馬勝利
摘 要:項目學(xué)習(xí)課例“解密圓錐曲線”是在培養(yǎng)直觀想象核心素養(yǎng)理念指導(dǎo)下,在圖形計算器支持下的高中數(shù)學(xué)項目學(xué)習(xí)實踐,是山西省教育規(guī)劃課題“高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生‘直觀想象’核心素養(yǎng)的實踐研究”的成果。在本項目學(xué)習(xí)過程中,學(xué)生以小組合作的學(xué)習(xí)方式,經(jīng)歷調(diào)查研究,分析綜合,推理論證,交流展示等學(xué)習(xí)活動,通過“尋找圓錐曲線—研究圓錐曲線—運用圓錐曲線”三個學(xué)習(xí)階段,對圓錐曲線的認識達到由感性到理性再到應(yīng)用的三個層次,使數(shù)學(xué)直觀想象核心素養(yǎng)得到發(fā)展。
關(guān)鍵詞:項目學(xué)習(xí) 圓錐曲線 圖形計算器 直觀想象核心素養(yǎng)
基金項目 山西省教育科學(xué)“十三五”規(guī)劃2016年度規(guī)劃課題階段性成果——高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生“直觀想象”核心素養(yǎng)的實踐研究(GH-16262)
一、設(shè)計項目的緣起
1.學(xué)生實際與課標要求
本項目主要是探尋圓錐曲線背后的秘密,高一或者高二學(xué)生均可參與,對高一學(xué)生來說這是一次利用圖形計算器學(xué)習(xí)解析幾何的嘗試。
課標要求:
(1)了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。
(2)經(jīng)歷從具體情境中抽象出橢圓的過程,掌握橢圓的定義、標準方程及簡單幾何性質(zhì)。
(3)了解拋物線與雙曲線的定義、幾何圖形和標準方程,以及它們的簡單幾何性質(zhì)。通過圓錐曲線與方程的學(xué)習(xí),進一步體會數(shù)形結(jié)合的思想。
(4)收集、閱讀平面解析幾何的形成與發(fā)展的歷史資料,撰寫小論文、論述平面解析幾何發(fā)展的過程、重要結(jié)果、關(guān)鍵事件、主要人物及其對人類文明的貢獻。
2.設(shè)計“解密圓錐曲線”項目的緣起
(1)圓錐曲線是高中數(shù)學(xué)的核心概念,對圓錐曲線的研究既可以利用幾何方法又可以利用坐標法,坐標法是解析幾何的精髓,其本質(zhì)是數(shù)形結(jié)合思想。圓錐曲線的模型在現(xiàn)實世界中大量存在,在生產(chǎn)生活中應(yīng)用廣泛,學(xué)生們比較熟悉又充滿好奇,以研究圓錐曲線為項目學(xué)習(xí)課題驅(qū)動力強,能夠激發(fā)學(xué)生的探究熱情.
