• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of Cubic-relievo Ag3PO4 with High Visible-light Photocatalytic Activity

    2019-08-19 11:52:08WEIJuMengQiangWANGBenChiPANJiaLeYEXiangJuSONGChangChun
    關(guān)鍵詞:浮雕晶面立方體

    WEI Ju-Meng, Lü Qiang, WANG Ben-Chi, PAN Jia-Le, YE Xiang-Ju, SONG Chang-Chun

    Synthesis of Cubic-relievo Ag3PO4with High Visible-light Photocatalytic Activity

    WEI Ju-Meng, Lü Qiang, WANG Ben-Chi, PAN Jia-Le, YE Xiang-Ju, SONG Chang-Chun

    (College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, China)

    High visible-light photocatalytic activity silver phosphate (Ag3PO4) was successfully prepareda facile water bath method. Scanning electron microscopy (SEM) images show that the products undergo three morphological changes during the reaction process, and the final product has uniform cubic-relievo morphology with an average particle size of about 1.6 μm. X-ray diffraction (XRD) patterns indicate that the samples are body-center cubic structure. In addition, the high resolution transmission electron microscopy (HRTEM) images show that several crystal facets are located in the surfaces of cubic-relievo Ag3PO4. UV-Vis absorption and photoluminescence (PL) spectra demonstrate that the products possess high visible-light responsive performance and weak PL emission intensity. The cubic-relievo Ag3PO4exhibits significantly higher catalytic performance when applied on the photodegradation of methyl orange (MO) under visible-light irradiation in comparison to the cubic Ag3PO4, intermediate products or commercial nitrided TiO2photocatalyst. This work indicates that the photocatalytic performance of the catalyst can be effectively improved by changing its surface structure.

    Ag3PO4; cubic-relievo; crystal faces; visible-light photocatalysis

    Photocatalysis is an efficient technology for the degradation of organic contaminants[1]. In the past few decades, the search for photocatalysts is prevalent. To date, many wide band gap semiconductors, such as TiO2, have been demonstrated to be excellent photocatalysts in the fields of photodegradation[2-3]. However, for those semiconductors with high band gap energy, only ultraviolet (UV) light (<400 nm), which is less than 4% of the solar spectrum can be effectively used in the process of photocatalytic reactions. Accordingly, the development of visible-light responsive photocatalysts is becoming increasingly important. Forming semiconductor heterojunction is an effective way to enhance the visible-light absorption[4]. Besides, exploring new type visible-light responsive photocatalysts has aroused growing research interest recently. Since 2010, Ag3PO4with a band gap of 2.36 eV, as an emerging family of promising photocatalysts, has attracted much more attention[5-7].To date, Ag3PO4was confirmed as an excellent visible-light driven photocatalyst for water splitting and degradation of organic contaminants[8-11].For instance, Ye's group[12]first demonstrated that Ag3PO4had high visible-driven (>420 nm) water photooxidation, which could achieve a quantum efficiency as high as 90%.Yang,[13]reportedthat Ag3PO4exhibited high photocatalytic activity for rhodamine B (RhB) degradation. Furthermore, in order to improve and optimize their photoelectric and photocatalytic properties, many methods have been developed. Among these methods, the morphology control has been considered to be one of the most promising avenues[14-15]. The morphology of materials is related to the exposed facets of the crystals, which directly affect the properties of the catalysts[16]. Therefore, adjusting the surface structures is a promising way to improve the photocatalytic activity of Ag3PO4.

    In this work, a novel cubic-relievo shape Ag3PO4with rugged surfaces was synthesized by a facile water bath method. The as-prepared final products showed high photocatalytic activity for the degradation of methyl orange (MO) under visible light irradiation.

    1 Experimental

    1.1 Reagent

    Silver nitrate (AgNO3, 99.9%), ammonium hydroxide (NH3·H2O, 25%-28%), disodium hydrogen phosphate (Na2HPO4, 99%), alcohol (99.7%). All reagents were purchased from Sinopharm Chemical Reagent Co., Ltd, and were used without further experimental purification.

    1.2 Synthesis of Ag3PO4

    The typical procedureincludes three steps: (1) pre-paration of Tollens'reagents; (2) addition of Na2HPO4solution; (3) reaction in water bath. Detailedly, 100 mg AgNO3was dissolved in 10mL distilled water. Fresh Tollens'reagents was obtained when 30 mL, 0.1 mol/L ammonia solution was dropwise added to above AgNO3solution. Then, 20 mL, 0.15 mol/L Na2HPO4aqueous solution was dropped into theabove solution. Subsequently, the mixture was placed in a water bath at 30 ℃ for 24 h under magnetic stirring.It is noteworthy thatTollens'reagents and the reaction mixture should put into brown beaker flask in case photocorrosion occurs. Samples were extracted atschedule time (4, 12 and 24 h), corresponding to the initial, intermediate and final products, respectively. The obtained samples were washed with water and alcohol several times and dried invacuum.The synthesis process and morphology evolution of samples are shown in Scheme 1.

