cm2) light pulse chopped with a photoswitch period of 50 s at a bias voltage of 5 V

    Table 1 Comparision of TaON NB photodetector with others reported

    [1] GLUSCHKE J G, SEIDL J, BURKE A M,. Achieving short high-quality gate-all-around structures for horizontal nanowire fieldeffect transistors., 2019, 30(6): 064001–1–7.

    [2] LIANG J R, ZHAO Y R, ZHU K L,. Synthesis and room temperature NO2gas sensitivity of vanadium dioxide nanowire structures by chemical vapor deposition., 2019, 669: 537–543.

    [3] ZHANG Y L, WU X C, TAO Y R,. Fabrication and field-emission performance of zirconium disulfide nanobelt arrays., 2008(23): 2683–2685.

    [4] WU X C, HONG J M, TAO Y R,. Controlled growth and field-emission properties of NbSe2micro/nanostructured films., 2010, 10(10): 6465–6472.

    [5] TAO Y R, WU X C, XIONG W W. Flexible visible-light photodetectors with broad photoresponse based on ZrS3nanobelt films., 2014, 10(23): 4905–4911.

    [6] TAO Y R, WU J J, WU X C. Enhanced ultraviolet-visible light responses of phototransistors based on single and a few ZrS3nanobelts., 2015, 7(34): 14292–14298.

    [7] TIAN W, ZHANG C, ZHAI T Y,. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms.,2014, 26(19): 3088–3093.

    [8] VETTORI M, PIAZZA V, CATTONI A,. Growth optimization and characterization of regular arrays of GaAs/AlGaAs core/shell nanowires for tandem solar cells on silicon., 2019, 30(8): 08400–1–15.

    [9] GU S S, LOU Z, MA X D,. CuCo2O4nanowires grown on a Ni wire for high-performance flexible fiber supercapacitors., 2015, 2(7): 1042–1047.

    [10] PENG L, HU L F, FANG X S. Low-dimensional nanostructure ultraviolet photodetectors., 2013, 25(37): 5321–5328.

    [11] GONG X, TONG M H, XIA Y J,. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm., 2009, 325(5948): 1665–1667.

    [12] BORUAH B D, MUKHERJEE A, MISRA A. Sandwiched assembly of ZnO nanowires between graphene layers for a self-powered and fast responsive ultraviolet photodetector., 2016, 27(9): 095206–1–11.

    [13] ZHAO Y M, FENG S L, JIANG H T,. Catalyst-free growth of a Zn2GeO4nanowire network for high-performance transfer-free solar-blind deep UV detection.,2019, 107: 1–4.

    [14] GERTMAN R, HARUSH A, VISOLY-FISHER I. Nanostructured photocathodes for infrared photodetectors and photovoltaics., 2015, 119(4): 1683–1689.

    [15] WU J J, TAO Y R, WU Y,. Ultrathin SnS2nanosheets of ultrasonic synthesis and their photoresponses from ultraviolet to near-infrared., 2016, 231: 211– 217.

    [16] HAFEEZ M, GAN L, LI H Q,. Large-area bilayer ReS2film/multilayer ReS2flakes synthesized by chemical vapor deposition for high performance photodetectors., 2016, 26(25): 4551–4560.

    [17] XIONG W W, CHEN J Q, WU X C,. Visible light detectors based on individual ZrSe3and HfSe3nanobelts., 2015, 3(9): 1929–1934.

    [18] TAO Y R, CHENJ Q, WU J J,Flexible ultraviolet-visible photodetector based on HfS3nanobelt film., 2016, 658: 6–11.

    [19] CHUN W J, ISHIKAWA A, FUJISAWA H,. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5by UPS and electrochemical methods., 2003, 107(8): 1798–1803.

    [20] BERTAUX S, REYNDERS P, HEINTZ J M,. New (oxy) nitride pearlescent pigments., 2005, 121 (1/2): 137–144.

    [21] CHEN S S, QI Y, HISATOMI T,. Efficient visible-light-driven Z-scheme overall water splitting using a MgTa2O6-xN/TaON heterostructure photocatalyst for H2evolution., 2015, 54 (29): 8498–8501.

