初國凱
摘要:本文首先分析了國內(nèi)鑄造充型過程數(shù)值模擬的發(fā)展,接下來詳細(xì)闡述了液態(tài)金屬充型過程的數(shù)學(xué)物理模型,最后對充型過程數(shù)值模擬計算方法以及對于充型過程數(shù)值模擬結(jié)果的常用驗證方法做具體論述,希望通過本文的分析研究,給行業(yè)內(nèi)人士以借鑒和啟發(fā)。
關(guān)鍵詞:充型過程;數(shù)值模擬;計算方法;驗證方法
引言
鑄造充型過程伴隨著復(fù)雜的液體流動,易產(chǎn)生鑄造缺陷,例如冷隔、澆不足、夾砂、裹氣等,而生產(chǎn)人員必須確保鑄件的最終尺寸在合理的公差范圍內(nèi)并成功消除缺陷.針對以上問題,研究人員于20世紀(jì)60年代開發(fā)了能夠計算帶有自由表面的不可壓縮流體的非穩(wěn)態(tài)流動數(shù)值方法.充型過程的研究及模擬能夠幫助我們通過計算機(jī)技術(shù),更加直觀的觀察鑄造過程金屬液的流動以及溫度的分布情況,對易產(chǎn)生缺陷的位置進(jìn)行預(yù)測,為避免鑄件中的缺陷提供有力依據(jù),并幫助技術(shù)人員及時更改生產(chǎn)工藝,縮短生產(chǎn)周期。
1國內(nèi)鑄造充型過程數(shù)值模擬的發(fā)展
國內(nèi)充型過程數(shù)值模擬起步雖晚但發(fā)展迅速,1991年,沈陽鑄造研究所的孫遜基于SOLA-VOF方法研制了充型過程流體流速的模擬軟件,并在此基礎(chǔ)上進(jìn)一步編制了含有熱對流和熱擴(kuò)散的三維傳熱模擬程序,與球鐵鑄造工藝相結(jié)合,開發(fā)了球鐵鑄造工藝CAD軟件,并對球鐵鑄件進(jìn)行數(shù)值模擬計算,為工廠實際生產(chǎn)進(jìn)行指導(dǎo)幫助.國內(nèi)充型過程數(shù)值模擬技術(shù)在參考國外先進(jìn)技術(shù)的基礎(chǔ)上,在短時間內(nèi)取得了快速的發(fā)展,研究人員逐步依靠自身的科研力量,不斷地填補(bǔ)國內(nèi)充型過程研究的空白,在研究內(nèi)容上不斷深入,在研究方法上不斷創(chuàng)新,使在該領(lǐng)域的研究體系日益完善
2液態(tài)金屬充型過程的數(shù)學(xué)物理模型
2.1液態(tài)金屬流動的控制方程
在從烙煉爐出爐的液恣金屬來說,作為流體研究首先要明確該狀態(tài)下的金屬液作為流體具備的基本性能。鑄造過程中的金屬液在受到壓力作用時體積相對減小極少、在溫度高低變化時金屬液膨脹系數(shù)都很小,故在工程實際中,可以認(rèn)為高溫金屬液不可壓縮,也可不考慮液體的熱脹性。高溫金屬液作為一種流體也是具有黏性的,需要將高溫金屬液作為一種具有粘性的流體來研巧。根據(jù)前人的研巧表明,有較高過熱濕度的高溫金屬液黏性力與速度的關(guān)系符合牛頓黏性定律。當(dāng)金屬液流層之間出現(xiàn)巧對位移時,不同流動速度的流層之間出現(xiàn)切向黏性力。
2.2態(tài)金屬流動過程求解的初始條件和邊界條件
鑄造金屬液的充型過程一般是發(fā)生在一定區(qū)域范圍內(nèi)的一個非定常問題,求解此類流體力學(xué)問題使其有唯一解不僅需要有質(zhì)量守恒、動量守恒、能量守恒的控制方程,而且還需要確定該流動行為的初始條件和邊界條件。鑄造充型過程中,金屬液充型進(jìn)入砂型型腔的過程屬于非定常流動。在求解此類非定常流動時,要給出初始時刻的速度分布和溫度分布牙能進(jìn)行求解。若要求解流場時對溫度場進(jìn)行賴合計算,還需要知道初始的溫度場分布。在鑄造充型的整個過程中,會涉及到確定邊界條件的問題,主要有固壁界面條件、液-液界面條件、液-氣界面條件確定。在砂型鑄造充型中的固壁邊界條件主要是金屬液和型砂之間速度邊界條件和溫度邊界條件。速度邊界條件:當(dāng)黏性流體流過不動的固體壁面時,其法相速度等于零,并且切向速度也等于零,這種速度邊界條件稱為無粘附條件或無滑移條件。當(dāng)固體壁在流體運(yùn)動時,粘附于固體壁面的流體質(zhì)點的速度等于固體壁面的速度。當(dāng)固體壁面是多孔介質(zhì)時,有流體穿越壁面,則切向速度為零,而法向速度等于流體穿過壁面的速度。溫度邊界條件:就是需要給出固體壁面的溫度,一般來說固體壁面接觸的流體質(zhì)點與固體壁面上的溫度是相同的。
3充型過程數(shù)值模擬計算方法
3.1MAC及SMAC算法
MAC技術(shù)就是基于有限差分網(wǎng)格,對動量方程的兩端進(jìn)行離散,得到求解壓力的泊松方程,并將連續(xù)性方程作為壓力的約束條件對泊松方程進(jìn)行變形,通過動量方程和連續(xù)性方程的同時迭代,求解相應(yīng)的壓力場和速度場.MAC算法在流體中加入標(biāo)識粒子,它并不參與計算,而是作為一種跟蹤描述的方法來反應(yīng)流體流動的情況.由于MAC方法需要壓力場和速度場同時迭代,并且需要大量的示蹤粒子才能較為準(zhǔn)確的反應(yīng)自由表面的移動,這便加大了計算量,使計算速度慢,效率低.為此在MAC算法的基礎(chǔ)上又開發(fā)了SMAC算法,該方法是將初始壓力場代入動量守恒方程離散求解速度場,如果該速度場無法滿足連續(xù)性方程,則會得到一個勢函數(shù),通過勢函數(shù)得到一個校正速度場,再將校正速度場代入連續(xù)性方程進(jìn)行驗證,直到獲得收斂的速度場.將成功收斂后的速度場代入動量方程便能夠求解最終壓力場.可見,SMAC算法只進(jìn)行了速度場的迭代,所以可大幅度提高運(yùn)算速度,節(jié)省計算空間.