    1.3 Characterization

    The structure of the samples were characterized by XRD (Rigaku D/Max-2400) using Cu-Kα radiation (40 kV, 60 mA,=0.1546 nm). The morphologies of the as-preparedAg3PO4were examined by field emission SEM, (TESCAN, MIRA3) and TEM (JEOL, JEM-2100F). UV-Visible absorption spectroscopy (ABs) was carried out by using a Shimadzu UV-3600 spectrophotometer. Photoluminescence (PL) spectrum was carried out on OmniPL-LF325 spectrofluorometer with 500 nm laser radiation source.

    1.4 Photoreactivity measurements

    In all of the photocatalytic activity experiments, the samples (10 mg) were made into an 100 mL aqueous MO solution to insure the equilibrium of the MO adsorption on the Ag3PO4. Then the solution was irradiated with a solution (5 mg/L) and stirred in the dark for 30 min to 500 W Xenon lamp with an ultraviolet cut-off filter (> 420 nm). During the irradiation, at given time intervals (10 min), 4 mL solution was sampled and centrifuged (10000 r/min) to remove the catalyst. The concentration of MB was calculated by measuring the absorbance of supernatants with a UV-3600 (Shimadzu) spectrophotometer.

    Scheme 1 Synthesis process and morphology evolution of Ag3PO4with the reaction time extending

    2 Results and discussion

    As shown in Fig. 1(a)-(b), SEM images reveal that the initial products consist of uniform cubic microcrystals with average size of 1.6 μm. Figure 1(c) indicates that the average size of final products is still 1.6 μm, and the enlarged SEM image (Fig. 1(d)) reveals that the as-prepared final products are cubic-relievo shape with rugged surfaces. Based on these results, we propose that the cubic-relievo samples are generated from the cubic products through corrosion process. Furthermore, the morphology of intermediate products (Scheme 1) can also support this viewpoint. The cubic products were obtained within 4 h reaction. With the extension of reaction time, increasing amount of free NH3·H2O was released to the system (as reaction below).

    ?(2)

    When the NH3·H2O concentration was high enough, the edges and the surfaces of the as-formed cubic productswould be corroded by the free NH3·H2O. As the corrosion process continues, the Ag3PO4cubes would be corroded to form the final cubic-relievo shape with rugged surfaces. To the best of our knowledge, the cubic Ag3PO4has been reported, yet this kind of novel morphology has been barely reported previously.

    Fig. 1 Different magnification SEM images of initial (a-b), and final products(c-d) with insets showing the correponding histogram of size distribution

    In order to investigate the structure of the as-obtained samples, the typical powder X-ray diffraction (XRD) was performed and the XRD patterns were shown in Fig. 2. The results indicate that the XRD patterns of both cubic and cubic-relievosamples can be well indexed to the body-centered cubic structure of Ag3PO4(JCPDS 06-0505)[17].The structure did not change with the different morphologies. The strong and sharp peaks suggest the highly crystalline nature of Ag3PO4microcrystals. Figure 3 shows the high-resolution TEM (HRTEM) images of Ag3PO4samples. As shown in Fig. 3(a), the lattice fringes of cubic-relievo Ag3PO4have spacing of 0.30, 0.27, 0.24 and 0.19 nm, which is in agreement with the spacing of the (200), (210), (211) and (310) planes, respectively. It's worth noting that the (200), (211) and (310) planes locate in surfaces of cubic-relievo, and the Fig. 3(a) shows HRTEM images of (210) planes locating in the interior of the cubic-relievo Ag3PO4crystal. For cubic Ag3PO4, by contrast, the lattice fringe spacing is 0.27 nm corresponding to (210) plane, which located in either surface or interior of the particles. The Fast Fourier Transform (FFT) patterns of HRTEM images are shown in the insets of Fig. 3(a)-(b). Two apparent rings (inset of Fig. 3(a)) indicate that several kinds of crystal facets exist in the surface of cubic-relievo Ag3PO4, and the distinct electron diffraction spots (inset of Fig.3(b)) show mono-crystalline nature of the cubic Ag3PO4crystals. The FFT results are well corresponding to HRTEMimages. However, the XRD pattern does not reveal any information about these crystal facets with different indexes, because these facets just exist in the subgrains below 2-5 nm surface (see the dashed circle in Fig. 3(a)) and account for tiny percentage of the Ag3PO4particle. From this results, it can be inferred that corrosive effect of ammonia makes different crystal facets exposed to air.

    Fig. 2 XRD patterns of cubic and cubic-relievo products

    Fig. 3 HRTEM images of (a) cubic-relievo Ag3PO4 and (b) cubic Ag3PO4 with insets showing the correspongding FFT patterns of HRTEM images

    The ultraviolet-visible diffuse reflectance spectra of cubic-relievo and cubic Ag3PO4are shown in Fig. 4(a). The light absorption edges of the samples were achieved by extrapolating the steep slopes in the spectra. The cubic- relievo and cubic Ag3PO4exhibits absorbance peak edges around 505 and 514 nm, respectively. Furthermore, for cubic-relievo Ag3PO4, the absorption intensity in the wavelength range from 380 nm to 500 nm is higher than that of cubic Ag3PO4. In our opinion, this enhancement is attributed to several crystal faces in the surfaces of cubic- relievo Ag3PO4. It’s revealed that surface morphology is an important factor affecting diffusive reflectance spectra of the samples. The relationship between the coefficient and band gap energy can be described by the equation: (ν)2=(Eg), in which,,, andgare absorption coefficient, light frequency, proportionality constant and band gap, respectively[18]. The plots oflight energy (ν)2energy () for the as-prepared samples are shown inFig. 4(b), the band gap of cubic Ag3PO4(2.47 eV) and cubic-relievo Ag3PO4(2.45 eV) are evaluated by extrapolating the straight line to theaxis intercept. This slightly broadening of band gap is believed to have little effect on the photocatalytic activity.