    [22] ITO S, THAMPI K P, COMTE P,. Highly active meso- microporous TaON photocatalyst driven by visible light., 2005(2): 268–270.

    [23] NAKAMURA R, TANAKA T, NAKATO Y. Oxygen photoevolution on a tantalum oxynitride photocatalyst under visible-light irradiation: how does water photooxidation proceed on a metal- oxynitride surface?, 2005, 109(18): 8920–8927.

    [24] WU X C, TAO Y R, LI L,. Centimeter-long Ta3N5nanobelts: synthesis, electrical transport, and photoconductive properties., 2013, 24 (17): 175701.

    [25] WU X C, TAO Y R, GAO Q X,. Superconducting TaS2-xIhierarchical nanostructures., 2009(28): 4290–4292.

    [26] WU X C, TAO Y R, GAO Q X. Fabrication of TaS2nanobelt arrays and their enhanced field-emission., 2009(40): 6008–6010.

    [27] XIE X, KWOK S Y, LU Z Z,. Visible-NIR photodetectors based on CdTe nanoribbons., 2012, 4(9): 2914–2919.

    [28] YIN Z Y, LI H, LI H,. Single-layer MoS2phototransistors., 2012, 6(1): 74–80.

    [29] HU P A, WANG L F, YOON M,. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates., 2013, 13(4): 1649–1654.

    基于單根TaON納米帶的光晶體管與紫外到近紅外響應(yīng)

    陶友榮, 陳晉強(qiáng), 吳興才

    (南京大學(xué) 化學(xué)化工學(xué)院, 教育部介觀材料重點(diǎn)實(shí)驗(yàn)室, 配位化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 南京 210023)

    用Ta2O5納米帶模板轉(zhuǎn)化法控制合成TaON納米帶, 典型的納米帶長(zhǎng)約0.5 cm, 橫截面積40 nm×200 nm~ 400 nm×5600 nm。在SiO2/Si基片上加工出TaON單根納米帶的場(chǎng)效應(yīng)晶體管; 該晶體管的電子遷移率和開關(guān)比分別為9.53×10–4cm2/(V·s)和3.4, 在254~850 nm范圍內(nèi)顯示良好的光響應(yīng)。在405 nm (42 mW/cm2)的光照下, 外加5.0 V的偏壓時(shí), 光響應(yīng)為249 mA/W, 光開關(guān)比為11。因此, 該器件具有良好的光探測(cè)性, TaON納米帶可作為光電子器件的候選材料。另外, 實(shí)驗(yàn)還控制合成出Ta2O5@TaON納米帶, 并加工成單根納米帶的場(chǎng)效應(yīng)晶體管, 雖然相同光照條件下的光響應(yīng)弱于TaON 納米帶, 但仍算是一種好的光電材料。

    TaON納米帶; 模板合成; 場(chǎng)效應(yīng)晶體管; 光探測(cè)器

    TQ174

    A

    2018-12-14;

    2019-03-12

    National Natural Science Foundation of China (21673108); Open Foundations of State Key Laboratory of Coordination Chemistry (SKLCC1622)