(2)本項目是山西省教育科學(xué)規(guī)劃課題“高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生‘直觀想象’核心素養(yǎng)的實踐研究”的成果,是基于培養(yǎng)直觀想象核心素養(yǎng)理念的高中數(shù)學(xué)項目學(xué)習(xí)。課題組的研究內(nèi)容之一是如何利用技術(shù)助力培養(yǎng)學(xué)生的直觀想象核心素養(yǎng),有30臺卡西歐fx-CG20圖形計算器可供利用,為本項目學(xué)習(xí)的研究提供了技術(shù)支持,基于充分利用圖形計算器進行技術(shù)支持下的高中數(shù)學(xué)項目學(xué)習(xí)研究的考慮,決定以“解密圓錐曲線”為項目課題。
(3)一般的項目學(xué)習(xí)課題是將解決一個生活中的實際問題作為項目任務(wù)展開的,本項目學(xué)習(xí)是以探索一個抽象的數(shù)學(xué)對象——圓錐曲線作為項目學(xué)習(xí)任務(wù),這是由數(shù)學(xué)的高度抽象的特點決定的。數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的學(xué)科,它的研究內(nèi)容除了現(xiàn)實生活中實際存在的問題之外,更多的是對由這些實際問題提煉出的抽象的數(shù)學(xué)對象之間的關(guān)系,圓錐曲線在現(xiàn)實世界中應(yīng)用廣泛,而其自身的很多有趣性質(zhì)又可以通過邏輯推理得到,因此“解密圓錐曲線”是一個具有數(shù)學(xué)特色的項目學(xué)習(xí)課題。
3.落實核心素養(yǎng)的需要
(1)圓錐曲線的模型在現(xiàn)實中廣泛存在,并大量應(yīng)用于人們的生產(chǎn)生活中,如航天科技,光學(xué)儀器,建筑設(shè)計,日常裝飾,等等,這為學(xué)生解密圓錐曲線提供了很好的資源。本項目學(xué)習(xí)的過程主要有三個階段:一是尋找圓錐曲線,二是研究圓錐曲線,三是運用圓錐曲線。通過這三個階段的學(xué)習(xí),學(xué)生對圓錐曲線的認識經(jīng)歷由感性到理性再到應(yīng)用三個層次。在學(xué)習(xí)過程中,學(xué)生將以小組合作的學(xué)習(xí)方式,經(jīng)歷調(diào)查研究,分析綜合,推理論證,交流展示等學(xué)習(xí)活動,有利于發(fā)展學(xué)生的數(shù)據(jù)處理、數(shù)學(xué)抽象、數(shù)學(xué)建模等核心素養(yǎng)。
(2)借助圖形計算器研究圓錐曲線是本項目的一大特點,圖形計算器可以方便地實現(xiàn)數(shù)形之間的轉(zhuǎn)化,使得圖形成為學(xué)生解決問題的主要工具和交流方式,從而促進學(xué)生直觀想象核心素養(yǎng)的提升。
二、項目學(xué)習(xí)的設(shè)計與實施
本項目預(yù)計用六周完成,學(xué)生在每周利用兩節(jié)課的時間進行統(tǒng)一學(xué)習(xí)和交流,其余項目學(xué)習(xí)活動利用課余時間完成。
1.項目的驅(qū)動問題
橢圓,雙曲線,拋物線統(tǒng)稱為圓錐曲線,人類對它的研究歷史可以追溯到兩千多年前的古希臘,觀察我們的世界,你會發(fā)現(xiàn)從生活飾品到宇宙星體,圓錐曲線隨處可見,從照明燈具到冷卻水塔,圓錐曲線的應(yīng)用廣泛。圓錐曲線和圓錐有什么關(guān)系?它們有哪些統(tǒng)一的性質(zhì)?是什么讓它們?nèi)绱嗣利愑秩绱擞杏??打開圖形計算器,點開上面圓錐曲線的菜單,呈現(xiàn)出來的是一些方程,圓錐曲線和這些方程之間有怎樣的關(guān)系?關(guān)于圓錐曲線,你是不是還有很多問題?為了揭開圓錐曲線的“面紗”,探尋它背后的秘密。提煉出本項目的驅(qū)動問題:橢圓,雙曲線,拋物線的模型在我們的生活中大量存在,這些圓錐曲線的背后隱藏著怎樣的秘密?