    Fig. 4 (a) Ultraviolet-visible diffusive reflectance spectra, and (b) plots of light energy (αhν)2vs. photon energy (hν) for the determination of the direct optical band gap of cubic-relievo Ag3PO4 and cubic Ag3PO4

    The PL spectra of the as-prepared samples are performed to characterize the separation efficiency of the photo-generated electrons and holes[19]. As shown in Fig. 5, the cubic Ag3PO4possess strong emission intensity in the range between 510-600 nm. Accordingly, this PL emission peaks usually generated from the recombination of electron and holes. However, the emission intensity of cubic-relievo Ag3PO4is weaker than that of the cubic Ag3PO4. As it is well known, weaker PL intensity indicating higher separation efficiency, and which would lead to a higher photocatalytic activity[20]. It means that cubic-relievo Ag3PO4should have higher efficiency for separating the photogenerated electron-holes.

    As known to all, photocatalytic activity of materials depends not only on the crystal structure, but also on the surface structure[21]. Compared with cubic Ag3PO4, the novel cubic-relievo Ag3PO4would present more crystal faces. In order to investigate the surface effects on the photocatalytic activity, the photocatalytic performance of cubic and cubic-relievo Ag3PO4was evaluated by determining the degradation of MO under visible-light irradiation (>420 nm). For comparison, the performance of commercial nitrided TiO2and the intermediate product was also investigated, and the degradation efficiency is presented in Fig. 6(a). The adsorption abilities of the catalysts to MO are almost negligible in dark. Therefore, the photocatalytic activities are attributed to the degradation ability of the catalysts under visible-light irradiation. It is obvious that the cubic-relievo Ag3PO4photocatalysts exhibited best photocatalytic activities for the MO degradation, and nearly 100% of MO was degraded after about 20 min irradiation under visible light irradiation. This results indicate that the photocatalytic activity of Ag3PO4was significantly improved after the etching process with the extension of time. The cubic-relievo Ag3PO4degraded 98% of MO and showed a photodegraded rate constant of 0.194 min-1, representing a high photocatalytic activity (as shown in Fig. 6(b)).

    Fig. 5 PL emission spectra of cubic and cubic-relievo Ag3PO4

    Fig. 6 Photocatalytic activities of MO over cubic-relievo Ag3PO4, cubic Ag3PO4 and commercial nitrided TiO2 under visible- light irradiation (λ>420 nm) (a), the first-order rate constant of three types of Ag3PO4 on degradation of MO (b)

    It is known that the photodegradation of organic pollutants is a surface oxidation process, which is driven by photogenerated electron-hole pairs correlated with the surface structure. For the photocatalytic behavior of Ag3PO4, the most crucial factor is the chemical adsorption and reaction of target molecules occurring on the surfaces of Ag3PO4. Therefore, The high photocatalytic activity of cubic-relievo Ag3PO4can be attributed to the active sites exposed on the rugged surfaces. The schematic illustration of the catalytic mechanism is shown in Fig. 7. Several crystal facets exist in the rugged surfaces of cubic-relievo Ag3PO4, as we know, the photogenerated electrons on different crystal facets possess different energy and activity[16,21]. Moreover, the synergy between different crystal facets can enhance photocatalytic performance[22].

    Fig. 7 Schematic illustration of the mechanism for the photocatalytic performance of cubic-relievo Ag3PO4

    3 Conclusion

    In conclusion, a novel cubic-relievo Ag3PO4photocatalyst with rugged surfaces was prepareda corrosion method. The evolution of the morphology form cubic to cubic-relievo shape has been investigated with the reaction time extending. The as-prepared cubic-relievo Ag3PO4exhibited outstanding photocatalytic activity under visible-light irradiation. It is found that the different crystal facets exist on the surfaces of cubic-relievo Ag3PO4which can effectively enhance the photocatalytic performance. This research proposed a new design and synthetic method to improve the performance by changing the surfaces of the materials.

    [1] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode., 1972, 238: 37–38.

    [2] LIU B, HUANG Y, WEN Y,. Highly dispersive {001} facets- exposed nanocrystalline TiO2on high quality graphene as a high performance photocatalyst.., 2012, 15(22): 7484–7491.

    [3] KSIBI M, ROSSIGNOL S, TATIBOUET J M,. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2photocatalysts active under near visible light.., 2008, 62(26): 4204–4206.

    [4] HUANG S, XU Y, ZHOU T,. Constructing magnetic catalysts withsolid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4composites., 2018, 225: 40–50.

    [5] BI Y, OUYANG S, CAO J,. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4(X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities.., 2011, 13(21): 10071–10075.

    [6] JIAO Z, ZHANG Y, YU H,. Concave trisoctahedral Ag3PO4microcrystals with high-index facets and enhanced photocatalytic properties.., 2013, 49(6): 636–638.