    TAO You-Rong (1964–), female, associate professor. E-mail: yrtao@nju.edu.cn

    WU Xing-Cai, Professor. E-mail: wuxingca@nju.edu.cn

    1000-324X(2019)09-1004-07

    10.15541/jim20180584

    猜你喜歡
    場(chǎng)效應(yīng)單根偏壓
    僅吻合單根指動(dòng)脈指尖再植的療效分析
    場(chǎng)效應(yīng)晶體管短路失效的數(shù)值模型
    220kV輸電線路重冰區(qū)單根大截面導(dǎo)線選型
    電線電纜(2018年2期)2018-05-19 02:03:42
    基于CH3NH3PbI3單晶的Ta2O5頂柵雙極性場(chǎng)效應(yīng)晶體管
    預(yù)留土法對(duì)高鐵隧道口淺埋偏壓段的影響
    單根電力線接入的LED調(diào)光器與調(diào)光驅(qū)動(dòng)電源
    建筑學(xué)專業(yè)設(shè)計(jì)系列課程“場(chǎng)效應(yīng)”教學(xué)模式探索與實(shí)踐
    淺埋偏壓富水隧道掘進(jìn)支護(hù)工藝分析
    河南科技(2015年4期)2015-02-27 14:21:05
    灰色理論在偏壓連拱隧道中的應(yīng)用
    基于TPS40210的APD偏壓溫補(bǔ)電路設(shè)計(jì)
    亚洲四区av| 床上黄色一级片| 久久精品91蜜桃| 尾随美女入室| 嫁个100分男人电影在线观看| 自拍偷自拍亚洲精品老妇| 欧美人与善性xxx| 又爽又黄无遮挡网站| 岛国在线免费视频观看| 黄片wwwwww| 国产免费一级a男人的天堂| 亚洲性久久影院| 校园春色视频在线观看| 一本一本综合久久| 一本久久中文字幕| 亚洲七黄色美女视频| 嫩草影院精品99| eeuss影院久久| 在线观看免费视频日本深夜| 久久久精品大字幕| 中文字幕精品亚洲无线码一区| 久久精品影院6| 亚洲精品日韩av片在线观看| 看片在线看免费视频| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人av| 日韩精品青青久久久久久| 欧美区成人在线视频| 深夜精品福利| 成人亚洲精品av一区二区| bbb黄色大片| 一级毛片久久久久久久久女| 亚洲熟妇中文字幕五十中出| 久久久午夜欧美精品| 日本熟妇午夜| 国产aⅴ精品一区二区三区波| 最近最新免费中文字幕在线| 国产精品一及| 身体一侧抽搐| 国产精品亚洲美女久久久| 成人精品一区二区免费| 美女被艹到高潮喷水动态| 国产人妻一区二区三区在| 一级毛片久久久久久久久女| 精品免费久久久久久久清纯| 最近视频中文字幕2019在线8| 久久精品国产亚洲av香蕉五月| 一级黄色大片毛片| 真人做人爱边吃奶动态| 极品教师在线视频| 免费搜索国产男女视频| 综合色av麻豆| 国产精品久久久久久精品电影| 婷婷精品国产亚洲av在线| 日韩欧美 国产精品| 亚洲av二区三区四区| 中文字幕久久专区| h日本视频在线播放| 婷婷丁香在线五月| 国产视频内射| 夜夜夜夜夜久久久久| 亚洲欧美精品综合久久99| 国产精品永久免费网站| 精品人妻一区二区三区麻豆 | 国产在视频线在精品| 性色avwww在线观看| 国产精品久久视频播放| 亚洲最大成人av| 91麻豆精品激情在线观看国产| 欧美bdsm另类| 日日撸夜夜添| 熟女电影av网| 日本熟妇午夜| 91在线观看av| 亚洲av中文字字幕乱码综合| 中文资源天堂在线| 亚洲成av人片在线播放无| 两人在一起打扑克的视频| 国产真实乱freesex| 极品教师在线免费播放| 久久精品国产亚洲av香蕉五月| 一a级毛片在线观看| 