準備階段:
(1)分配項目小組——五人一組,一共十組,確定組長、副組長、組內(nèi)行動記錄員(攝像)、文字錄入員等。
(2)創(chuàng)設(shè)項目學(xué)習(xí)交流討論平臺,比如QQ交流群,微信交流群等。
第一階段:考察和學(xué)習(xí)
理解驅(qū)動問題,將十個小組分成三個大組,分別承擔“尋找圓錐曲線”“確定圓錐曲線”“應(yīng)用圓錐曲線”的項目任務(wù)。
原計劃是全體學(xué)生經(jīng)歷“尋找圓錐曲線”“確定圓錐曲線”“應(yīng)用圓錐曲線”的學(xué)習(xí)過程,在實際操作過程中發(fā)現(xiàn)每個環(huán)節(jié)由十個小組來做不是太好。一方面任務(wù)比較單一,學(xué)生做的大部分工作會重復(fù);另一方面,很多學(xué)生在做同一個項目學(xué)習(xí)任務(wù),項目學(xué)習(xí)任務(wù)的重心就會分散,學(xué)生的學(xué)習(xí)行為就會不集中,不利于項目學(xué)習(xí)的管理。從知識角度來看,“尋找圓錐曲線”“確定圓錐曲線”“應(yīng)用圓錐曲線”三者并不存在嚴格的邏輯關(guān)系,完全可以單獨完成且齊頭并進。于是,從項目學(xué)習(xí)的合作學(xué)習(xí)和小組學(xué)習(xí)特點出發(fā),決定共同推進。在項目學(xué)習(xí)的第一階段,讓學(xué)生利用自己喜歡和擅長的學(xué)習(xí)方式完成各自的任務(wù),對學(xué)生的學(xué)習(xí)興趣是一次激勵,同時,組和組之間可以進行有效地比較,激發(fā)學(xué)生完成項目學(xué)習(xí)任務(wù)的斗志。這樣的設(shè)計可以將項目學(xué)習(xí)的時間大大縮短,同時也對學(xué)生后續(xù)合作學(xué)習(xí)提出了更高的要求。
三個大組的具體學(xué)習(xí)任務(wù)安排:
① “尋找圓錐曲線”組:盡量多地找出生活中的圓錐曲線模型??梢越ㄗh項目學(xué)習(xí)小組在商標、建筑、裝飾或者是網(wǎng)絡(luò)上尋找。
② “確定圓錐曲線”組:主要任務(wù)是搞清楚圓錐曲線的定義。這個組由兩個技術(shù)小組構(gòu)成,一個是手持技術(shù)組,所用的工具是圖形計算器,主要研究解析幾何的基本思想,把涉及圓錐曲線的知識了解到位,以便將來給同學(xué)講解;另一個是《幾何畫板》組,主要是研究利用《幾何畫板》軟件從幾何角度來確定圓錐曲線的方法,主要涉及圓錐曲線的統(tǒng)一定義等。
③“應(yīng)用圓錐曲線”組:主要是實際考察和通過互聯(lián)網(wǎng)搜索圓錐曲線在實際生活中的應(yīng)用,包括軍工,航天,光學(xué)儀器,物理等方面。
本階段學(xué)生的主要項目作品:
①“尋找圓錐曲線”組:歸納圓錐曲線出現(xiàn)的情況,以圖片的形式展示。
②“確定圓錐曲線”組:手持技術(shù)組主要學(xué)習(xí)解析幾何的基本思想,圓錐曲線方程的標準形式等數(shù)學(xué)知識;《幾何畫板》組主要幫助同學(xué)理解圓錐曲線第一定義與第二定義,用《幾何畫板》動態(tài)演示圓錐曲線的形成和統(tǒng)一性。
③“應(yīng)用圓錐曲線”組:展示考察結(jié)果,展示相應(yīng)的圖片、視頻,等等。
以上項目作品均要求學(xué)生在課堂上進行講解,講解的過程全程錄像,然后發(fā)到交流群里,在之后的學(xué)習(xí)中,學(xué)生有什么疑問可以直接在群里交流解決。(圖1為學(xué)生利用《幾何畫板》展示圓錐曲線統(tǒng)一定義,圖2為學(xué)生利用圖形計算器研究圓錐曲線)
第二階段:研究和解密
