• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Zn, Mn doped Fe3O4 Nanoparticles with Tunable Size

    2019-09-12 06:29:36CHENGTianShengPANJiongXUYingYingBAOQunQunHUPingSHIJianLin
    無機(jī)材料學(xué)報(bào) 2019年8期
    關(guān)鍵詞:磁學(xué)中國科學(xué)院軀體

    CHENG Tian-Sheng, PAN Jiong, XU Ying-Ying, BAO Qun-Qun, HU Ping, SHI Jian-Lin

    Synthesis of Zn, Mn doped Fe3O4Nanoparticles with Tunable Size

    CHENG Tian-Sheng1,2,3, PAN Jiong4, XU Ying-Ying1,2,3, BAO Qun-Qun1,2,3, HU Ping1, SHI Jian-Lin1

    (1. State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Shanghai Tech University, Shanghai 201210, China; 4. Tongji University, Shanghai 200092, China)

    Zn, Mn doped Fe3O4magnetic nanoparticles have broad application prospects in biomedicine for their excellent magnetic properties. Therein, the most remarkable property of magnetic nanoparticles is size-dependent biomagnetic applications, and size variation also affect their magnetic characteristics. Therefore, based on the specific requirements of size for various biological applications, it is critical to regulate their size. In this study, we synthesized 5–20 nm Zn, Mn doped Fe3O4magnetic nanoparticles by changing reflux time duration, varying metal precursor and adding oil phase reducing agent (1,2-hexadecanediol). It is found that addition of 1,2-hexadecanediol isbeneficial to the formation of smaller nanoparticles, while metal chloride and longer reflux time are helpful to prepare larger particles. Additionally, there exists a positive correlation between particle size and saturation magnetization.

    Zn, Mn-Fe3O4nanoparticles; size regulation; magnetic characteristics

    Magnetic iron oxide nanoparticles (MNPs) have been researched extensively due to their promising applications for biomedicine such as hyperthermia[1-2], magnetic resonance imaging[3-4]and biolabeling[5]. Magnetic characteristics is highly significant for successful application of MNPs in biomedicine/biotechnology[6]. Recent studies suggest that a metal (Mn, Zn) dopant substitution strategy can achieve high magnetic performance[7-8]. The Zn, Mn doping level, a key factor, can be regulated by simply adjusting the original molar ratio of metal precursors. Moreover, when the ratio of doping Zn and Mn is 2:3, saturation magnetization (s) can reach its maximum[9].

    For decades, a variety of preparation methods of MNPs achieved in hydrolytic phase have been developed, including hydrothermal reaction[10], Sol-Gel process[11]and coprecipitation method[12]. Magnetic iron oxide nanoparticles can also be obtained by organic-phase thermal decomposition of metal precursor, for example, decomposition of Fe(acac)2followed by oxidation to Fe3O4in the presence of oleylamine and oleic acid[6,13]. Recent studies showed that organic-phase thermal decomposition methods could overcome the shortcomings of traditional hydrolytic one: it allows more strict control on particles uniformity and structure[14-15].

    Size-dependent biomagnetic applications are the most remarkable properties of MNPs[16-17]. Different biological applications have specific requirements on particle size. For example, in the separation of cells, the size of MNPs should be 8 to 10 nm[17-18], but magnetothermal therapy requires larger nanoparticles, resulting from their higher specific absorption rate[19-20]. On the other hand, the size variation also affects the coercivity (c) and saturation magnetization (s) of the magnetic nanoparticles. However, it remains a great challenge to control MNPs size due to the lack of sufficient understanding of formation mechanism of magnetic particles referring to nucleation and growth process[21]. Therefore, it is necessary to study the effects of related parameters on particle size so that we can synthesize magnetic particle with tunable size. In this study, we present a one-step preparation of 5-20 nm Zn, Mn doped Fe3O4(ZnMn-Fe3O4) nanoparticles, which can adapt to broader biomagnetic applications.

    1 Experimental

    Material Oleic acid (OAc) and Oleylamin (OAm) were purchased from Sigma-Aldrich. Other chemicals were purchased from Shanghai Aladdin Biochemical Technology Co. Ltd.

    Preparation of 5 nm ZnMn-Fe3O4nanoparticles Oleylamine (3 mmol), oleic acid (3 mmol), Fe(acac)3(1 mmol), Zn(acac)2(0.2 mmol) , Mn(acac)2(0.3 mmol) and 1,2-hexadecanediol (5 mmol) were placed in a 50 mL three-neck round-bottom flask in the presence of 15 mL benzyl ether. The mixture was heated to 200 ℃ for 30 min and then to 300 ℃ for 1 h under argon atmosphere. After cooling to room temperature, excess ethanol was added to the solution, then a black powder precipitated and was collected by centrifugation. The magnetic nanoparticles were redispersed in cyclohexane.