    [7] DONG P, WANG Y, LI H,. Shape-controllable synthesis and morphology-dependent photocatalytic properties of Ag3PO4crystals., 2013, 1(15): 4651–4656.

    [8] MARTIN D J, UMEZAWA N, CHEN X,. Facet engineered Ag3PO4for efficient water photooxidation., 2013, 6(11): 3380–3386.

    [9] ZHAI W, LI G, YU P,. Silver phosphate/carbon nanotube-stabilized pickering emulsion for highly efficient photocatalysis., 2013, 117(29): 15183–15191.

    [10] DINH C T, NGUYEN T D, KLEITZ F,. Large-scale synthesis of uniform silver orthophosphate colloidal nanocrystals exhibiting high visible light photocatalytic activity., 2011, 47(27): 7797–7799.

    [11] BI Y, HU H, OUYANG S,. Selective growth of Ag3PO4submicro-cubes on Ag nanowires to fabricate necklace-like heterostructures for photocatalytic applications., 2012, 22(30): 14847–14850.

    [12] YI Z, YE J, KIKUGAWA N,. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation.., 2010, 9(7): 559–564.

    [13] LIANG Q, MA W, SHI Y,. Hierarchical Ag3PO4porous microcubes with enhanced photocatalytic properties synthesized with the assistance of trisodium citrate., 2012, 14(8): 2966–2973.

    [14] GUO X, CHEN C, YIN S,. Controlled synthesis and photocatalytic properties of Ag3PO4microcrystals.., 2015, 619: 293–297.

    [15] WANG J, TENG F, CHEN M,. Facile synthesis of novel Ag3PO4tetrapods and the {110} facets-dominated photocatalytic activity., 2013, 15(1): 39–42.

    [16] BI Y, OUYANG S, UMEZAWA N,. Facet effect of single- crystalline Ag3PO4sub-microcrystals on photocatalytic properties.., 2011, 133(17): 6490–6492.

    [17] MARTIN D J, LIU G, MONIZ S J A,. Efficient visible driven photocatalyst, silver phosphate: performance, understanding and perspective.., 2015, 46(50): 7808–7828.

    [18] BUTLER M A. Photoelectrolysis and physical properties of the semiconducting electrode WO2.., 1977, 48(5): 1914– 1920.

    [19] CHENG J, YAN X, MO Q,Facile synthesis of g-C3N4/BiVO4heterojunctions with enhanced visible light photocatalytic performance.., 2017, 43(1): 301–307.

    [20] CHEN L, YU Y, WU M,Synthesis of hollow BiVO4/Ag composite microspheres and their photocatalytic and surface enhanced raman scattering propertiesl., 2015, 80(5): 871–877.

    [21] ZHENG B, WANG X, LIU C,. High-efficiently visible light-responsive photocatalysts: Ag3PO4tetrahedral microcrystals with exposed {111} facets of high surface energy., 2013, 1(40): 12635–12640.

    [22] CAO M, TANG Z, LIU Q,. The Synergy between metal facet and oxide support facet for enhanced catalytic performance: the case of Pd-TiO2.., 2016, 16(8): 5298–5302.

    高可見(jiàn)光催化活性立方體浮雕狀A(yù)g3PO4的合成

    魏居孟, 呂強(qiáng), 王奔馳, 潘家樂(lè), 葉祥桔, 宋常春

    (安徽科技學(xué)院 化學(xué)與材料工程學(xué)院, 鳳陽(yáng) 233100)

    采用簡(jiǎn)單的水浴法成功制備了具有高可見(jiàn)光活性的Ag3PO4材料。掃描電鏡測(cè)試結(jié)果表明反應(yīng)過(guò)程中產(chǎn)物經(jīng)歷了三種形貌的演變, 最終產(chǎn)物具有均一的立方體浮雕形貌, 平均顆粒尺寸大小約為1.6 μm。通過(guò)X射線衍射圖譜可知產(chǎn)物具有體心立方結(jié)構(gòu)。此外, 從高倍透射電鏡圖片中可判斷出樣品表面存在多種晶面。紫外–可見(jiàn)吸收光譜和熒光光譜結(jié)果表明該產(chǎn)物具有高的響應(yīng)可見(jiàn)光的性能和較弱的熒光發(fā)射強(qiáng)度。該產(chǎn)物與立方Ag3PO4、反應(yīng)的中間產(chǎn)物和商用氮化的TiO2催化劑相比, 在可見(jiàn)光下對(duì)甲基橙的降解表現(xiàn)出有顯著的催化活性。研究工作表明, 通過(guò)改變催化劑的表面結(jié)構(gòu)可以有效提高材料的光催化性能。

    磷酸銀; 立體浮雕狀; 多種晶面; 可見(jiàn)光催化

    TQ174

    A

    2018-09-26;

    2018-12-07

    National Natural Science Foundation of China(21603002); Talent Introduction Foundation of Anhui Science and Technology University (ZRC2014448); Key Discipline Foundation of Anhui Science and Technology University (AKZDXK2015A01); The Open Foundation of Chongqing Key Laboratory of Environmental & Remediation Technologies (CEK1502); Foundation of College Students Innovation and Entrepreneurship (2017S10879012)

