陳文浩 何立群
摘要 本文就5年來對腎缺血再灌注損傷(Renal Ischemic Reperfusion Injury,RIRI)的機(jī)制的研究及保護(hù)機(jī)制進(jìn)行了綜述。腎缺血再灌注損傷的主要分為缺血和再灌注2個階段,主要病理機(jī)制已知與自由基、細(xì)胞內(nèi)鈣超載、炎性反應(yīng)以及細(xì)胞凋亡等有關(guān)。多是由于RIRI初期自由基的過度富集引起的血管內(nèi)皮損傷,同時自由基的富集進(jìn)一步引起炎性反應(yīng)因子的釋放并引起細(xì)胞凋亡,新興的一些研究藥物如奧曲肽,蛇床子素等可以通過減少活性氧的生成,抑制炎性反應(yīng)因子的表達(dá),抑制細(xì)胞凋亡來減少腎缺血再灌注損傷,從而保護(hù)腎臟。現(xiàn)代醫(yī)學(xué)與傳統(tǒng)醫(yī)藥結(jié)合應(yīng)用對RIRI的防治方面的研究顯示了一定的優(yōu)越性,對臨床腎移植和急性腎損傷時對腎臟的保護(hù)具有一定的提示和借鑒意義。
關(guān)鍵詞 腎缺血再灌注損傷;自由基;鈣超載;炎性反應(yīng);細(xì)胞凋亡;中醫(yī)學(xué);機(jī)制;保護(hù)
Abstract This paper reviewed the mechanism and protective mechanism of renal ischemic reperfusion injury(RIRI)over the past 5 years.Renal ischemia-reperfusion injury is mainly divided into 2 stages:ischemia and reperfusion.The main pathological mechanisms are known to be related to free radicals,intracellular calcium overload,inflammatory reaction and apoptosis.Most of them are due to the excessive enrichment of free radicals in the early stage of RIRI,and the accumulation of free radicals further causes the release of inflammatory factors and causes apoptosis.Some emerging research drugs such as octreotide and osthole can reduce the production of reactive oxygen species,inhibit the expression of inflammatory factors and inhibit apoptosis to reduce renal ischemia-reperfusion injury,thereby protecting the kidneys.The combination of modern medicine and traditional medicine has shown certain advantages in the prevention and treatment of RIRI.It has certain hints and reference significance for the protection of kidney in clinical kidney transplantation and acute kidney injury.
Key Words Renal ischemic reperfusion injury; Free radicals; Calcium overload; Inflammatory response; Apoptosis; Traditional medicine; Mechanism; Protection
中圖分類號:R256.5文獻(xiàn)標(biāo)識碼:Adoi:10.3969/j.issn.1673-7202.2019.05.002
缺血再灌注損傷(Ischemic Reperfusion Injury,IRI)是指由于各種原因引起的缺血和血液灌注恢復(fù)引起的組織或器官的損傷。腎臟是臨床缺血再灌注損傷的常見器官之一。腎缺血再灌注損傷(Renal Ischemic Reperfusion Injury,RIRI)臨床上常見于急性腎損傷(Acute Kidney Injury,AKI)和腎移植術(shù)后,是影響AKI治療預(yù)后及腎移植術(shù)后移植物的早期功能恢復(fù)和長期存活的主要因素之一。RIRI的機(jī)制和保護(hù)研究日漸被關(guān)注,本文就RIRI的機(jī)制和保護(hù)研究作一綜述。
1 RIRI的病理機(jī)制
RIRI的病理機(jī)制復(fù)雜,尚未完全闡明。已知主要的病理機(jī)制涉及自由基,細(xì)胞內(nèi)鈣超載,炎性反應(yīng)和細(xì)胞凋亡。