午夜影院日韩av| 小说图片视频综合网站| 成年版毛片免费区| 999久久久精品免费观看国产| 久久久久免费精品人妻一区二区| 天堂影院成人在线观看| 色尼玛亚洲综合影院| 国内精品久久久久久久电影| 国内精品久久久久久久电影| 亚洲va在线va天堂va国产| 日本a在线网址| 丰满乱子伦码专区| 深爱激情五月婷婷| 99久久精品热视频| 日韩精品有码人妻一区| 18禁黄网站禁片免费观看直播| 村上凉子中文字幕在线| 亚洲乱码一区二区免费版| 亚洲美女黄片视频| 亚洲自拍偷在线| 最新中文字幕久久久久| 免费看a级黄色片| 久久欧美精品欧美久久欧美| 999久久久精品免费观看国产| 一个人看的www免费观看视频| 小说图片视频综合网站| 亚洲精品一卡2卡三卡4卡5卡| 熟女电影av网| 成人毛片a级毛片在线播放| 成人av一区二区三区在线看| 国产爱豆传媒在线观看| 日韩中文字幕欧美一区二区| 日韩精品中文字幕看吧| 午夜视频国产福利| 午夜免费男女啪啪视频观看 | 欧美色视频一区免费| 国模一区二区三区四区视频| 99九九线精品视频在线观看视频| 国产一区二区激情短视频| 日韩欧美一区二区三区在线观看| 亚洲熟妇中文字幕五十中出| 久久久久久久久大av| 日日撸夜夜添| 久久这里只有精品中国| 日本在线视频免费播放| 99久久精品国产国产毛片| 俺也久久电影网| 1024手机看黄色片| 午夜精品在线福利| bbb黄色大片| 日韩欧美在线二视频| 中文字幕人妻熟人妻熟丝袜美| 99热精品在线国产| 91狼人影院| 91在线观看av| 成人永久免费在线观看视频| 又紧又爽又黄一区二区| 欧美不卡视频在线免费观看| 国产激情偷乱视频一区二区| 国产精品人妻久久久久久| 可以在线观看毛片的网站| 亚洲中文日韩欧美视频| 亚洲无线观看免费| 伦理电影大哥的女人| 熟女电影av网| 国产免费一级a男人的天堂| 精品不卡国产一区二区三区| 国内精品一区二区在线观看| 又爽又黄无遮挡网站| 久久精品国产鲁丝片午夜精品 | 婷婷亚洲欧美| 成人毛片a级毛片在线播放| 12—13女人毛片做爰片一| 色哟哟哟哟哟哟| 亚洲成人精品中文字幕电影| 日韩欧美国产一区二区入口| 久久精品人妻少妇| 此物有八面人人有两片| 自拍偷自拍亚洲精品老妇| av天堂在线播放| 最好的美女福利视频网| 嫩草影视91久久| av中文乱码字幕在线| 午夜福利在线在线| 亚洲 国产 在线| 欧美+亚洲+日韩+国产| 色在线成人网| 日日啪夜夜撸| 国产 一区精品| 日韩中字成人| 国产亚洲91精品色在线| 久久精品影院6| 欧美黑人欧美精品刺激| 免费高清视频大片| 最近视频中文字幕2019在线8| 国产黄色小视频在线观看| 99国产精品一区二区蜜桃av| 日本 欧美在线| 国产真实乱freesex| 在线免费观看不下载黄p国产 | 99久久久亚洲精品蜜臀av| 国产一区二区三区视频了| av在线蜜桃| 精品久久久久久,| 亚洲国产精品sss在线观看| 搡老岳熟女国产| 国产亚洲精品久久久久久毛片| 亚洲第一区二区三区不卡| 国内精品久久久久精免费| 国产探花在线观看一区二区| 欧美一级a爱片免费观看看| 麻豆一二三区av精品| 日韩一区二区视频免费看| 日韩在线高清观看一区二区三区 | 久久久久久久久久成人| 天天一区二区日本电影三级| 在线天堂最新版资源| 日韩欧美 国产精品| 国产av在哪里看| 亚洲美女视频黄频| 精品国产三级普通话版| 亚洲国产欧洲综合997久久,| 露出奶头的视频| 日本a在线网址| 亚洲五月天丁香| 最近在线观看免费完整版| 精品99又大又爽又粗少妇毛片 | 麻豆久久精品国产亚洲av| av中文乱码字幕在线| 深夜a级毛片| 欧美一区二区国产精品久久精品| 欧美性感艳星| 日本爱情动作片www.