    WEI Ju-Meng (1985-), PhD, lecturer. E-mail: weijm@ahstu.edu.cn

    SONG Chang-Chun, professor. E-mail: lzu_alice@163.com

    1000-324X(2019)07-0786-05

    10.15541/jim20180455

    猜你喜歡
    浮雕晶面立方體
    疊出一個(gè)立方體
    乙酸乙酯與ε-CL-20不同晶面的微觀作用機(jī)制
    浮雕圓圈
    NaCl單晶非切割面晶面的X射線衍射
    (100)/(111)面金剛石膜抗氧等離子刻蝕能力
    不同硅晶面指數(shù)上的類(lèi)倒金字塔結(jié)構(gòu)研究與分析?
    出錯(cuò)的浮雕
    圖形前線
    立方體星交會(huì)對(duì)接和空間飛行演示
    太空探索(2016年9期)2016-07-12 09:59:53
    折紙
    神马国产精品三级电影在线观看 | 在线观看免费高清a一片| 水蜜桃什么品种好| 欧美黑人精品巨大| 日日干狠狠操夜夜爽| 精品无人区乱码1区二区| 人妻丰满熟妇av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 国产精品影院久久| 成年人免费黄色播放视频| 欧美在线一区亚洲| 夜夜夜夜夜久久久久| 中文字幕最新亚洲高清| 变态另类成人亚洲欧美熟女 | 国产精品av久久久久免费| 男人操女人黄网站| 国产精品一区二区在线不卡| 亚洲成人免费电影在线观看| 色在线成人网| 成人免费观看视频高清| 精品福利永久在线观看| 久久精品成人免费网站| 国产免费现黄频在线看| 99香蕉大伊视频| bbb黄色大片| 两个人免费观看高清视频| 色综合站精品国产| 亚洲av熟女| 亚洲人成电影观看| 免费在线观看亚洲国产| 我的亚洲天堂| 免费观看精品视频网站| 久久久久国产精品人妻aⅴ院| 亚洲中文字幕日韩| 身体一侧抽搐| 亚洲第一av免费看| 涩涩av久久男人的天堂| 在线观看免费视频网站a站| 日本黄色日本黄色录像| 欧美日韩乱码在线| 男人操女人黄网站| 国产成人一区二区三区免费视频网站| 亚洲男人的天堂狠狠| 啦啦啦在线免费观看视频4| 超碰成人久久| 老熟妇乱子伦视频在线观看| 久久精品91蜜桃| 国产亚洲精品第一综合不卡| 国产精品久久久人人做人人爽| 国产免费av片在线观看野外av| 亚洲av成人av| 99在线人妻在线中文字幕| 黄片小视频在线播放| 19禁男女啪啪无遮挡网站| 久久久久久久午夜电影 | 制服人妻中文乱码| 精品国产乱子伦一区二区三区| 超碰成人久久| 色哟哟哟哟哟哟| 人人妻人人爽人人添夜夜欢视频| 国产成人影院久久av| 可以免费在线观看a视频的电影网站| 久久精品亚洲精品国产色婷小说| 亚洲片人在线观看| 男人的好看免费观看在线视频 | 99国产精品免费福利视频| 男人的好看免费观看在线视频 | 久久精品人人爽人人爽视色| 免费在线观看亚洲国产| 757午夜福利合集在线观看| 巨乳人妻的诱惑在线观看| 中文字幕另类日韩欧美亚洲嫩草| 狂野欧美激情性xxxx| 亚洲欧美一区二区三区久久| 一a级毛片在线观看| 久久亚洲真实| 精品久久久久久久久久免费视频 | 亚洲精品中文字幕一二三四区| 国产精品亚洲av一区麻豆| 国产成+人综合+亚洲专区| 最好的美女福利视频网| 欧美成人性av电影在线观看| 亚洲欧美精品综合久久99| 色老头精品视频在线观看| 色在线成人网| 久久精品成人免费网站| 丁香六月欧美| 色在线成人网| 母亲3免费完整高清在线观看| 校园春色视频在线观看| 757午夜福利合集在线观看| 精品国产亚洲在线| 久久久久亚洲av毛片大全| 国产一区在线观看成人免费| 国产黄a三级三级三级人| 电影成人av| tocl精华| 欧美日韩一级在线毛片| av天堂久久9| 亚洲精品av麻豆狂野| 水蜜桃什么品种好| 国产野战对白在线观看| 亚洲中文av在线| 久久久久国内视频| 99久久国产精品久久久| 91大片在线观看| 亚洲一区二区三区不卡视频| 妹子高潮喷水视频| 亚洲视频免费观看视频| 国产精品av久久久久免费| 欧美日韩视频精品一区| 欧美黄色淫秽网站| 国产99久久九九免费精品| 久久香蕉精品热| 嫩草影视91久久| 精品国产美女av久久久久小说| 免费观看人在逋| a在线观看视频网站| 国产单亲对白刺激| 亚洲情色 制服丝袜| 香蕉久久夜色| 中文字幕av电影在线播放| 色老头精品视频在线观看| 国产免费av片在线观看野外av| 国产精品偷伦视频观看了| xxxhd国产人妻xxx| 欧美在线黄色| 欧美精品一区二区免费开放| 亚洲专区字幕在线| 亚洲久久久国产精品| 