1.1 自由基 自由基分為2大類:活性氧(Reactive Oxygen Species,ROS)和活性氮(Active Nitrogen Species,RNS)。ROS是從氧氣(O2)衍生出來的分子,極易氧化其他分子,大多數(shù)細(xì)胞內(nèi)活性氧源自超氧化物(O2-·),包含氧的一電子還原產(chǎn)物超氧陰離子(O2-·)、二電子還原產(chǎn)物過氧化氫(H2O2)、三電子還原產(chǎn)物羥基自由基(·OH)以及一氧化氮(NO)等[1-2],是一類具有高度活性的氧代謝產(chǎn)物,與機(jī)體細(xì)胞的抗氧化能力相作用,過量則引起氧化應(yīng)激(Oxidative Stress,OS),是多種疾病的的發(fā)病機(jī)制中的促成因素[3]。OS主要來源于ROS和RNS的積累,并通過超氧化物歧化酶(SOD)和其他內(nèi)源性抗氧化蛋白消除ROS和RNS來穩(wěn)定OS反應(yīng)[4],維持氧化還原平衡。過量生成的ROS主要來自4個途徑:線粒體鏈呼吸鏈;NADPH氧化酶;由環(huán)氧合酶-2(Cyclooxygenase-2,COX-2)催化的花生四烯酸(Arachidonic Acid,ARA)反應(yīng);黃嘌呤/黃嘌呤氧化酶(Xanthine Oxidoreductase,XOR)系統(tǒng)[5]。大量證據(jù)表明線粒體是ROS產(chǎn)生最主要來源[6-8],此前的研究報道了IRI中線粒體來源的ROS主要生成機(jī)制,在缺血期間線粒體中琥珀酸積累,在血液再灌注期間它被琥珀酸氫化酶迅速氧化,并且通過線粒體復(fù)合物I的反向電子轉(zhuǎn)移產(chǎn)生大量的ROS,引起OS[1]。
NADPH氧化酶(NOXs)是一類主要生成自由基的酶,被認(rèn)為是ROS的生成來源之一。其主要功能是生成自由基。目前認(rèn)為人體內(nèi)有7種NOX,NOX1-5和雙氧化酶1-2(DUOX1-2)。含有NOXs的細(xì)胞可以產(chǎn)生大量的ROS,引起并加重OS損傷[9-10]。其中NOX4在腎近端小管細(xì)胞中高度表達(dá),與其他產(chǎn)生超氧化物的NOX比較,NOX4的最終產(chǎn)物主要是過氧化氫。有研究通過對敲除小鼠NOX4基因并進(jìn)行RIRI造模后發(fā)現(xiàn),與對照組(RIRI造模的普通小鼠)比較,NOX4敲除小鼠顯示出顯著的腎損傷和嚴(yán)重的腎小管細(xì)胞凋亡。同時對腎小管細(xì)胞的NOX4體外沉默的實驗中表現(xiàn)出細(xì)胞凋亡增加的傾向[11]。而此前的證據(jù)表明NOX4對腎小管細(xì)胞是具有保護(hù)作用[10]。此外,對急性大鼠海馬的研究表明,NADPH氧化酶涉及p38 MAPK的激活,同時促進(jìn)ROS的產(chǎn)生。但不能排除一氧化氮合酶(NOS)和其他ROS對p38MAPK的潛在作用[12]。
MDA是一種過氧化反應(yīng)終產(chǎn)物,常用來評估機(jī)體氧化應(yīng)激損傷水平。有研究對慢性阻塞性肺疾?。–OPD)并有肺動脈高壓(PH)的患者的氧化應(yīng)激反應(yīng)觀察研究中發(fā)現(xiàn),相較于對照組單純性COPD患者,觀察組COPD合并PH患者的單核細(xì)胞中NADPH氧化酶活性明顯升高,MDA和SOD的結(jié)果表明在OS損傷中NADPH氧化酶-ROS-NF-κB轉(zhuǎn)導(dǎo)途徑介導(dǎo)的抗氧化基因的轉(zhuǎn)錄可能是細(xì)胞響應(yīng)OS的重要機(jī)制[13]。
COX是花生四烯酸代謝的限速酶,COX-2觸發(fā)巨噬細(xì)胞和淋巴細(xì)胞產(chǎn)生自由基[14]。同時由COX介導(dǎo)的ARA代謝產(chǎn)生的類花生酸類是目前被認(rèn)為促進(jìn)和維持炎性反應(yīng)信號級聯(lián)反應(yīng)的生物活性脂質(zhì)。而COX生成的和其他來源的ROS共同引起ARA過氧化,促進(jìn)異前列烷和異構(gòu)體的生成,較低的ARA水平也可能導(dǎo)致線粒體功能障礙[6],加重OS及腎臟損害。
黃嘌呤氧化還原酶(XOR)是嘌呤代謝,催化并氧化生成尿酸的關(guān)鍵酶。一些證據(jù)表明,XOR在產(chǎn)生尿酸和ROS中起關(guān)鍵作用[15-16]。一項用XOR抑制劑(XOis)對脂多糖(LPS)刺激的大鼠的實驗中發(fā)現(xiàn),給予XOis的大鼠的ROS、TNF-α、IL-6、IL-10水平較未給予XOis的大鼠均有顯著增高[17]。提示XOR能降低組織的炎性反應(yīng)和OS水平。另一項對小鼠心臟IRI的研究中指出,黃嘌呤氧化酶(XOR)通過介導(dǎo)線粒體轉(zhuǎn)換孔(mPTP)的開放和細(xì)胞凋亡,引起細(xì)胞ROS的病理性升高。同時研究也指出IRI可顯著上調(diào)受體相互作用蛋白3(Ripk3)的表達(dá),同時上調(diào)的Ripk3可介導(dǎo)細(xì)胞內(nèi)Ca2+和XOR水平的升高,誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激。其最終都是引起OS和細(xì)胞凋亡[18]。
OS也涉及到RNS的積累。一氧化氮(Nitric Oxide,NO)作為一種RNS,是由NOS產(chǎn)生的內(nèi)皮細(xì)胞舒血管因子(EDRF),較多的證據(jù)表明其具有抗炎、抗氧化等作用[19-21],而腎臟和肺是EDRF代謝最為活躍的部位。此外一些對OS的研究為我們防治RIRI提供了新的思路。