在线观看 | 狠狠狠狠99中文字幕| 91在线精品国自产拍蜜月| 欧美成人a在线观看| 成人无遮挡网站| 亚洲av免费高清在线观看| 嫁个100分男人电影在线观看| 午夜福利在线观看吧| 亚洲国产欧美人成| 国产成人福利小说| 亚洲自偷自拍三级| 天堂√8在线中文| 亚洲狠狠婷婷综合久久图片| 亚洲av成人av| 国产高清有码在线观看视频| а√天堂www在线а√下载| 成人特级av手机在线观看| 乱人视频在线观看| 亚洲精品影视一区二区三区av| 欧美xxxx黑人xx丫x性爽| 久久6这里有精品| 毛片女人毛片| 夜夜夜夜夜久久久久| 成年免费大片在线观看| 国产单亲对白刺激| 国产大屁股一区二区在线视频| 99热这里只有是精品50| 成人综合一区亚洲| 国产精品电影一区二区三区| 成人欧美大片| 变态另类成人亚洲欧美熟女| 久久热精品热| 深夜精品福利| 国内精品一区二区在线观看| 午夜福利在线观看免费完整高清在 | 嫩草影院精品99| www.www免费av| 午夜精品在线福利| 亚洲精品乱码久久久v下载方式| 精品国内亚洲2022精品成人| 夜夜看夜夜爽夜夜摸| 日日啪夜夜撸| 91麻豆精品激情在线观看国产| 国产伦人伦偷精品视频| 国产精华一区二区三区| 久久99热6这里只有精品| 精品国内亚洲2022精品成人| 成年女人看的毛片在线观看| 香蕉av资源在线| 亚洲av第一区精品v没综合| 能在线免费观看的黄片| 亚洲美女搞黄在线观看 | 久久久久久久亚洲中文字幕| 亚洲成av人片在线播放无| 久久香蕉精品热| 97碰自拍视频| 久久精品国产清高在天天线| a在线观看视频网站| 在线免费十八禁| 精品99又大又爽又粗少妇毛片 | 精品久久久久久久久av| 天美传媒精品一区二区| 禁无遮挡网站| x7x7x7水蜜桃| 国产伦精品一区二区三区四那| 22中文网久久字幕| 哪里可以看免费的av片| x7x7x7水蜜桃| 在线播放无遮挡| 91久久精品电影网| eeuss影院久久| 国产高清视频在线观看网站| 亚洲va在线va天堂va国产| 成熟少妇高潮喷水视频| 国产精品99久久久久久久久| 91久久精品电影网| 91麻豆精品激情在线观看国产| 天天躁日日操中文字幕| 毛片女人毛片| 国产精品一区二区免费欧美| 欧美+日韩+精品| 成人毛片a级毛片在线播放| 日韩欧美三级三区| 麻豆国产av国片精品| 久久久久精品国产欧美久久久| 国产精品一区二区三区四区免费观看 | 午夜激情福利司机影院| 亚洲久久久久久中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 悠悠久久av| 草草在线视频免费看| 在线观看午夜福利视频| 蜜桃亚洲精品一区二区三区| 亚洲中文日韩欧美视频| 国产精品久久久久久亚洲av鲁大| 欧美黑人欧美精品刺激| 午夜免费激情av| 亚洲精品乱码久久久v下载方式| 国产精品98久久久久久宅男小说| 久久久久久九九精品二区国产| 国产一区二区在线观看日韩| 国产精品女同一区二区软件 | 在线观看免费视频日本深夜| 国产午夜精品久久久久久一区二区三区 | 女人被狂操c到高潮| 国产激情偷乱视频一区二区| 一区二区三区激情视频| 国内揄拍国产精品人妻在线| 精品免费久久久久久久清纯| 在线免费观看不下载黄p国产 | 久久久久久伊人网av| 成人无遮挡网站| 日本三级黄在线观看| 免费av不卡在线播放| 久久婷婷人人爽人人干人人爱| 免费人成视频x8x8入口观看| 国产大屁股一区二区在线视频| 亚洲专区中文字幕在线| 日本免费a在线| 特大巨黑吊av在线直播| 国产黄片美女视频| 深夜a级毛片| 一夜夜www| 成年女人毛片免费观看观看9| 少妇高潮的动态图| 色吧在线观看| 国产亚洲av嫩草精品影院| 级片在线观看| 黄色日韩在线| 久久精品久久久久久噜噜老黄 | 丰满人妻一区二区三区视频av| 久久久久久久午夜电影| 久9热在线精品视频| 国内精品久久久久精免费| 国产一区二区三区视频了| 天堂动漫精品| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 两个人的视频大全免费| 久久精品国产清高在天天线| 女的被弄到高潮叫床怎么办 | 亚洲自偷自拍三级| 久久九九热精品免费| 欧美潮喷喷水| 久久热精品热| 日韩av在线大香蕉| 国内久久婷婷六月综合欲色啪| 色综合色国产| 3wmmmm亚洲av在线观看| 色精品久久人妻99蜜桃| 乱码一卡2卡4卡精品| 亚洲成av人片在线播放无| 两个人的视频大全免费| 免费电影在线观看免费观看| 亚洲欧美清纯卡通| 又黄又爽又刺激的免费视频.