一级作爱视频免费观看| 色老头精品视频在线观看| 久久天堂一区二区三区四区| 香蕉国产在线看| 看片在线看免费视频| 亚洲精品在线观看二区| 中国美女看黄片| 久久人人爽av亚洲精品天堂| 亚洲美女黄片视频| 又大又爽又粗| 91精品国产国语对白视频| 无遮挡黄片免费观看| 交换朋友夫妻互换小说| 99香蕉大伊视频| 丝袜美足系列| 成人特级黄色片久久久久久久| 国产xxxxx性猛交| 免费在线观看完整版高清| 视频在线观看一区二区三区| 老司机午夜福利在线观看视频| 757午夜福利合集在线观看| 自线自在国产av| 久久香蕉国产精品| 亚洲五月婷婷丁香| 在线播放国产精品三级| 岛国在线观看网站| 精品一品国产午夜福利视频| 成人亚洲精品一区在线观看| 亚洲成a人片在线一区二区| 久久久久久久久中文| 麻豆成人av在线观看| 午夜视频精品福利| 国产成年人精品一区二区 | 看黄色毛片网站| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 国内毛片毛片毛片毛片毛片| 日韩大码丰满熟妇| 久久国产精品人妻蜜桃| 妹子高潮喷水视频| 久久久国产精品麻豆| 女人精品久久久久毛片| 国产日韩一区二区三区精品不卡| 国产成人欧美| 90打野战视频偷拍视频| 日韩大码丰满熟妇| 淫妇啪啪啪对白视频| 丰满饥渴人妻一区二区三| 国产主播在线观看一区二区| 欧美乱妇无乱码| 看片在线看免费视频| 热99国产精品久久久久久7| 国产三级在线视频| 成人亚洲精品一区在线观看| 精品熟女少妇八av免费久了| 久久久久久久久免费视频了| 一区二区三区激情视频| 91成人精品电影| 午夜免费观看网址| 狠狠狠狠99中文字幕| 99久久综合精品五月天人人| 好看av亚洲va欧美ⅴa在| av欧美777| 色精品久久人妻99蜜桃| 亚洲一区高清亚洲精品| 757午夜福利合集在线观看| 男女做爰动态图高潮gif福利片 | 美女大奶头视频| 国产精品亚洲一级av第二区| 在线永久观看黄色视频| 国产成人系列免费观看| 久久久国产精品麻豆| 别揉我奶头~嗯~啊~动态视频| 99久久综合精品五月天人人| 午夜福利影视在线免费观看| 水蜜桃什么品种好| 巨乳人妻的诱惑在线观看| 美女高潮喷水抽搐中文字幕| 久久九九热精品免费| 国产国语露脸激情在线看| 免费观看精品视频网站| 国产精品一区二区精品视频观看| 99国产精品一区二区三区| 免费日韩欧美在线观看| 无限看片的www在线观看| 国产精品亚洲一级av第二区| 国产又色又爽无遮挡免费看| 啦啦啦 在线观看视频| 极品教师在线免费播放| 高清毛片免费观看视频网站 | 99国产精品一区二区三区| 久久久国产欧美日韩av| 日本黄色日本黄色录像| 久久这里只有精品19| 国产免费男女视频| 免费少妇av软件| 久久久精品欧美日韩精品| 夜夜夜夜夜久久久久| 手机成人av网站| 村上凉子中文字幕在线| 亚洲九九香蕉| 欧美中文日本在线观看视频| 欧美国产精品va在线观看不卡| 又黄又爽又免费观看的视频| 波多野结衣高清无吗| 淫秽高清视频在线观看| 夜夜夜夜夜久久久久| 久久久久国产精品人妻aⅴ院| 久久精品国产清高在天天线| av超薄肉色丝袜交足视频| 亚洲在线自拍视频| 伊人久久大香线蕉亚洲五| 亚洲av电影在线进入| 一级片'在线观看视频| 在线观看免费视频日本深夜| 99国产精品免费福利视频| 在线免费观看的www视频| 啦啦啦 在线观看视频| 在线观看日韩欧美| 看黄色毛片网站| 亚洲少妇的诱惑av| 中文字幕另类日韩欧美亚洲嫩草| 精品午夜福利视频在线观看一区| 91在线观看av| 国产在线观看jvid| 国产精品 国内视频| 国产日韩一区二区三区精品不卡| 99久久久亚洲精品蜜臀av| 国产av精品麻豆| 女人精品久久久久毛片| 黑人操中国人逼视频| 免费看a级黄色片| 久久精品国产亚洲av高清一级| 美女扒开内裤让男人捅视频| 在线观看免费视频日本深夜| 国产一区二区三区综合在线观看| 午夜老司机福利片| 成人永久免费在线观看视频| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| 成人18禁在线播放| 黄色 视频免费看| 91av网站免费观看| 久久精品国产综合久久久| 亚洲,欧美精品.