    Preparation of 10 nm ZnMn-Fe3O4nanoparticles Oleylamine (3 mmol), oleic acid (3 mmol), Fe(acac)3(1 mmol), Zn(acac)2(0.2 mmol) and Mn(acac)2(0.3 mmol) were placed in a 50 mL three-neck round-bottom flask in the presence of 15 mL benzyl ether. The mixture was heated to 200 ℃ for 30 min and then to 300 ℃ for 1 h under argon atmosphere. After cooling to room temperature, excess ethanol was added to the solution, then a black powder precipitated and was collected by centrifugation. The magnetic nanoparticles were redispersed in cyclohexane.

    Preparation of 15 nm ZnMn-Fe3O4nanoparticles Oleylamine (3 mmol), oleic acid (3 mmol), Fe(acac)3(1 mmol), ZnCl2(0.2 mmol) and MnCl2(0.3 mmol) were placed in a 50 mL three-neck round-bottom flask in the presence of 15 mL benzyl ether. The mixture was heated to 200 ℃ for 30 min and then to 300 ℃ for 1 h under the atmosphere of argon. After cooling to room temperature, excess ethanol was added to the solution. The blackprecipitate was collected by centrifugation and washed with ethanol prior to redispersion in cyclohexane for further use. Similarly, by prolonging reaction time to 1.5 or 2 h, 20 nm ZnMn-Fe3O4nanoparticles can be prepared.

    Characterization Transmission electron microscopy (TEM) was performed on JEM-2100F instruments. The XRD studies were conducteda Rigaku D/MAX-2250V diffractometer with a Cu Kα radiation source (40 kV, 120 Ma). Magnetic measurements were performed on a Vibrating Sample Magnetometer (VSM). FT-IR spectra were recorded by an IRPRESTIGE-21 spectrometer (Shimadzu) using KBr pellets. Size distribution were measured on Nano-Zetasizer (Malvern Instruments Ltd.).

    2 Results and discussion

    Reductive effect As shown in Fig. 1(a), monodispersed ZnMn-Fe3O4nanoparticles about 5 nm were fabricated by decomposition of Fe(acac)2, Mn(acac)2and Zn(acac)2in the presence of oleylamine, oleic acid and 1,2-hexadecanediol. Under the same experimental conditions, if 1,2-hexadecanediol was not added, the size of particles increased from 5 nm to 10 nm (Fig. 1(b)), which were further proved by the alteration of size distribution (Fig. 1(c, d)). Organic-phase thermal decomposition in fact is a process that activates metal atoms to nucleate and grow[21-22], so the size of particles is mainly dependent on the nucleation and growth rate of metal atoms. Herein, the addition of strong reductive 1,2-hexadecanediol contributed to facile reduction of M(acac)2to M0(M=Zn, Mn), leading to faster consumption of metal acetylactone and nucleation of particles, as a result, smaller nanoparticles were formed.

    Fig. 1 TEM images of ZnMn-Fe3O4 nanoparticles and histograms of their size distributions obtained by Fe(acac)3, Mn(acac)2 and Zn(acac)2with (a, c) and without (b, d) adding 1,2-hexadecanediol

    Metal precursor effect Metal precursorsplay an important role in size regulation of magnetic nanoparticles. The size of nanoparticles synthesized by metal chloride as precursor is about 15 nm with narrow size distribution (Fig. 2(a, b)). The high resolution TEM (Fig. 2(c)) and selected area electron diffraction (SAED) pattern (Fig. 2(d)) suggest that the particles have high-quality crystallinity. In contrast, using acetylacetone as metal precursor, the size of obtained nanoparticles is about 10 nm (Fig. 1(b)). According to chemical bond theory, metal chloride is more stable than metal acetylacetone,thus it requires higher decomposition temperature. Therefore, the addition of metal chloride may lead to slower nucleation rate, more metal precursor could deposit surrounding the nuclei formed in mixture and resulting in larger nanoparticles.

    Reflux time effect It is also important to study the effect of reaction time on the size of nanoparticles. In this work, we found that larger particles could be obtained by longer reflux time. As shown in Fig. 3(a), when reflux time was postponed from 1 h to 1.5 h under the same reaction condition, the particles size increased from 15 nm (Fig. 2(a)) to 20 nm (Fig. 3(a)), which were further proved by the alteration of size distribution (Fig. 3(c)). However, further prolongation of the reflux time to 2 h resulted in no distinct increase in the size of nanoparticles (Fig. 3(b, d)), which indicates that the nanocrystals will stop growing when the reaction reaches homeostasis. In the meantime, it seems to produce new nanocrystal with longer reflux time (Fig. 3(b)).