在一項對肺的體外實驗中發(fā)現(xiàn),降鈣素基因相關(guān)肽(CGRP)能增加MDA水平和降低SOD活性,抑制高氧誘導(dǎo)的ROS產(chǎn)生[22]。此外,生長抑素(SST)作為一種內(nèi)源性肽,SST可能影響白細(xì)胞的浸潤,黏附和趨化性的活性,它還抑制白細(xì)胞產(chǎn)生活性氧,并具有抗炎和抗氧化作用[23]。
奧曲肽(OCT)作為一種SST類似物,可以通過增強(qiáng)SOD的活性來降低ROS水平,保護(hù)腎免受氧化應(yīng)激??山档蚏RI腎臟中的TNF-α和IL-6水平,抑制凋亡進(jìn)程。并下調(diào)NF-kB p65的表達(dá),增強(qiáng)了抗氧化、抗炎的能力。同時表明OCT可能通過Nrf2,HO-1和NQO1信號通路來保護(hù)腎臟[24]。
1.2 鈣超載 在RIRI中細(xì)胞內(nèi)鈣超載主要機(jī)制與OS和炎性反應(yīng)及細(xì)胞凋亡相聯(lián)系。正常生理狀態(tài)下,機(jī)體由于鈣泵的主動轉(zhuǎn)運及Na+-Ca2+交換蛋白等的共同作用下維持著細(xì)胞內(nèi)外Ca2+濃度的動態(tài)平衡。在RIRI的過程中ATP合成減少,Na+-K+-ATP酶的活性降低,無法保持正常的Na+-K+交換,導(dǎo)致細(xì)胞內(nèi)Na+濃度增高,進(jìn)一步開放Na+-Ca2+通道,致使大量Ca2+進(jìn)入細(xì)胞內(nèi),引起細(xì)胞內(nèi)鈣超載,破壞細(xì)胞內(nèi)線粒體結(jié)構(gòu)和功能,引起代謝途徑障礙,促進(jìn)ROS的生成。一項研究表明在發(fā)生IRI前施用尿苷-5′-三磷酸(UTP)可以低胞質(zhì)Ca超載,減輕細(xì)胞損傷,其可能的機(jī)制是UTP預(yù)處理可減少NF-kB抑制劑的降解[25]。
王紅雷等對心肌微循環(huán)內(nèi)皮細(xì)胞缺氧復(fù)氧(Hypoxia/reperfusion,HR)處理后發(fā)現(xiàn),HR可能通過激活三磷酸肌醇受體(IP3R)-細(xì)胞內(nèi)鈣超載([Ca2+]c)/VDAC蛋白-線粒體鈣([Ca2+]m)信號通路誘導(dǎo)內(nèi)皮細(xì)胞凋亡[26]。提示ISIS可能存在鈣超載和腎臟損害。
而另一項對從大鼠皮質(zhì)中分離的純腦線粒體的研究中發(fā)現(xiàn),高濃度的谷氨酸通過谷氨酸受體/通道誘導(dǎo)過量的Ca2+從細(xì)胞外流入細(xì)胞質(zhì),過量的Ca2+進(jìn)入線粒體,輕度線粒體去極化可降低Ca2+進(jìn)入線粒體,從而減弱線粒體鈣超載。而若能引起線粒體的輕度去極化即可有效阻斷該途徑的線粒體鈣超載及引起的ROS過量生成和氧化應(yīng)激反應(yīng),為我們在RIRI的進(jìn)一步研究中作出提示[27]。
1.3 炎性反應(yīng) 炎性反應(yīng)是致炎因子作用于機(jī)體后,引發(fā)組織細(xì)胞的損壞和誘導(dǎo)機(jī)體清除致炎因子的反應(yīng),主要涉及中性粒細(xì)胞浸潤和炎性因子釋放。IRI時嗜中性粒細(xì)胞可進(jìn)入缺血區(qū)并在再灌注期間被激活,多種炎性因子如白細(xì)胞介素(IL)-6,IL-1b和腫瘤壞死因子(TNF)-α等有助于這一進(jìn)程。
MPO是一種在中性粒細(xì)胞活化期間浸潤的特異性酶,被用作檢測炎性反應(yīng)的替代標(biāo)記物,在腎缺血狀態(tài)期間,中性粒細(xì)胞開始滲入受損的腎組織并刺激促炎標(biāo)志物,從而加重中性粒細(xì)胞浸潤[28]。
過氧化物酶體增殖物激活受體(PPAR)作為調(diào)節(jié)炎性反應(yīng)的因素之一,存在著3種亞型:PPARα(NR1C1),PPARβ/δ(NR1C2)和PPARγ(NR1C3)。其中PPARγ被多種內(nèi)源性脂質(zhì)代謝物以及外源配體如噻唑烷二酮類激活。影響細(xì)胞代謝,增殖,分化和炎性反應(yīng)發(fā)生,通過促炎細(xì)胞因子的反式阻遏來影響炎性反應(yīng)[29]。
PPARγ參與各種疾病的發(fā)展。用PPARγ/磷酸肌醇3-激酶(PI3 K)/Akt抑制劑治療的大鼠表現(xiàn)出嚴(yán)重的OS和炎性反應(yīng),而使用他克莫司可有效激活PPARγ/PI3K/Akt途徑來保護(hù)大鼠[30]。PPARγ激動劑可以保護(hù)血管內(nèi)皮并減少血管炎性反應(yīng)。PPARγ激動劑可顯著減少IRI誘導(dǎo)的iNOS和MMP-9免疫反應(yīng)性,TNFα和IL-6水平以及細(xì)胞的凋亡[31]。
核因子κB(NF-kB)是已知介導(dǎo)炎性反應(yīng)的關(guān)鍵轉(zhuǎn)錄因子,由5個亞基組成:RelA(P65),RelB,c-Rel,NF-kB1(P50)和NF-kB2(P52)。而最常見的二聚體形式是P50-P65異二聚體,P65是與NF-κB抑制劑(IκB)相結(jié)合的關(guān)鍵并調(diào)節(jié)其在體內(nèi)的轉(zhuǎn)錄。NF-κB主要在激活前存在于細(xì)胞質(zhì)中并與IκB家族結(jié)合。在激活后,刺激磷酸化包含2個催化亞基(包括IKKα和IKKβ,連接物IKKγ/NEMO)的關(guān)鍵調(diào)節(jié)復(fù)合物IkB激酶(IKK),在泛素依賴性降解后,Iκ B被該復(fù)合物磷酸化,然后NF-κ B被釋放到細(xì)胞核中,從而激活如IL-6和、TNF-α等促炎基因的表達(dá),介導(dǎo)炎性反應(yīng)的發(fā)生[32-34]。