| 99久久综合精品五月天人人| 色在线成人网| e午夜精品久久久久久久| 亚洲国产欧美日韩在线播放| 亚洲五月婷婷丁香| 国产亚洲精品久久久久久毛片| 精品乱码久久久久久99久播| 成人影院久久| 欧美在线黄色| 性欧美人与动物交配| 少妇粗大呻吟视频| 中文欧美无线码| 777久久人妻少妇嫩草av网站| 国产av精品麻豆| 日日夜夜操网爽| 欧美老熟妇乱子伦牲交| 夫妻午夜视频| 国产又色又爽无遮挡免费看| 99久久综合精品五月天人人| 亚洲国产精品sss在线观看 | 亚洲五月色婷婷综合| 长腿黑丝高跟| 日韩大尺度精品在线看网址 | 国产精品久久视频播放| 午夜激情av网站| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出 | 日本黄色日本黄色录像| 怎么达到女性高潮| 亚洲第一青青草原| 搡老乐熟女国产| 国产xxxxx性猛交| 国产区一区二久久| 村上凉子中文字幕在线| 国产97色在线日韩免费| 久久人人精品亚洲av| 国产熟女午夜一区二区三区| 午夜两性在线视频| 午夜免费激情av| 手机成人av网站| 国产伦人伦偷精品视频| 午夜福利影视在线免费观看| 日韩欧美免费精品| 亚洲自偷自拍图片 自拍| 视频区欧美日本亚洲| 黄色a级毛片大全视频| 午夜视频精品福利| 免费在线观看黄色视频的| 亚洲成人免费电影在线观看| 久久人妻熟女aⅴ| 欧美久久黑人一区二区| 97碰自拍视频| 在线看a的网站| 成年人黄色毛片网站| 久久草成人影院| 色老头精品视频在线观看| 90打野战视频偷拍视频| 精品一区二区三区av网在线观看| 午夜福利欧美成人| 一级作爱视频免费观看| 侵犯人妻中文字幕一二三四区| 久久天堂一区二区三区四区| 免费不卡黄色视频| 一级黄色大片毛片| 宅男免费午夜| av片东京热男人的天堂| 国产99白浆流出| 高清黄色对白视频在线免费看| 最近最新中文字幕大全电影3 | 久久这里只有精品19| 身体一侧抽搐| 亚洲一区二区三区欧美精品| 麻豆一二三区av精品| 日韩精品免费视频一区二区三区| 99精品久久久久人妻精品| 女性被躁到高潮视频| 亚洲熟妇中文字幕五十中出 | 国产亚洲精品第一综合不卡| 一级,二级,三级黄色视频| 看免费av毛片| 国产高清激情床上av| 99热国产这里只有精品6| 国产精品一区二区精品视频观看| 露出奶头的视频| 高清在线国产一区| 最好的美女福利视频网| 两性夫妻黄色片| 757午夜福利合集在线观看| 日本黄色日本黄色录像| 欧美另类亚洲清纯唯美| 亚洲午夜精品一区,二区,三区| 搡老岳熟女国产| 国产熟女午夜一区二区三区| 亚洲色图综合在线观看| 91字幕亚洲| 视频在线观看一区二区三区| av电影中文网址| 18禁国产床啪视频网站| 婷婷丁香在线五月| 亚洲精品国产区一区二| 人成视频在线观看免费观看| 久久青草综合色| 亚洲精品久久成人aⅴ小说| 97超级碰碰碰精品色视频在线观看| 夜夜看夜夜爽夜夜摸 | 极品人妻少妇av视频| 欧美人与性动交α欧美软件| 日韩欧美一区视频在线观看| 国产国语露脸激情在线看| 麻豆久久精品国产亚洲av | 亚洲精品国产区一区二| 久久人妻熟女aⅴ| netflix在线观看网站| 亚洲av美国av| 国产av一区在线观看免费| 精品久久久久久,| 一边摸一边抽搐一进一小说| 99国产精品一区二区三区| 久久久久久久午夜电影 | 一二三四社区在线视频社区8| 国产单亲对白刺激| 黑人巨大精品欧美一区二区蜜桃| 成年人黄色毛片网站| 九色亚洲精品在线播放| 激情视频va一区二区三区| 久久中文字幕一级| 免费一级毛片在线播放高清视频 | 99国产精品免费福利视频| 国产成人啪精品午夜网站| 国产深夜福利视频在线观看| 中文欧美无线码| 少妇 在线观看| 精品免费久久久久久久清纯| 免费在线观看日本一区| 国产xxxxx性猛交| 两人在一起打扑克的视频| 久久久久久免费高清国产稀缺| 日日干狠狠操夜夜爽| 看黄色毛片网站| 亚洲精品粉嫩美女一区| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 午夜福利在线免费观看网站| 黑人欧美特级aaaaaa片| 最好的美女福利视频网| 香蕉国产在线看| 国产视频一区二区在线看| 夜夜爽天天搞| 色综合婷婷激情| 99国产极品粉嫩在线观看| 一级作爱视频免费观看| 亚洲精品中文字幕在线视频| 18美女黄网站色大片免费观看| 亚洲欧美一区二区三区久久| 亚洲熟妇中文字幕五十中出 | 日韩精品免费视频一区二区三区| 色婷婷av一区二区三区视频| 免费在线观看影片大全网站| a级毛片在线看网站| 757午夜福利合集在线观看| 亚洲人成77777在线视频| 一级毛片女人18水好多| 国产精品免费一区二区三区在线| 亚洲欧美精品综合久久99| 国产精品综合久久久久久久免费 | 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频| 9热在线视频观看99| 国产精品自产拍在线观看55亚洲| 国产人伦9x9x在线观看| 男女下面进入的视频免费午夜 | 亚洲全国av大片| 日韩有码中文字幕| 国产成人欧美| 久久午夜亚洲精品久久| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 午夜福利影视在线免费观看| 