    Fig. 2 TEM image (a), histograms of their size distributions (b), high-resolution TEM image (c) and selected area electron diffraction (SAED) pattern (d) of 15 nm-sized ZnMn-Fe3O4 nanoparticles prepared from Fe(acac)3, MnCl2 and ZnCl2

    Fig. 3 TEM images of 20 nm-sized ZnMn-Fe3O4 nanoparticles synthesized from Fe(acac)3, MnCl2 and ZnCl2 with different reflux time durations of 1.5 h (a) and 2 h (b), and the corresponding histograms of size distributions of 1.5 h (c) and 2 h (d)

    The XRD pattern (Fig. 4(a)) shows a single-phase spinel structure of 5–20 nm ZnMn-Fe3O4nanoparticles and the relative intensity and position of all diffraction peaks/rings accord well with previously reported Zn, Mn doped Fe3O4powder[23], which indicates that crystal structure has little relevance with particle size. Two characteristic stretching were recorded in FT-IR spectrum at 2920 and 2850 cm-1, 1630, and 1410 cm-1corresponding to H-C-H, C-O stretching, respectively (Fig. 4(b)), which reveals that particles are coated by oleylamine and oleic acid. In this case, in addition to acting as reductive, oleylamine and oleic acid also work as surfactant. The organic surfactants can be removed by 2,3-dimercaptosuccinic acid (DMSA) to yield water-soluble nanoparticles[20]. The Zn, Mn doping levels were measured by energy dispersive X-ray spectroscopy (EDS) and the results indicate that 5–20 nm particles have similar element composition (Fig. 4(c)).

    Fig. 4 XRD patterns (a), FT-IR spectra (b) and energy dispersive X-ray spectroscopy (EDS) data (c) of 5 nm, 10 nm, 15 nm, and 20 nm-sized ZnMn-Fe3O4 nanoparticles

    Fig. 5 Magnetic hysteresis curve (a) and d-1-dependent Ms curve (b) of 5–20 nm-sized ZnMn-Fe3O4 nanoparticles

    Size effect on magnetic characteristics Magnetic characteristics of MNPs with different size were measured by VSM at 300 K, and the results are shown in Fig. 5(a). The hysteresis curve of MNPs in 5–15 nm exhibits superparamagnetism without remnant magnetization. However, 20 nm particles are ferromagnetic with a coercivity of 150 Oe (1 Oe≈79.6 A/m). Saturation magne-tization (s) value of MNPs gradually increased as the size of MNPs increased from 5 to 20 nm, and reached the maximum of 77.7 emu/g(emu/g=4π×10–7Wb?m/kg). As Fig. 5(b) shown,sand d-1(the reciprocal of the nan-oparticles size) display an approximate linear relation-ship, which is consistent with previous reports[24-25].

    3 Conclusion

    We have successfully synthesized 5–20 nm ZnMn-Fe3O4by changing metal precursors, varying reflux time and adding 1,2-hexadecanediol. These ferrite nanoparticles with different particle sizes could adapt to the needs of extensive biomagnetic applications. Smaller sized nanoparticles could be obtained by introducing extra reducing power 1,2-hexadecanediol, andwe can prepare larger particles by using more stable metal precursor and extending reflux time. These seem to indicate that powerful reducing agent and metal precursor with low decomposition temperature will yield smaller particles. Meanwhile, the magnetic characteristics of ZnMn-Fe3O4are closely related to particle size. Understanding how the different parameters impact on particle size is extremely critical to develop a more predictive and controllable way to synthesize the MNPs.

    [1] Noh S H, Na W, Jang J T,Nanoscale magnetism controlsurface and exchange anisotropy for optimized ferrimagnetic hysteresis, 2012, 12(7): 3716–3721.

    [2] Di Corato R, Bealle G, Kolosnjaj-Tabi J,Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes., 2015, 9(3): 2904–2916.

    [3] Na H B, Song I C, Hyeon T. Inorganic nanoparticles for MRI contrast agents, 2009, 21(21): 2133–2148.

    [4] Gao J H, Gu H W, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications., 2009, 42(8): 1097–1107.

    [5] Wan Y, Cheng G, Liu X,Rapid magnetic isolation of extracellular vesicleslipid-based nanoprobes., 2017, 1: 0058.

    [6] Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application, 2007, 46(8): 1222–1244.

    [7] Hochepied J F, Pileni M P. Magnetic properties of mixed cobalt- zinc ferrite nanoparticles., 2000, 87(5): 2472–2478.

    [8] Arulmurugan R, Jeyadevan B, Vaidyanathan G,Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-pecipitation., 2005, 288: 470–477.

    [9] Jang J T, Nah H, Lee J H,Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles, 2009, 48(7): 1234–1238.

    [10] Deng H, Li X, Peng Q,Monodisperse magnetic single- crystal ferrite microspheres., 2005, 44(18): 2782–2785.

    [11] Woo K, Lee H J, Ahn J P,Sol–Gel mediated synthesis of Fe2O3nanorods, 2003, 15(20): 1761–1764.

    [12] Wu J H, Ko S P, Liu H L,Sub 5 nm magnetite nanoparticles: synthesis, microstructure, and magnetic properties, 2007, 61(14/15): 3124–3129.

    [13] Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents, 2010, 62(11): 1064–1079.

    [14] Lee J H, Huh Y M, Jun Y w,Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, 2007, 13(1): 95–99.

    [15] Singh M, Ramanathan R, Mayes E L H,One-pot synthesis of maghemite nanocrystals across aqueous and organic solvents for magnetic hyperthermia., 2018, 12: 250–259.

    [16] Fortin J P, Wilhelm C, Servais J,Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, 2007, 129(9): 2628–2635.

    [17] Gu H, Xu K, Xu C,Biofunctional magnetic nanoparticles for protein separation and pathogen detection., 2006(9): 941–949.