而一項對RIRI大鼠的研究中發(fā)現(xiàn),RIRI大鼠的腎組織中NF-κB,IL-1b,IL-6和TNF-α的炎性反應(yīng)標(biāo)志物核因子NF-p65亞基的濃度較正常對照組的水平有顯著增加。通過減少NF-p65的活化,可以下調(diào)各種促炎蛋白如TNF-α,IL-1b和IL-6的水平。同時通過上調(diào)PI3K/Akt途徑來減輕OS和炎性反應(yīng)[28]。
此外ROS是NF-κB的重要影響因子,而NF-κB通過調(diào)節(jié)促炎因子包括iNOS,COX,TNF-α,以及其他如PARP-1等[35],同時激活小膠質(zhì)細(xì)胞和免疫細(xì)胞,引起炎性反應(yīng)[9]。
絲裂原活化蛋白激酶(MAPK)是細(xì)胞內(nèi)外的信使,調(diào)節(jié)細(xì)胞的生長、分化等多種過程。MAPKs家族由3個主要類別組成:細(xì)胞外信號調(diào)節(jié)激酶1和2(ERK1/2),c-Jun N-末端激酶(JNK)和p38。磷酸化后觸發(fā)NF-κB的轉(zhuǎn)錄激活,NF-κB和MAPK通路共同作用可加重炎性反應(yīng)的發(fā)生[33,36]。大量證據(jù)表明,通過調(diào)節(jié)NF-κB和MAPK信號通路可以抑制促炎因子TNF-α,IL-6和IL-1β等的表達(dá)水平[37-40],因此在OS過程中,通過下調(diào)ROS/p38MAPK/TGF-β1和ROS/p38MAPK/NF-κB等途徑的表達(dá)水平可改善OS和炎性反應(yīng)造成的腎損傷[41-42]。
1.4 細(xì)胞凋亡 細(xì)胞凋亡近些年正逐漸被人所重視。RIRI中通過多種途徑形成的ROS被認(rèn)為是參與細(xì)胞生長、分化和凋亡的新型信號遞質(zhì)[43],在OS中,ROS可以調(diào)節(jié)一些主要的細(xì)胞壞死、凋亡的途徑。p53被認(rèn)為是ROS誘導(dǎo)細(xì)胞死亡過程中的關(guān)鍵分子。ROS可以通過與親環(huán)蛋白D(CypD)反應(yīng)來活化p53,從而引起線粒體膜通道的開放和壞死[44]。通過p53和Bcl-2家族蛋白如Bax和Bid反應(yīng)期間形成的抑制性復(fù)合物,ROS可以來增加線粒體膜的通透性并引起細(xì)胞色素c釋放。細(xì)胞色素c通過與凋亡酶激活因子(Apoptotic Protease Activating Factor-1,APF-1)、前caspase-9和ATP形成復(fù)合物來激活caspase,引起細(xì)胞壞死。同時ROS可以影響MAPK的表達(dá),從而調(diào)節(jié)細(xì)胞凋亡。作為MAPK途徑之一,p38 MAPK途徑被凋亡信號調(diào)節(jié)激酶1(ASK1)激活,在IRI期間引起細(xì)胞壞死[9]。
此外ROS還可引起Klotho的表達(dá)下降。Klotho蛋白主要在遠(yuǎn)曲小管(DCT)中產(chǎn)生,是一種抗衰老蛋白,可對抗IRI中引起的細(xì)胞凋亡[45]。有研究通過對小鼠雙側(cè)腎蒂鉗夾35 min后再通進(jìn)行RIRI造模和對小鼠腎小管上皮細(xì)胞缺氧復(fù)氧實驗,發(fā)現(xiàn)RIR導(dǎo)致血液及腎臟中的Klotho蛋白減少,尿量增多。Klotho蛋白可以降低RIRI后的壞死標(biāo)志物RIP1,RIP3,IL-1β和TUNEL陽性細(xì)胞的水平,改善腎臟損傷。有研究指出Klotho蛋白減少IRI時細(xì)胞凋亡其可能的機(jī)制與抑制OS有關(guān)[46]。
臨床的一些研究表明AKI患者及CKD患者的Klotho蛋白均低于正常水平,且Klotho缺乏是加劇AKI并導(dǎo)致長期后果的致病因素[46-48]。而之前的動物實驗研究也表明Klotho單倍體不足的小鼠腎臟在IRI造模后比野生型小鼠存在更嚴(yán)重的腎功能障礙和更廣泛的組織學(xué)異常[49],同時Klotho蛋白的減少可誘發(fā)腎細(xì)胞凋亡和鈣化[50],同樣支持了前面的觀點。
2 中醫(yī)學(xué)對RIR損傷的研究進(jìn)展
RIR損傷于中醫(yī)學(xué)中未見明確病證命名,歸屬中醫(yī)學(xué)中“風(fēng)水”“癃閉”等范疇,總體病機(jī)本虛標(biāo)實,而以“氣滯”“瘀血”“濕濁”等實證為主。近年來應(yīng)用中醫(yī)學(xué)防治RIRI逐漸成為熱點,主要是以中藥單體提取物和中藥復(fù)方對RIRI的預(yù)防研究為主。有研究表明,通過對小鼠提前應(yīng)用丹參酮I,可抑制RIRI引起的MDA升高,并增加了SOD活性[51]。