亚洲av电影在线进入| 国产1区2区3区精品| www.999成人在线观看| 亚洲国产毛片av蜜桃av| 国产97色在线日韩免费| 午夜福利一区二区在线看| 人人妻人人添人人爽欧美一区卜| 成人亚洲精品一区在线观看| 欧美激情久久久久久爽电影 | svipshipincom国产片| a级片在线免费高清观看视频| 高潮久久久久久久久久久不卡| 亚洲人成77777在线视频| 在线十欧美十亚洲十日本专区| 久久精品成人免费网站| 天天躁夜夜躁狠狠躁躁| 婷婷丁香在线五月| 88av欧美| 亚洲欧美一区二区三区久久| 日韩人妻精品一区2区三区| 妹子高潮喷水视频| 免费在线观看亚洲国产| 国产高清激情床上av| 精品久久久久久久久久免费视频 | 久久久久久久久免费视频了| 免费高清在线观看日韩| 午夜激情av网站| 成人黄色视频免费在线看| 免费看a级黄色片| 午夜成年电影在线免费观看| 亚洲精品美女久久久久99蜜臀| 啦啦啦在线免费观看视频4| 极品教师在线免费播放| 又紧又爽又黄一区二区| 国产欧美日韩综合在线一区二区| 国产成人系列免费观看| 成人18禁高潮啪啪吃奶动态图| 88av欧美| 美国免费a级毛片| 国产精品 国内视频| 国产成人欧美| 国产单亲对白刺激| 国产精品免费一区二区三区在线| 看黄色毛片网站| 69av精品久久久久久| 妹子高潮喷水视频| 国产区一区二久久| 久久中文看片网| 亚洲午夜理论影院| 国产av精品麻豆| 变态另类成人亚洲欧美熟女 | 麻豆一二三区av精品| 狠狠狠狠99中文字幕| 精品一区二区三区视频在线观看免费 | 亚洲一码二码三码区别大吗| 亚洲一区二区三区色噜噜 | 午夜视频精品福利| 成熟少妇高潮喷水视频| 国产一区二区三区综合在线观看| 不卡av一区二区三区| 青草久久国产| 日韩成人在线观看一区二区三区| 精品第一国产精品| 国产精品av久久久久免费| 在线观看免费视频日本深夜| 国产麻豆69| 天天影视国产精品| 国产片内射在线| 露出奶头的视频| 一二三四在线观看免费中文在| bbb黄色大片| 亚洲片人在线观看| 美女福利国产在线| 老鸭窝网址在线观看| 午夜两性在线视频| 久久久久久亚洲精品国产蜜桃av| 精品国产美女av久久久久小说| 99国产精品99久久久久| 亚洲精华国产精华精| 天天躁夜夜躁狠狠躁躁| 国产成人啪精品午夜网站| 美女高潮到喷水免费观看| 激情在线观看视频在线高清| 69精品国产乱码久久久| 日本欧美视频一区| 黄色a级毛片大全视频| 久久人妻熟女aⅴ| 身体一侧抽搐| 一级片'在线观看视频| 国产黄a三级三级三级人| a级毛片黄视频| 男人的好看免费观看在线视频 | 国产精品永久免费网站| 视频区欧美日本亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产国语露脸激情在线看| 国产av一区二区精品久久| 中文字幕高清在线视频| 国产黄色免费在线视频| av天堂在线播放| 最近最新中文字幕大全电影3 | 久久久国产欧美日韩av| 国产在线精品亚洲第一网站| 国产欧美日韩一区二区三| 国产熟女xx| 国产色视频综合| 啦啦啦免费观看视频1| 怎么达到女性高潮| 免费搜索国产男女视频| 波多野结衣高清无吗| 搡老乐熟女国产| 免费av中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 日韩大尺度精品在线看网址 | www.精华液| 90打野战视频偷拍视频| 亚洲欧美激情在线| 精品国产一区二区久久| 久久狼人影院| 91精品国产国语对白视频| 中国美女看黄片| 国产野战对白在线观看| 夜夜躁狠狠躁天天躁| а√天堂www在线а√下载| 黄色 视频免费看| 亚洲国产中文字幕在线视频| 国产一区二区激情短视频| 水蜜桃什么品种好| 操美女的视频在线观看| 99精品欧美一区二区三区四区| 国产精品久久久久成人av| 在线观看日韩欧美| 丰满的人妻完整版| 亚洲专区字幕在线| 欧美日韩一级在线毛片| 丰满的人妻完整版| 欧美人与性动交α欧美软件| 在线观看日韩欧美| 亚洲视频免费观看视频| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩国内少妇激情av| 亚洲人成电影免费在线| 一进一出好大好爽视频| 99国产精品一区二区三区| 国产国语露脸激情在线看| a级片在线免费高清观看视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲人成电影免费在线| 欧美午夜高清在线| 热99国产精品久久久久久7| 国产极品粉嫩免费观看在线| 欧美老熟妇乱子伦牲交| 女性被躁到高潮视频| 很黄的视频免费| 中文字幕人妻丝袜一区二区| 久久久久国产精品人妻aⅴ院| 精品国产一区二区久久| 国产精品二区激情视频| 曰老女人黄片|