本階段主要是運用相關(guān)知識解密圓錐曲線,解決有關(guān)圓錐曲線“是不是”和“為什么”的問題,主要包括兩個方面:一是判斷上一階段找到的圖片是否包含圓錐曲線;二是揭秘上一階段圓錐曲線的應(yīng)用都體現(xiàn)了圓錐曲線的哪些性質(zhì)并證明。這一部分是本項目學(xué)習(xí)的重點,在完成解釋有關(guān)圓錐曲線的現(xiàn)象這個任務(wù)的過程中,學(xué)生進一步利用技術(shù)完成對圓錐曲線的深入探究,更加深入理解了解析幾何的精髓——坐標法。
本階段學(xué)生的主要項目作品:
①對前面找到的圓錐曲線圖片,利用圖形計算器中的圓錐曲線模塊從代數(shù)的角度來確定它們是否是圓錐曲線。將研究過程打包成一個知識產(chǎn)品分享給同學(xué)。
②對于應(yīng)用的部分,重點研究圓錐曲線的光學(xué)性質(zhì),利用圖形計算器中的幾何模塊和解方程模塊分別從幾何和代數(shù)角度來進行證明。將研究過程打包成一個知識產(chǎn)品分享給同學(xué)。
(圖3為學(xué)生利用圖形計算器驗證豐田汽車的標志是橢圓,圖4為學(xué)生利用圖形計算器證明橢圓的光學(xué)性質(zhì)。)
第三階段:創(chuàng)作和運用
各小組從以下任務(wù)中任選一個完成:①利用圓錐曲線的幾何性質(zhì)制作一件手工作品;②利用圓錐曲線的幾何性質(zhì)設(shè)計一種有應(yīng)用價值的產(chǎn)品,寫出詳細的設(shè)計方案;
③考察圓錐曲線的發(fā)現(xiàn)和研究歷史,發(fā)掘圓錐曲線背后的故事。
本階段學(xué)生的主要項目作品:
各組的選擇不相同,有三個組是研究圓錐曲線的發(fā)展史,并寫出論文及制作PPT;有三個組是利用圓錐曲線的性質(zhì)設(shè)計產(chǎn)品,包括橢圓臺球桌,拋物線橋,太陽灶等;有一個組是設(shè)計關(guān)于圓錐曲線的小玩具。(圖5為學(xué)生講解圓錐曲線極簡史,圖6為學(xué)生制作的拋物線型虹橋。)
第四階段:匯報交流,總結(jié)表彰
本項目學(xué)習(xí)接近尾聲時,學(xué)校舉辦科技節(jié),學(xué)生在完成“解密圓錐曲線項目學(xué)習(xí)報告”的基礎(chǔ)上,為全校同學(xué)在科技節(jié)上做了題為“解密圓錐曲線”的專題報告。
學(xué)生先設(shè)計出科技節(jié)報告的海報,張貼在校園內(nèi)醒目的位置,為這場報告做宣傳,接著教師和學(xué)生共同商討如何完成解密圓錐曲線的報告,認為只要把曾經(jīng)完成的項目作品集中在報告中展示出來,以合理的邏輯順序進行安排就可以很好地完成這項任務(wù)。在正式報告之前,學(xué)生進行了演講稿的修改和報告的彩排,做好了充分的準備。最終,在正式報告時,學(xué)生的發(fā)揮非常好,受到了與會師生的高度的評價。
在本項目學(xué)習(xí)的最后,召開了一次項目學(xué)習(xí)總結(jié)表彰會,邀請學(xué)校的相關(guān)領(lǐng)導(dǎo),數(shù)學(xué)組全體教師,以及學(xué)生家長參加,對學(xué)生在本項目學(xué)習(xí)活動中的各方面表現(xiàn)進行總結(jié)和表彰。
本階段學(xué)生的主要項目作品:
①解密圓錐曲線項目學(xué)習(xí)報告;
②科技節(jié)專題報告的海報;
③學(xué)生在報告中準備的演講稿、PPT以及科技節(jié)報告的完整視頻。
(圖7為科技節(jié)專題報告“解密圓錐曲線”的海報,圖8,圖9為學(xué)生在報告現(xiàn)場利用圖形計算器研究圓錐曲線,圖10為學(xué)生在報告會上講解圓錐曲線的應(yīng)用)