    [18] Xu H, Aguilar Z P, Yang L,Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood, 2011, 32(36): 9758–9765.

    [19] Lee J H, Jang J T, Choi J S,. Exchange-coupled magnetic nanoparticles for efficient heat induction, 2011, 6(7): 418–422.

    [20] Lartigue L, Innocenti C, Kalaivani T,Water- dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties, 2011, 133(27): 10459–10472.

    [21] Wu L, Mendoza-Garcia A, Li Q,Organic phase syntheses of magnetic nanoparticles and their applications., 2016, 116(18): 10473–10512.

    [22] Sun S H, Zeng H, Robinson D B,Monodisperse MFe2O4(M = Fe, Co, Mn) nanoparticles., 2004, 126(1): 273–279.

    [23] Qu Y, Li J, Ren J,Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe(2)O(4)nanoparticles for induced tumor cell apoptosis., 2014, 6(19): 16867–16879.

    [24] Rong C b, Li D, Nandwana V,Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles., 2006, 18(22): 2984–2988.

    [25] Jun Y W, Huh Y M, Choi J S,Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosismagnetic resonance imaging., 2005, 127(16): 5732–5733.

    鋅錳摻雜Fe3O4納米顆粒的尺寸可控合成

    程田盛1,2,3, 潘炯4, 徐鷹鷹1,2,3, 鮑群群1,2,3, 胡萍1, 施劍林1

    (1. 中國科學(xué)院 上海硅酸鹽研究所, 高性能陶瓷和超微結(jié)構(gòu)國家重點(diǎn)實(shí)驗(yàn)室, 上海 200050; 2. 中國科學(xué)院大學(xué), 北京 100049; 3. 上海科技大學(xué), 上海 201210, 4. 同濟(jì)大學(xué), 上海 200092)

    鋅錳摻雜的Fe3O4納米顆粒具有優(yōu)異的磁性能, 在生物醫(yī)藥領(lǐng)域有廣泛的應(yīng)用前景。磁性納米顆粒的尺寸與其磁學(xué)性質(zhì)以及生物磁性應(yīng)用密切相關(guān)。因此, 為了適應(yīng)不同生物應(yīng)用對尺寸的需求, 研究其尺寸調(diào)控具有重要的意義。在本研究中, 我們采用高溫?zé)岱纸夥? 通過加入還原劑1,2-十六烷二醇, 改變金屬前軀體和回流時(shí)間成功制備了尺寸在5~20 nm的鋅錳摻雜Fe3O4納米顆粒。研究發(fā)現(xiàn):強(qiáng)還原劑1,2-十六烷二醇的加入有利于合成小尺寸的納米顆粒, 而以金屬氯化物作為金屬前軀體和延長回流時(shí)間可以進(jìn)一步合成更大尺寸的納米顆粒; 納米顆粒的飽和磁化強(qiáng)度隨著尺寸的增大而增大。

    鋅錳摻雜Fe3O4納米顆粒; 尺寸調(diào)控; 磁學(xué)性質(zhì)

    TQ174

    A

    1000-324X(2019)08-0899-05

    10.15541/jim20190013

    2019-01-06;

    Modified date: 2019-01-24

    National Natural Science Foundation of China (51702349); Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (SKL201704); Shanghai Yangfan Program (16YF1412800).

    CHENG Tian-Sheng (1994-), male, candidate of Master degree. E-mail: chengtsh@shanghaitech.edu.cn

    Corresponding author:HU Ping, associate professor. E-mail: huping@mail.sic.ac.cn; SHI Jian-Lin, professor. E-mail: jlshi@mail.sic.ac.cn