一項使用甘木通提取物總黃酮(TFCD)的研究表明,TFCD可以減少大鼠心肌缺血再灌注損傷(MIRI)中血清MDA含量,并增加NO、eNOS、SOD和GSH-Px的水平,提示TFCD具有清除ROS,抗OS的功能。其作用機(jī)制可能與抗氧化、清除氧自由基、調(diào)控NO生成和激活PI3K/Akt-eNOS信號通路有關(guān)[52]。
蛇床子素是中草藥蛇床的提取物,是一類香豆素類物質(zhì),能有效抗炎、抗凋亡、抗氧化應(yīng)激。一些提前給予大鼠蛇床子素(Osthole)的研究,經(jīng)Osthole處理的RIRI大鼠可明顯減少Cr、BUN、Cleaved-Caspase9、CleavedCaspase3、Bax、ROS、TUNEL和線粒體胞質(zhì)中細(xì)胞色素C(CytC)的表達(dá)水平以及腎組織病理損傷,增加Caspase3、Caspase9和BCL-2的表達(dá)水平以及線粒體膜電位和ATP酶的活性。這表明Osthole可能通過下調(diào)ROS介導(dǎo)的線粒體凋亡途徑來保護(hù)腎臟。同時一些研究提示蛇床子素能夠有效減少腎臟的炎性反應(yīng)和氧化應(yīng)激的發(fā)生,對大鼠腎臟IRI有保護(hù)作用[53-54]。
此外有證據(jù)表明Osthole可以保護(hù)急性損傷時的腎功能和腎臟的病理改變,以及下調(diào)由IRI導(dǎo)致的TNF-α、IL-8、IL-6的表達(dá)[55]。同時蛇床子素可增加CAT、GPx和SOD表達(dá),減少Cr、BUN、MDA、TNF-α、MCP-1和IL-6的表達(dá)以及腎臟病理形態(tài)的改變[56]。
葛根素是葛根的主要成分,研究表明對大鼠進(jìn)行IRI模型制備后腹腔注射葛根素可降低大鼠血漿中CRP,TNF-α,IL-6水平,同時上調(diào)AKT基因表達(dá)、抑制Caspase-3蛋白表達(dá),抑制了IRI后的炎性反應(yīng)[57]。
有研究應(yīng)用黃芪當(dāng)歸合劑防治大鼠RIRI,研究結(jié)果表明與模型組比較,提前應(yīng)用黃芪當(dāng)歸合劑可降低血清中的MDA水平,同時降低了ICAM-1、MCP-1的表達(dá),提示黃芪當(dāng)歸合劑可能通過抑制機(jī)體的氧化應(yīng)激水平和炎性反應(yīng)途徑來保護(hù)腎臟[58]。
提前應(yīng)用當(dāng)歸補(bǔ)血湯灌胃可減少RIRI大鼠腎臟中TLR4 mRNA和NF-κB p65 mRNA的表達(dá)量,提示大鼠RIRI可能與TLR4/NF-κB通路相關(guān),提前應(yīng)用當(dāng)歸補(bǔ)血湯可以抑制該信號通路從而緩解RIRI[59]。
3 總結(jié)
RIRI是臨床常見的病癥和病理因素,其主要的病理機(jī)制主要包括自由基損傷、細(xì)胞內(nèi)鈣超載、炎性反應(yīng)和細(xì)胞凋亡這幾個方面。多是由于RIR初期自由基的過度富集引起的血管內(nèi)皮損傷,同時自由基的富集進(jìn)一步引起炎性反應(yīng)因子的釋放并引起細(xì)胞凋亡。雖然近年來日漸被重視,對RIRI時OS損傷和炎性反應(yīng)的研究也日漸深入,但臨床上對應(yīng)的治療措施仍顯匱乏。多是在RIRI前或發(fā)生時給予抗氧化劑或抗炎藥,可減少OS和炎性反應(yīng)以及細(xì)胞凋亡等對腎臟的損傷,保護(hù)腎臟功能。故近年來傳統(tǒng)中醫(yī)藥對RIRI的防治作用研究日漸興起,從中醫(yī)學(xué)角度來看,RIRI的總體病機(jī)本虛標(biāo)實,而以“氣滯”“瘀血”“濕濁”等實證為主,多以行氣活血,健脾益腎等中藥單體或湯劑的藥物研究為主要方向,在對RIRI的防治方面的研究取得了一定的成果。此外現(xiàn)代醫(yī)學(xué)與傳統(tǒng)醫(yī)藥結(jié)合應(yīng)用對RIRI的防治方面的研究顯示了一定的優(yōu)越性,對臨床腎移植和急性腎損傷時對腎臟的保護(hù)具有一定的提示和借鑒意義。然而,這些研究仍未能很好地解釋RIRI的機(jī)制變化和病機(jī)改變。因此,對RIRI進(jìn)一步的機(jī)制變化和病機(jī)改變?nèi)孕柘到y(tǒng)地研究和總結(jié),對臨床的應(yīng)用具有重大的意義。
參考文獻(xiàn)
[1]Chouchani ET,Pell VR,Gaude E,et al.Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS[J].Nature,2014,515(7527):431-435.
[2]楊潔,高飛.活性氧與細(xì)胞凋亡的研究進(jìn)展[J].國外醫(yī)學(xué):腫瘤學(xué)分冊,2002,29(4):248-251.
[3]Phull AR,Nasir B,Haq IU,et al.Oxidative stress,consequences and ROS mediated cellular signaling in rheumatoid arthritis[J].Chem Biol Interact,2018,281:121-136.
[4]成月英.腎臟缺血再灌注損傷發(fā)病機(jī)制研究進(jìn)展[J].齊魯醫(yī)學(xué)雜志,2014,29(1):87-89.