| 全区人妻精品视频| АⅤ资源中文在线天堂| 久99久视频精品免费| av在线亚洲专区| 国产精品综合久久久久久久免费| 五月玫瑰六月丁香| 亚洲精品影视一区二区三区av| 又爽又黄无遮挡网站| 亚洲性久久影院| 亚洲自拍偷在线| 偷拍熟女少妇极品色| 色视频www国产| 欧美日韩国产亚洲二区| 午夜影院日韩av| 亚洲性夜色夜夜综合| 国产成人av教育| 欧美潮喷喷水| 日韩精品青青久久久久久| 国国产精品蜜臀av免费| 韩国av在线不卡| 成人永久免费在线观看视频| 美女免费视频网站| 丝袜美腿在线中文| 久久久久久久亚洲中文字幕| 日韩中文字幕欧美一区二区| 亚洲av成人av| 热99re8久久精品国产| 欧美日韩国产亚洲二区| 3wmmmm亚洲av在线观看| 中亚洲国语对白在线视频| 99热这里只有精品一区| 欧美日韩综合久久久久久 | 他把我摸到了高潮在线观看| 日韩欧美免费精品| 欧美xxxx性猛交bbbb| 小蜜桃在线观看免费完整版高清| 亚洲中文字幕一区二区三区有码在线看| 3wmmmm亚洲av在线观看| 久久久久久久精品吃奶| 国产精品久久电影中文字幕| 黄色一级大片看看| 香蕉av资源在线| 可以在线观看的亚洲视频| 不卡视频在线观看欧美| 久久婷婷人人爽人人干人人爱| 精品欧美国产一区二区三| 国产久久久一区二区三区| 在线a可以看的网站| 欧美精品国产亚洲| 久9热在线精品视频| 波多野结衣巨乳人妻| 免费看a级黄色片| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线播| 又紧又爽又黄一区二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品粉嫩美女一区| 三级毛片av免费| 国产成人一区二区在线| 成人三级黄色视频| 国产精品久久视频播放| 又爽又黄a免费视频| 动漫黄色视频在线观看| 精品久久国产蜜桃| 麻豆精品久久久久久蜜桃| 熟妇人妻久久中文字幕3abv| 午夜福利欧美成人| videossex国产| 九色国产91popny在线| 国产三级中文精品| 亚洲七黄色美女视频| 国内久久婷婷六月综合欲色啪| 麻豆成人av在线观看| 亚洲精品国产成人久久av| 91麻豆av在线| 日韩,欧美,国产一区二区三区 | 国产老妇女一区| 欧美黑人欧美精品刺激| 亚洲欧美激情综合另类| 日本成人三级电影网站| 精品一区二区三区av网在线观看| 亚洲成人免费电影在线观看| 国产黄a三级三级三级人| 啦啦啦啦在线视频资源| 黄色日韩在线| 欧美性猛交黑人性爽| 一卡2卡三卡四卡精品乱码亚洲| 少妇熟女aⅴ在线视频| 久久人人爽人人爽人人片va| 成人鲁丝片一二三区免费| 免费av不卡在线播放| 国产一区二区亚洲精品在线观看| 99久国产av精品| 日本黄大片高清| 超碰av人人做人人爽久久| 久久国产精品人妻蜜桃| 美女大奶头视频| 在现免费观看毛片| 韩国av一区二区三区四区| 精品乱码久久久久久99久播| 久久精品国产99精品国产亚洲性色| 我的老师免费观看完整版| 少妇裸体淫交视频免费看高清| 日本在线视频免费播放| 精品一区二区三区人妻视频| 国国产精品蜜臀av免费| 校园春色视频在线观看| 身体一侧抽搐| 久久6这里有精品| 国产激情偷乱视频一区二区| 看十八女毛片水多多多| 精品久久久久久久久久久久久| 嫩草影视91久久| 