    猜你喜歡
    磁學(xué)中國科學(xué)院軀體
    《中國科學(xué)院院刊》新媒體
    福建周寧黃紅壤的磁學(xué)特征及其磁性礦物轉(zhuǎn)化*
    中國科學(xué)院院士
    ——李振聲
    逍遙散治療軀體癥狀障礙1例
    立足高考 領(lǐng)悟自招(二)——自主招生怎么考電學(xué)和磁學(xué)
    祝賀戴永久編委當(dāng)選中國科學(xué)院院
    現(xiàn)在干什么?
    文學(xué)港(2019年5期)2019-05-24 14:19:42
    自主招生真題賞析(二)——考查電學(xué)、磁學(xué)部分
    搬家
    詩林(2016年5期)2016-10-25 07:04:51
    《中國科學(xué)院院刊》創(chuàng)刊30周年
    91麻豆av在线| 午夜福利高清视频| x7x7x7水蜜桃| 女性生殖器流出的白浆| 一二三四在线观看免费中文在| 亚洲第一欧美日韩一区二区三区| 久久中文字幕一级| 午夜免费成人在线视频| 欧美最黄视频在线播放免费| 黄片大片在线免费观看| 亚洲av成人av| 国产精品1区2区在线观看.| 1024视频免费在线观看| 国产一级毛片七仙女欲春2 | 日韩欧美一区视频在线观看| 9191精品国产免费久久| 久久久久九九精品影院| 国产xxxxx性猛交| 国产乱人伦免费视频| 成熟少妇高潮喷水视频| 亚洲精品中文字幕一二三四区| 久久国产精品男人的天堂亚洲| 欧美 亚洲 国产 日韩一| 午夜精品久久久久久毛片777| 老汉色av国产亚洲站长工具| 女人被躁到高潮嗷嗷叫费观| 丁香六月欧美| 18禁裸乳无遮挡免费网站照片 | 热re99久久国产66热| 99久久国产精品久久久| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久久免费视频了| 日韩三级视频一区二区三区| 亚洲精品在线美女| 国产亚洲精品一区二区www| 人人妻人人澡人人看| 亚洲av日韩精品久久久久久密| 欧美老熟妇乱子伦牲交| 国产又色又爽无遮挡免费看| 亚洲三区欧美一区| 欧美最黄视频在线播放免费| 亚洲一卡2卡3卡4卡5卡精品中文| 日日干狠狠操夜夜爽| 精品人妻在线不人妻| 每晚都被弄得嗷嗷叫到高潮| 欧美绝顶高潮抽搐喷水| 国产aⅴ精品一区二区三区波| 很黄的视频免费| 免费看十八禁软件| 极品教师在线免费播放| 精品乱码久久久久久99久播| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品在线美女| 成人永久免费在线观看视频| 久久国产精品人妻蜜桃| 最近最新中文字幕大全免费视频| 亚洲成人精品中文字幕电影| 欧美日韩精品网址| 99久久99久久久精品蜜桃| 国产成人av激情在线播放| 亚洲天堂国产精品一区在线| 精品久久蜜臀av无| 热99re8久久精品国产| 免费看十八禁软件| 亚洲av第一区精品v没综合| 亚洲精品美女久久久久99蜜臀| 一区福利在线观看| 欧美日韩瑟瑟在线播放| 桃色一区二区三区在线观看| 一本久久中文字幕| 女性生殖器流出的白浆| 精品国产美女av久久久久小说| 啦啦啦免费观看视频1| 男女午夜视频在线观看| 亚洲伊人色综图| 成人国产一区最新在线观看| 国产成人系列免费观看| 久久狼人影院| 中文字幕精品免费在线观看视频| 伦理电影免费视频| 午夜精品在线福利| 高清黄色对白视频在线免费看| 精品久久久久久久毛片微露脸| 91精品三级在线观看| 一区二区日韩欧美中文字幕| 亚洲国产毛片av蜜桃av| 亚洲国产欧美日韩在线播放| 久久国产精品影院| 两性午夜刺激爽爽歪歪视频在线观看 | 18禁裸乳无遮挡免费网站照片 | 国产在线观看jvid| 97碰自拍视频| ponron亚洲| 99久久久亚洲精品蜜臀av| 在线观看66精品国产| 窝窝影院91人妻| 少妇的丰满在线观看| 久久久国产成人免费| 91国产中文字幕| 丝袜人妻中文字幕| 亚洲五月婷婷丁香| av超薄肉色丝袜交足视频| АⅤ资源中文在线天堂| 国产xxxxx性猛交| 老司机靠b影院| 老司机在亚洲福利影院| 高潮久久久久久久久久久不卡| 老司机午夜福利在线观看视频| 好男人在线观看高清免费视频 | 久久国产精品男人的天堂亚洲| 国产午夜福利久久久久久| 精品不卡国产一区二区三区| 亚洲成人久久性| 村上凉子中文字幕在线| 国产在线观看jvid| 亚洲片人在线观看| 一进一出好大好爽视频| 日韩精品免费视频一区二区三区| 久久久久亚洲av毛片大全| 欧美成人午夜精品| 欧美乱色亚洲激情| 一级毛片高清免费大全| 9色porny在线观看| 麻豆久久精品国产亚洲av| 天天躁夜夜躁狠狠躁躁| 嫩草影视91久久| 一区二区三区高清视频在线| 久久香蕉精品热| 欧美日韩瑟瑟在线播放| 欧美日本视频| 在线观看舔阴道视频| 亚洲av片天天在线观看| 久久久久久久久中文| 午夜激情av网站| 