[5]Sun MS,Jin H,Sun X,et al.Free Radical Damage in Ischemia-Reperfusion Injury:An Obstacle in Acute Ischemic Stroke after Revascularization Therapy[J].Oxid Med Cell Longev,2018,2018:3804979.
[6]Inceoglu B,Bettaieb A,Haj FG,et al.Modulation of mitochondrial dysfunction and endoplasmic reticulum stress are key mechanisms for the wide-ranging actions of epoxy fatty acids and soluble epoxide hydrolase inhibitors[J].Prostaglandins Other Lipid Mediat,2017,133:68-78.
[7]Garcia I,Innis-Whitehouse W,Lopez A,et al.Oxidative insults disrupt OPA1-mediated mitochondrial dynamics in cultured mammalian cells[J].Redox Rep,2018,23(1):160-167.
[8]Yu W,Xu M,Zhang T,et al.Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy[J].J Physiol Sci,2019,69(1):113-127.
[9]Sun MS,Jin H,Sun X,et al.Free Radical Damage in Ischemia-Reperfusion Injury:An Obstacle in Acute Ischemic Stroke after Revascularization Therapy[J].Oxid Med Cell Longev,2018,2018:3804979.
[10]Rajaram RD,Dissard R,Jaquet V,et al.Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system[J].Nephrol Dial Transplant,2019,34(4):567-576.
[11]Nlandu-Khodo S,Dissard R,Hasler U,et al.NADPH oxidase 4 deficiency increases tubular cell death during acute ischemic reperfusion injury[J].Sci Rep,2016,6:38598.
[12]Beske PH,Byrnes NM,Astruc-Diaz F,et al.Identification of NADPH oxidase as a key mediator in the post-ischemia-induced sequestration and degradation of the GluA2 AMPA receptor subunit[J].J Neurochem,2015,132(5):504-519.
[13]Zhuan B,Yu Y,Yang Z,et al.Mechanisms of oxidative stress effects of the NADPH oxidase-ROS-NF-κB transduction pathway and VPO1 on patients with chronic obstructive pulmonary disease combined with pulmonary hypertension[J].Eur Rev Med Pharmacol Sci,2017,21(15):3459-3464.
[14]Farhood B,Goradel NH,Mortezaee K,et al.Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation[J].J Cell Commun Signal,2019,13(1):3-16.
[15]Watanabe K,Shishido T,Otaki Y,et al.Increased plasma xanthine oxidoreductase activity deteriorates coronary artery spasm[J].Heart Vessels,2019,34(1):1-8.
[16]Pelin M,F(xiàn)usco L,Martín C,et al.Graphene and graphene oxide induce ROS production in human HaCaT skin keratinocytes:the role of xanthine oxidase and NADH dehydrogenase[J].Nanoscale,2018,10(25):11820-11830.
[17]MFP R,de Barros ADCM M,Razvickas CV,et al.Xanthine oxidase inhibitors and sepsis[J].Int J Immunopathol Pharmacol,2018,32:2058738418772210.