免费大片18禁| 联通29元200g的流量卡| 国产精品福利在线免费观看| 在线观看午夜福利视频| 人人妻人人看人人澡| 香蕉av资源在线| 女的被弄到高潮叫床怎么办 | 成人国产麻豆网| 精品无人区乱码1区二区| 午夜福利在线观看免费完整高清在 | 麻豆国产97在线/欧美| 久久久国产成人精品二区| 亚洲国产高清在线一区二区三| 超碰av人人做人人爽久久| 99热这里只有是精品50| 午夜福利18| 久久久色成人| 少妇高潮的动态图| 亚洲性夜色夜夜综合| 日韩大尺度精品在线看网址| 欧美日韩精品成人综合77777| 可以在线观看的亚洲视频| 欧美区成人在线视频| 国产黄色小视频在线观看| av专区在线播放| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 久久香蕉精品热| 欧美激情在线99| 亚洲国产精品合色在线| a级毛片a级免费在线| av在线老鸭窝| 精华霜和精华液先用哪个| 国产淫片久久久久久久久| 欧美最新免费一区二区三区| 在线观看美女被高潮喷水网站| 精品人妻一区二区三区麻豆 | 久久久色成人| 国产精品野战在线观看| 国产av不卡久久| 国产aⅴ精品一区二区三区波| 午夜a级毛片| 特大巨黑吊av在线直播| 此物有八面人人有两片| 国产人妻一区二区三区在| 国产一级毛片七仙女欲春2| 亚洲av免费高清在线观看| 婷婷精品国产亚洲av| 制服丝袜大香蕉在线| 在线国产一区二区在线| 99在线人妻在线中文字幕| 乱码一卡2卡4卡精品| 99久久中文字幕三级久久日本| 精品久久久久久成人av| 成人三级黄色视频| 国产单亲对白刺激| 国产av在哪里看| 免费在线观看成人毛片| 色哟哟哟哟哟哟| 91在线精品国自产拍蜜月| 天堂av国产一区二区熟女人妻| 欧美精品国产亚洲| 欧美日韩亚洲国产一区二区在线观看| 人人妻人人澡欧美一区二区| 日本一二三区视频观看| 日韩国内少妇激情av| 两性午夜刺激爽爽歪歪视频在线观看| 色综合亚洲欧美另类图片| 国产精品伦人一区二区| 全区人妻精品视频| 免费搜索国产男女视频| 精品一区二区三区av网在线观看| 人人妻,人人澡人人爽秒播| 69人妻影院| 内射极品少妇av片p| 国产伦精品一区二区三区视频9| 国内精品久久久久久久电影| av.在线天堂| 18禁在线播放成人免费| 精品久久久久久久久久久久久| 99久久精品热视频| 亚洲成人久久爱视频| 欧美+日韩+精品| 日日撸夜夜添| 国产精品久久久久久久久免| 欧美三级亚洲精品| 黄色视频,在线免费观看| 国产探花在线观看一区二区| 国产精品无大码| 春色校园在线视频观看| 国产黄片美女视频| 十八禁网站免费在线| 国产精品伦人一区二区| 国产在线精品亚洲第一网站| 午夜福利在线在线| 在线免费观看不下载黄p国产 | 亚洲成人中文字幕在线播放| bbb黄色大片| 白带黄色成豆腐渣| 亚洲精品影视一区二区三区av| 欧洲精品卡2卡3卡4卡5卡区| 中文亚洲av片在线观看爽| or卡值多少钱| 日韩欧美国产在线观看| 欧美+亚洲+日韩+国产| 热99re8久久精品国产| 免费观看在线日韩| 亚洲无线在线观看| 又爽又黄a免费视频| 欧美日韩精品成人综合77777| 久久精品国产99精品国产亚洲性色| 全区人妻精品视频| 毛片一级片免费看久久久久 | 深夜a级毛片| 久久精品国产亚洲网站| 亚洲成人免费电影在线观看| 性插视频无遮挡在线免费观看| 免费看光身美女| 精品久久久久久久久av| 精品人妻一区二区三区麻豆 | 国产大屁股一区二区在线视频| 国产探花极品一区二区| 欧美黑人欧美精品刺激| 日本三级黄在线观看| 97人妻精品一区二区三区麻豆| 亚洲成a人片在线一区二区| 国产爱豆传媒在线观看| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看| av在线天堂中文字幕| 久久久久国产精品人妻aⅴ院| 嫩草影院精品99|