亚洲全国av大片| 成人三级黄色视频| 亚洲国产毛片av蜜桃av| 91成人精品电影| 亚洲伊人色综图| 韩国精品一区二区三区| 97碰自拍视频| 亚洲伊人色综图| 神马国产精品三级电影在线观看 | 色综合站精品国产| 琪琪午夜伦伦电影理论片6080| 国产精品二区激情视频| 日韩欧美一区二区三区在线观看| 国产亚洲精品久久久久久毛片| 日韩中文字幕欧美一区二区| 久久欧美精品欧美久久欧美| 国产av一区二区精品久久| 亚洲精品在线观看二区| 久久狼人影院| 午夜福利一区二区在线看| 国产xxxxx性猛交| 国产在线观看jvid| 波多野结衣高清无吗| 丝袜在线中文字幕| 两个人免费观看高清视频| 夜夜爽天天搞| 精品无人区乱码1区二区| 91大片在线观看| 国产免费男女视频| 亚洲成人免费电影在线观看| 美女免费视频网站| 亚洲,欧美精品.| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看 | 99久久99久久久精品蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 一级毛片精品| 在线国产一区二区在线| 国产成人免费无遮挡视频| 多毛熟女@视频| 国产成人啪精品午夜网站| 91麻豆av在线| 欧美成人免费av一区二区三区| 多毛熟女@视频| 色av中文字幕| 免费看十八禁软件| 免费看十八禁软件| 中文字幕人妻熟女乱码| 一级作爱视频免费观看| 三级毛片av免费| 无人区码免费观看不卡| 亚洲成a人片在线一区二区| 亚洲avbb在线观看| 热99re8久久精品国产| 操美女的视频在线观看| 桃色一区二区三区在线观看| 免费搜索国产男女视频| 51午夜福利影视在线观看| 亚洲五月婷婷丁香| 免费不卡黄色视频| 欧美丝袜亚洲另类 | 午夜福利成人在线免费观看| 十分钟在线观看高清视频www| 美女扒开内裤让男人捅视频| 久久精品国产99精品国产亚洲性色 | avwww免费| 搡老岳熟女国产| av天堂在线播放| 亚洲自拍偷在线| 亚洲精品一区av在线观看| 婷婷精品国产亚洲av在线| 日本黄色视频三级网站网址| 亚洲欧美精品综合一区二区三区| 亚洲中文日韩欧美视频| 精品久久久久久久久久免费视频| 午夜久久久久精精品| 国内久久婷婷六月综合欲色啪| 日本在线视频免费播放| 最新美女视频免费是黄的| 久久伊人香网站| 亚洲天堂国产精品一区在线| 高清在线国产一区| 男男h啪啪无遮挡| 丰满人妻熟妇乱又伦精品不卡| 免费久久久久久久精品成人欧美视频| 两个人看的免费小视频| 亚洲精品国产色婷婷电影| 午夜成年电影在线免费观看| 我的亚洲天堂| 午夜福利影视在线免费观看| 手机成人av网站| 亚洲精品国产区一区二| 此物有八面人人有两片| 国产欧美日韩一区二区三区在线| 亚洲欧美精品综合一区二区三区| 12—13女人毛片做爰片一| 波多野结衣高清无吗| 国产一区在线观看成人免费| 91麻豆精品激情在线观看国产| 亚洲人成77777在线视频| 高清黄色对白视频在线免费看| 精品熟女少妇八av免费久了| 美女 人体艺术 gogo| 亚洲精品国产一区二区精华液| 亚洲欧美日韩高清在线视频| www.精华液| 亚洲 欧美一区二区三区| 看片在线看免费视频| 91九色精品人成在线观看| 欧美 亚洲 国产 日韩一| 激情在线观看视频在线高清| 韩国精品一区二区三区| 亚洲国产精品sss在线观看| 久久亚洲精品不卡| 亚洲中文av在线| 老鸭窝网址在线观看| 国产欧美日韩综合在线一区二区| 欧美日韩一级在线毛片| 99久久精品国产亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 50天的宝宝边吃奶边哭怎么回事| 在线国产一区二区在线| 一二三四在线观看免费中文在| 精品国产亚洲在线| 国产欧美日韩一区二区三区在线| 变态另类成人亚洲欧美熟女 | 国产av在哪里看| 色在线成人网| 久久狼人影院| 丰满的人妻完整版| 午夜福利一区二区在线看| 少妇被粗大的猛进出69影院| 乱人伦中国视频| 亚洲,欧美精品.| 久久久久国内视频| aaaaa片日本免费| 日韩欧美国产在线观看| 国产激情欧美一区二区| 无限看片的www在线观看| 又黄又爽又免费观看的视频| 国产高清视频在线播放一区| av视频免费观看在线观看| 亚洲人成电影观看| 久久久久精品国产欧美久久久| 亚洲国产精品合色在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲片人在线观看| 90打野战视频偷拍视频| 嫁个100分男人电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日日爽夜夜爽网站| 色尼玛亚洲综合影院| 老熟妇乱子伦视频在线观看| 国产精品综合久久久久久久免费 | 成人亚洲精品一区在线观看| 大型av网站在线播放| 久久精品国产99精品国产亚洲性色 | 国内久久婷婷六月综合欲色啪| 香蕉久久夜色| 