[18]Zhu P,Hu S,Jin Q,et al.Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury:A mechanism involving calcium overload/XO/ROS/mPTP pathway[J].Redox Biol,2018,16:157-168.
[19]El DES,AKM H,Salem SY,et al.Cardioprotective effect of atorvastatin alone or in combination with remote ischemic preconditioning on the biochemical changes induced by ischemic/reperfusion injury in a mutual prospective study with a clinical and experimental animal arm[J].Int J Cardiol,2016,222:866-873.
[20]Oleshchuk OM.Protective effect of ischemic preconditioning on hepatic state in its ischemic-reperfusion injury[J].Klin Khir,2013,2013(4):76-78.
[21]Xue Q,Yuan Z,Chen Z,et al.Protective role of nitric oxide induced by ischemic preconditioning on cold ischemic-reperfusion injury of rat liver graft[J].Transplant Proc,2012,44(4):948-951.
[22]Bai YX,F(xiàn)ang F,Jiang JL,et al.Extrinsic Calcitonin Gene-Related Peptide Inhibits Hyperoxia-Induced Alveolar Epithelial Type II Cells Apoptosis,Oxidative Stress,and Reactive Oxygen Species(ROS)Production by Enhancing Notch 1 and Homocysteine-Induced Endoplasmic Reticulum Protein(HERP)Expression[J].Med Sci Monit,2017,23:5774-5782.
[23]Wang J,Sun Z,Shen J,et al.Octreotide Protects the Mouse Retina against Ischemic Reperfusion Injury through Regulation of Antioxidation and Activation of NF-κB[J].Oxid Med Cell Longev,2015,2015:970156.
[24]Xu Z,Zhao K,Han P,et al.Octreotide Ameliorates Renal Ischemia/Reperfusion Injury via Antioxidation and Anti-inflammation[J].Transplant Proc,2017,49(8):1916-1922.
[25]Ben-Ari Z,Pappo O,Yitzhaki S,et al.Uridine-5′-triphosphate protects against hepatic-ischemic/reperfusion injury in mice[J].Transplantation,2009,87(8):1155-1162.
[26]王紅雷,韓延輝,賈靜靜,等.利拉魯肽降低心肌微循環(huán)內(nèi)皮細(xì)胞缺血再灌注損傷的機(jī)制研究[J].中華老年心腦血管病雜志,2017,19(8):858-866.
[27]Lee JH,Amarsanaa K,Wu J,et al.Nobiletin attenuates neurotoxic mitochondrial calcium overload through K+ influx and△Ψm across mitochondrial inner membrane[J].Korean J Physiol Pharmacol,2018,22(3):311-319.
[28]Ma ZG,Xia HQ,Cui SL,et al.Attenuation of renal ischemic reperfusion injury by salvianolic acid B via suppressing oxidative stress and inflammation through PI3K/Akt signaling pathway[J].Braz J Med Biol Res,2017,50(6):e5954.
[29]Guirado E,Rajaram MV,Chawla A,et al.Deletion of PPARγ in lung macrophages provides an immunoprotective response against M.tuberculosis infection in mice[J].Tuberculosis(Edinb),2018,111:170-177.
[30]Li X,Bilali A,Qiao R,et al.Association of the PPARγ/PI3K/Akt pathway with the cardioprotective effects of tacrolimus in myocardial ischemic/reperfusion injury[J].Mol Med Rep,2018,17(5):6759-6767.
[31]Kaundal RK,Sharma SS.GW1929:a nonthiazolidinedione PPARγ agonist,ameliorates neurological damage in global cerebral ischemic-reperfusion injury through reduction in inflammation and DNA fragmentation[J].Behav Brain Res,2011,216(2):606-612.
[32]Gu L,Ge Z,Wang Y,et al.Double-stranded RNA-dependent kinase PKR activates NF-κB pathway in acute pancreatitis[J].Biochem Biophys Res Commun,2018,503(3):1563-1569.
[33]Harikrishnan H,Jantan I,Haque MA,et al.Anti-inflammatory effects of Phyllanthus amarus Schum.& Thonn.through inhibition of NF-κB,MAPK,and PI3K-Akt signaling pathways in LPS-induced human macrophages[J].BMC Complement Altern Med,2018,18(1):224.
[34]Lu S,Li H,Li K,et al.HDAC9 promotes brain ischemic injury by provoking IκBα/NF-κB and MAPKs signaling pathways[J].Biochem Biophys Res Commun,2018,503(3):1322-1329.
[35]Ramamoorthy H,Isaac B,Abraham P.Tenofovir induced renal damage is associated with activation of NF-κB inflammatory signaling pathway and PARP overactivation[J].BMC Infectious Diseases,2014,14(3):E5.
[36]He J,Lu X,Wei T,et al.Asperuloside and Asperulosidic Acid Exert an Anti-Inflammatory Effect via Suppression of the NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages[J].Int J Mol Sci,2018,19(7).