3.2SOLA-VOF算法
該方法的獨(dú)到之處在于其將SOLA方法和VOF方法相結(jié)合,利用SOLA方法求解動量方程和連續(xù)性方程,用VOF方法處理流體自由表面.在鑄件充型過程中,液態(tài)金屬是不可壓縮的流體,其流動過程服從質(zhì)量守恒和動量守恒,其數(shù)學(xué)形式就是連續(xù)性方程和動量守恒方程即N-S方程.在用SOLA-VOF方法求解動量方程和連續(xù)性方程時,同樣先將當(dāng)前的壓力和速度場代入動量守恒方程,如果所得的速度場沒有滿足連續(xù)性方程,則通過改變壓力值得到新的試算速度,并將新的試算速度代入連續(xù)性方程進(jìn)行驗證.由于每一個計算單元的校正壓力直接由連續(xù)性方程算出的速度求出,然后校正速度場,所以只需對速度場進(jìn)行迭代計算,便可同時得到正確的壓力場和速度場,提高了計算效率.對于自由表面的處理,VOF法定義一個體積函數(shù)F,用于表示一個流體單元內(nèi)液體的體積含量.當(dāng)一個流體單元充滿液體時,F(xiàn)值為1,F(xiàn)值為0時表示該流體單元沒有液體,當(dāng)0 4對于充型過程數(shù)值模擬結(jié)果的常用驗證方法 4.1直接驗證法 最常用的方法便是根據(jù)要求設(shè)計實驗,澆注實體鑄件,對充型過程可能產(chǎn)生的缺陷進(jìn)行分析研究,與模擬結(jié)果進(jìn)行對比,這種方法一般適用于中小型鑄件,對于大型鑄件,由于其體積大,澆注過程極為不易控制,并且每一次實際生產(chǎn)都會花費(fèi)大量人力物力且無法保證鑄件質(zhì)量,所以對于大型鑄件的充型模擬過程不宜采取這種方法. 4.2對比驗證 充型過程數(shù)值模擬的發(fā)展已經(jīng)到達(dá)一個較為成熟的階段,世界許多科研機(jī)構(gòu)也相繼推出了可供與模擬結(jié)果相對比的標(biāo)準(zhǔn)實驗結(jié)果,例如伯明翰大學(xué)的SirrelB等公布的標(biāo)準(zhǔn)實驗結(jié)果.基于這些標(biāo)準(zhǔn)實驗結(jié)果,可將模擬的實驗結(jié)果與其進(jìn)行對比驗證. 結(jié)語 對于充型過程數(shù)值模擬的驗證手段,最常用的就是水力模擬實驗,因為其操作簡單,成本低.但水的熱物性完全不同于金屬,因此用水的流動行為驗證金屬流動的模擬存在一定差距.利用X射線進(jìn)行透射觀察能夠準(zhǔn)確的驗證充型過程的模擬結(jié)果,但操作復(fù)雜,且對鑄件的厚度有要求,因此盡快找到準(zhǔn)確、簡單易行的驗證方法也是未來發(fā)展的重要課題之一.隨著計算機(jī)技術(shù)的不斷發(fā)展,計算方法的不斷改進(jìn),鑄件充型過程數(shù)值模擬技術(shù)在未來的發(fā)展中一定會更加完善. 參考文獻(xiàn): [1] 李魁盛,李國祿,李日編著.鑄件成型技術(shù)入口與精通.北京:機(jī)械工業(yè)出版社,2012. [2] 張彥華編著.熱制造學(xué)引論.北京:北京航空航天大學(xué)出版社,2012. (作者身份證號:220702198405141812)