5.項目學(xué)習(xí)成果
(1)在山西省教育科學(xué)研究院薛紅霞老師主持的“高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生‘直觀想象’核心素養(yǎng)的實踐研究”課題組的影響下,本項目學(xué)習(xí)側(cè)重于研究圖形計算器在項目學(xué)習(xí)中的運用,取得的成果均在“高中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生‘直觀想象’核心素養(yǎng)的實踐研究”課題組活動中作為研討對象展示給省內(nèi)有關(guān)教師,特別是應(yīng)陜西省教科院的邀請,赴西安中學(xué)展示了案例“圖形計算器在項目學(xué)習(xí)中的應(yīng)用”,受到了山西和陜西兩省數(shù)學(xué)教師的高度評價,并且對項目研究成果有一定的推動作用。
(2)本項目學(xué)習(xí)中圖形計算器的使用在很大程度上提高了學(xué)生的數(shù)學(xué)學(xué)習(xí)興趣,有三位學(xué)生的項目作品在第一屆卡西歐(GDC達人秀)活動中獲獎,其中王子杰同學(xué)獲得最高獎“鉆石達人”。(圖11為學(xué)生的獲獎證書)
三、項目學(xué)習(xí)的反思
本項目學(xué)習(xí)活動的開展獲得了有關(guān)專家、領(lǐng)導(dǎo)、家長的好評,深受學(xué)生歡迎。通過本項目的實踐,主要有以下幾點收獲:
1.體會到了如何開展高中數(shù)學(xué)項目學(xué)習(xí)。
項目學(xué)習(xí)是面向未來的教學(xué)方式,目前,高中數(shù)學(xué)科目中這類課該怎樣上,在全國還沒有研究的先例,通過對“解密圓錐曲線”的項目學(xué)習(xí)教學(xué)實踐,我們積累了開展項目學(xué)習(xí)活動的經(jīng)驗,為項目學(xué)習(xí)的研究和實踐提供了生動鮮活的課例。
2.感悟到了如何利用技術(shù)來進行高中數(shù)學(xué)教學(xué)。
在未來的教學(xué)中,技術(shù)的運用是不可避免的,人類的大腦主要是用來思考的,而技術(shù)為我們提供了充分發(fā)揮大腦優(yōu)勢的可能性,在課堂上,能用技術(shù)解決的,就不必用人腦解決。通過本項目的實踐,我感悟到充分發(fā)揮技術(shù)的作用,使技術(shù)為數(shù)學(xué)教學(xué)所用,在應(yīng)用技術(shù)的基礎(chǔ)上使得學(xué)生的學(xué)習(xí)效率和教師的教學(xué)效率大大提高。
3.感受到了學(xué)生的“直觀想象”核心素養(yǎng)在項目學(xué)習(xí)活動中得以培養(yǎng)和提高。
數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的學(xué)科,對于形的研究是數(shù)學(xué)研究的主要方面,圓錐曲線模型廣泛出現(xiàn)在我們的世界之中,它是數(shù)學(xué)“真”“善”“美”的典范,形態(tài)優(yōu)美,體現(xiàn)了宇宙的秩序。伴隨著解析幾何的出現(xiàn),圓錐曲線體現(xiàn)了數(shù)和形的完美結(jié)合,在本項目學(xué)習(xí)過程中,學(xué)生不斷經(jīng)歷由形到數(shù)再由數(shù)到形的思維過程,通過直觀想象找到圓錐曲線“形”的特征,再通過抽象思維,得到圓錐曲線“數(shù)”的特征,在直觀具體和抽象概括相輔相成的思考和探究當中,學(xué)生的直觀想象能力得到培養(yǎng)和提高。