[37]Yang X,Gao X,Du B,et al.Ilex asprella aqueous extracts exert in vivo anti-inflammatory effects by regulating the NF-κB,JAK2/STAT3,and MAPK signaling pathways[J].J Ethnopharmacol,2018,225:234-243.
[38]Wang H,Zhang L,Xu S,et al.Surface-Layer Protein from Lactobacillus acidophilus NCFM Inhibits Lipopolysaccharide-Induced Inflammation through MAPK and NF-κB Signaling Pathways in RAW264.7 Cells[J].J Agric Food Chem,2018,66(29):7655-7662.
[39]Lee CY,Chen SP,Su CH,et al.Zerumbone from Zingiber zerumbet Ameliorates Lipopolysaccharide-Induced ICAM-1 and Cytokines Expression via p38 MAPK/JNK-IκB/NF-κB Pathway in Mouse Model of Acute Lung Injury[J].Chin J Physiol,2018,61(3):171-180.
[40]Huang WC,Wu LY,Hu S,et al.Spilanthol Inhibits COX-2 and ICAM-1 Expression via Suppression of NF-κB and MAPK Signaling in Interleukin-1β-Stimulated Human Lung Epithelial Cells[J].Inflammation,2018,41(5):1934-1944.
[41]Wang WJ,Chang CH,Sun MF,et al.DPP-4 inhibitor attenuates toxic effects of indoxyl sulfate on kidney tubular cells[J].PLoS One,2014,9(4):e93447.
[42]Jiang M,Zhang H,Zhai L,et al.ALA/LA ameliorates glucose toxicity on HK-2 cells by attenuating oxidative stress and apoptosis through the ROS/p38/TGF-β1 pathway[J].Lipids Health Dis,2017,16(1):216.
[43]Sena LA,Chandel NS.Physiological roles of mitochondrial reactive oxygen species[J].Mol Cell,2012,48(2):158-167.
[44]Vaseva AV,Marchenko ND,Ji K,et al.p53 opens the mitochondrial permeability transition pore to trigger necrosis[J].Cell,2012,149(7):1536-1548.
[45]Panah F,Ghorbanihaghjo A,Argani H,et al.Ischemic acute kidney injury and klotho in renal transplantation[J].Clin Biochem,2018,55:3-8.
[46]Qian Y,Guo X,Che L,et al.Klotho Reduces Necroptosis by Targeting Oxidative Stress Involved in Renal Ischemic-Reperfusion Injury[J].Cell Physiol Biochem,2018,45(6):2268-2282.
[47]Hu MC,Moe OW.Klotho as a potential biomarker and therapy for acute kidney injury[J].Nat Rev Nephrol,2012,8(7):423-429.
[48]Panah F,Ghorbanihaghjo A,Argani H,et al.Ischemic acute kidney injury and klotho in renal transplantation[J].Clin Biochem,2018,55:3-8.
[49]Hu MC,Shi M,Zhang J,et al.Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective[J].Kidney Int,2010,78(12):1240-1251.
[50]Ohnishi M,Razzaque MS.Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging[J].FASEB J,2010,24(9):3562-3571.
[51]高文強(qiáng),邱雪峰,李凱,等.丹參酮Ⅰ在腎臟缺血再灌注損傷中的保護(hù)作用研究[J].東南大學(xué)學(xué)報:醫(yī)學(xué)版,2018,37(3):372-379.
[52]聶陽,黃海潮,陳新穎,等.甘木通總黃酮對大鼠心肌缺血/再灌注損傷的保護(hù)作用[J].中成藥,2016,38(12):2677-2679.
[53]張炯,王佳,王芳,等.蛇床子素對大鼠腎臟缺血再灌注損傷的保護(hù)作用研究[J].安徽醫(yī)科大學(xué)學(xué)報,2018,53(11):1731-1735,1740.
[54]張炯,王佳,陳麗朱,等.蛇床子素對大鼠腎臟缺血-再灌注損傷的保護(hù)作用[J].臨床腎臟病雜志,2017,17(11):687-691.
[55]解德瓊,張臣麗,吳婭琳,等.蛇床子素預(yù)處理對腎臟缺血再灌注損傷炎性反應(yīng)因子表達(dá)的影響?[J].中國中西醫(yī)結(jié)合腎病雜志,2015,16(2):102-105.
[56]趙佰橋,劉劍華.蛇床子素對腎臟缺血-再灌注損傷的作用研究[J].實用藥物與臨床,2017,20(1):11-14.
[57]朱敏杰,郝海英,陳潔,趙京梅,郝曉娟.葛根素對腎缺血再灌注大鼠腎臟組織細(xì)胞凋亡的影響及其機(jī)制探討[J].中國實驗方劑學(xué)雜志,2016,22(23):127-132.
[58]熊益權(quán),陳清.1978~2014年我國登革熱的流行病學(xué)分析[J].南方醫(yī)科大學(xué)學(xué)報,2014,34(12):1822-1825.
[59]劉福和,倪文娟,王國康,等.當(dāng)歸補(bǔ)血湯對大鼠腎缺血-再灌注損傷后TLR4/NF-κB信號通路的影響[J].中國藥業(yè),2016,25(21):7-9,10.
(2019-04-10收稿 責(zé)任編輯:王明)