身体一侧抽搐| 人人妻人人爽人人添夜夜欢视频| 99国产精品一区二区蜜桃av| 成人国语在线视频| 在线观看舔阴道视频| 欧美+亚洲+日韩+国产| 亚洲成人国产一区在线观看| 色播亚洲综合网| 久久久久国产一级毛片高清牌| 精品久久久久久久人妻蜜臀av | 欧美日本中文国产一区发布| 亚洲精品久久国产高清桃花| 色综合欧美亚洲国产小说| 女人爽到高潮嗷嗷叫在线视频| 18禁观看日本| 99在线人妻在线中文字幕| 久久精品成人免费网站| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| 午夜精品国产一区二区电影| 亚洲久久久国产精品| 亚洲aⅴ乱码一区二区在线播放 | 91字幕亚洲| 精品国产美女av久久久久小说| 久久人妻熟女aⅴ| 别揉我奶头~嗯~啊~动态视频| 精品一区二区三区av网在线观看| 老司机在亚洲福利影院| 搡老岳熟女国产| 日本免费a在线| 精品国产一区二区久久| 国产精品精品国产色婷婷| 欧美乱妇无乱码| 欧美最黄视频在线播放免费| 精品一区二区三区视频在线观看免费| 男女做爰动态图高潮gif福利片 | 首页视频小说图片口味搜索| 亚洲国产日韩欧美精品在线观看 | √禁漫天堂资源中文www| www日本在线高清视频| 99国产极品粉嫩在线观看| 精品久久久久久久毛片微露脸| 无人区码免费观看不卡| 看片在线看免费视频| 午夜福利高清视频| 亚洲成人国产一区在线观看| 最近最新免费中文字幕在线| 日本在线视频免费播放| 国产精品免费视频内射| 他把我摸到了高潮在线观看| 中亚洲国语对白在线视频| 午夜久久久在线观看| 久久精品亚洲熟妇少妇任你| 亚洲国产精品sss在线观看| 男女之事视频高清在线观看| 黄色丝袜av网址大全| 少妇粗大呻吟视频| 日韩欧美免费精品| 午夜久久久久精精品| 亚洲 国产 在线| 亚洲aⅴ乱码一区二区在线播放 | 国产精品九九99| 热99re8久久精品国产| 国产免费男女视频| 国产私拍福利视频在线观看| 欧美色视频一区免费| 精品久久久精品久久久| 国产又爽黄色视频| 午夜免费激情av| 窝窝影院91人妻| 波多野结衣av一区二区av| 狠狠狠狠99中文字幕| √禁漫天堂资源中文www| 在线观看www视频免费| 90打野战视频偷拍视频| 精品欧美一区二区三区在线| 亚洲欧美精品综合一区二区三区| 日本精品一区二区三区蜜桃| 黄色片一级片一级黄色片| 国产伦一二天堂av在线观看| avwww免费| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 18禁观看日本| 久久亚洲真实| 亚洲欧洲精品一区二区精品久久久| 黄色成人免费大全| 啦啦啦观看免费观看视频高清 | 黄网站色视频无遮挡免费观看| 日本免费一区二区三区高清不卡 | АⅤ资源中文在线天堂| 国产精品av久久久久免费| 精品无人区乱码1区二区| 色av中文字幕| 国产成人av激情在线播放| 亚洲av成人一区二区三| 色婷婷久久久亚洲欧美| 动漫黄色视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲av成人不卡在线观看播放网| 美女大奶头视频| 久久精品aⅴ一区二区三区四区| 国产免费av片在线观看野外av| 欧美黑人欧美精品刺激| 久久中文字幕一级| 亚洲成av人片免费观看| av天堂久久9| 在线十欧美十亚洲十日本专区| 免费看a级黄色片| 18美女黄网站色大片免费观看| 午夜精品久久久久久毛片777| 一级毛片高清免费大全| 国产亚洲精品久久久久久毛片| 欧美黄色片欧美黄色片| cao死你这个sao货| 免费久久久久久久精品成人欧美视频| 在线十欧美十亚洲十日本专区| 999久久久国产精品视频| 亚洲国产看品久久| 亚洲视频免费观看视频| 中文字幕人妻熟女乱码| 婷婷丁香在线五月| 欧美绝顶高潮抽搐喷水| 国产精品久久久av美女十八| 国产伦人伦偷精品视频| 午夜精品在线福利| 国产1区2区3区精品| 男人舔女人的私密视频| 国产欧美日韩一区二区三区在线| 国产精品久久久av美女十八| 国内毛片毛片毛片毛片毛片| 性少妇av在线| 亚洲中文日韩欧美视频| 亚洲男人天堂网一区| 99久久国产精品久久久| 日韩精品中文字幕看吧| 美女高潮到喷水免费观看| 最新美女视频免费是黄的| 国产视频一区二区在线看| 国产一区二区三区在线臀色熟女| 成人亚洲精品av一区二区| 天天躁夜夜躁狠狠躁躁| 久久久久久久久久久久大奶| 久久青草综合色| 日韩成人在线观看一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲成人精品中文字幕电影| 亚洲精品久久国产高清桃花| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| 国产私拍福利视频在线观看| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 亚洲中文字幕日韩| 亚洲久久久国产精品| 亚洲成国产人片在线观看| 欧美日韩精品网址| 色老头精品视频在线观看| 国产主播在线观看一区二区| 一区二区三区精品91| 在线国产一区二区在线| 亚洲美女黄片视频| 高清毛片免费观看视频网站| 精品午夜福利视频在线观看一区| 在线十欧美十亚洲十日本专区| 亚洲国产精品sss在线观看| 黄频高清免费视频| 最新在线观看一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区高清视频在线| 成人免费观看视频高清| 日本一区二区免费在线视频| 亚洲 欧美一区二区三区| 亚洲全国av大片| 欧美日本中文国产一区发布| 夜夜夜夜夜久久久久| 午夜福利影视在线免费观看| 美女免费视频网站| 在线观看午夜福利视频| 亚洲avbb在线观看| 国产精品99久久99久久久不卡| 日本 av在线| 亚洲五月天丁香| 丰满人妻熟妇乱又伦精品不卡| av免费在线观看网站| 两个人免费观看高清视频| 亚洲九九香蕉| 两个人看的免费小视频| 12—13女人毛片做爰片一| 91精品三级在线观看| 国产极品粉嫩免费观看在线| 亚洲一区二区三区不卡视频| 亚洲自拍偷在线| 男人的好看免费观看在线视频 | 日本黄色视频三级网站网址| 精品乱码久久久久久99久播| 亚洲人成伊人成综合网2020| 女人爽到高潮嗷嗷叫在线视频| 在线视频色国产色| 老司机午夜十八禁免费视频| 在线国产一区二区在线| 日韩精品免费视频一区二区三区| 夜夜爽天天搞| 久久久久久久久免费视频了| 久久香蕉精品热| 亚洲性夜色夜夜综合| 操美女的视频在线观看| 国产免费男女视频| 97人妻精品一区二区三区麻豆 | 丝袜美腿诱惑在线| 欧美丝袜亚洲另类 | 日韩欧美国产在线观看| 中文字幕精品免费在线观看视频| 日韩 欧美 亚洲 中文字幕| 欧美成狂野欧美在线观看| 黄片播放在线免费| 国产精品久久久久久精品电影 | 最近最新免费中文字幕在线| 国产乱人伦免费视频| 人成视频在线观看免费观看| av免费在线观看网站| 又大又爽又粗| 欧美亚洲日本最大视频资源| 高清黄色对白视频在线免费看| 少妇 在线观看| 嫁个100分男人电影在线观看| 亚洲最大成人中文| 极品教师在线免费播放| 国产乱人伦免费视频| 老汉色∧v一级毛片| 亚洲aⅴ乱码一区二区在线播放 | 日日摸夜夜添夜夜添小说| 天堂√8在线中文| 欧美成人免费av一区二区三区| 精品一区二区三区视频在线观看免费| 男女之事视频高清在线观看| 欧美久久黑人一区二区| 日本五十路高清| 亚洲精华国产精华精| 一区二区三区国产精品乱码| 欧美午夜高清在线| 午夜久久久在线观看| 麻豆成人av在线观看| 91成年电影在线观看| 国产成人啪精品午夜网站| avwww免费| 国产欧美日韩综合在线一区二区| 99久久99久久久精品蜜桃| 国产av一区二区精品久久| 一级作爱视频免费观看| 身体一侧抽搐| 日本免费a在线| 中文字幕久久专区| 老汉色av国产亚洲站长工具| 如日韩欧美国产精品一区二区三区| 精品久久久久久久久久免费视频| 天天躁夜夜躁狠狠躁躁| 亚洲av电影在线进入| 久久国产精品人妻蜜桃| 欧美亚洲日本最大视频资源| av在线天堂中文字幕| 中文字幕久久专区| 久久久久久国产a免费观看| 亚洲avbb在线观看| 乱人伦中国视频| 免费在线观看亚洲国产| 日韩中文字幕欧美一区二区| 午夜福利免费观看在线| 欧美成人免费av一区二区三区| 黄色女人牲交| 久久久久精品国产欧美久久久| 国产av在哪里看| 国产精品一区二区在线不卡| www.999成人在线观看| 欧美激情久久久久久爽电影 | √禁漫天堂资源中文www| av有码第一页| 国产成人免费无遮挡视频| 麻豆av在线久日| 亚洲熟女毛片儿| a在线观看视频网站| 涩涩av久久男人的天堂| 成人亚洲精品av一区二区| 国产黄a三级三级三级人| 亚洲av片天天在线观看| a级毛片在线看网站| 在线观看www视频免费| 波多野结衣一区麻豆| 韩国精品一区二区三区| 人人妻人人澡人人看| 1024香蕉在线观看| 精品一区二区三区av网在线观看| 高清黄色对白视频在线免费看| 国语自产精品视频在线第100页| 非洲黑人性xxxx精品又粗又长| 精品人妻1区二区| 欧美一级毛片孕妇| 国产蜜桃级精品一区二区三区| 搡老熟女国产l中国老女人| 免费观看人在逋| 一进一出抽搐gif免费好疼| 波多野结衣一区麻豆| 国产高清激情床上av| 午夜久久久久精精品| 久久人妻熟女aⅴ| 久久精品亚洲精品国产色婷小说| 亚洲视频免费观看视频| 最近最新中文字幕大全电影3 | 亚洲精华国产精华精| 老司机深夜福利视频在线观看| 亚洲久久久国产精品| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 人妻久久中文字幕网| 搡老岳熟女国产| 亚洲精品国产色婷婷电影| 午夜影院日韩av| 国产精品秋霞免费鲁丝片| 九色亚洲精品在线播放| 中国美女看黄片| 中文字幕久久专区|