• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      過表達ApGSMT2和ApDMT2基因的擬南芥和玉米耐鹽性分析

      2019-08-16 04:05:54王娟關海英董瑞劉春曉劉強劉鐵山汪黎明何春梅
      山東農(nóng)業(yè)科學 2019年6期
      關鍵詞:耐鹽性擬南芥玉米

      王娟 關海英 董瑞 劉春曉 劉強 劉鐵山 汪黎明 何春梅

      摘要:玉米是對土壤鹽漬化中度敏感的作物,易受鹽堿危害。甘氨酸甜菜堿作為一種主要的滲透保護物質(zhì),能夠提高植物對多種非生物脅迫(如鹽堿、干旱、低溫等)的抗性。本工作前期從嗜鹽隱桿藻中克隆得到兩個參與甘氨酸甜菜堿合成的甲基轉(zhuǎn)移酶基因ApGSMT2和ApDMT2,利用農(nóng)桿菌介導法,將兩個基因分別在擬南芥和玉米中共同過表達,獲得轉(zhuǎn)基因陽性株,收獲T1代轉(zhuǎn)基因種子,經(jīng)自交后得到T2代種子。以擬南芥T2代種子為試材,設置0、50、100、150、200 mmol/L NaCl處理,進行種子萌發(fā)試驗,結果顯示,不同鹽濃度處理下,轉(zhuǎn)基因擬南芥種子的萌發(fā)率顯著高于未轉(zhuǎn)基因?qū)φ罩仓?,說明過表達ApGSMT2和ApDMT2基因?qū)τ谔岣邤M南芥的耐鹽性具有顯著效果。進一步對T2代轉(zhuǎn)基因玉米株系幼苗的耐鹽性進行試驗,結果表明,180 mmol/L NaCl處理后,未轉(zhuǎn)基因?qū)φ罩仓晡瑁D(zhuǎn)基因株系長勢良好,其株高、根長、葉片相對含水量和鮮重顯著高于對照,說明過表達ApGSMT2和ApDMT2基因顯著提高了玉米對鹽脅迫的耐受性,為利用基因工程技術創(chuàng)制玉米耐鹽種質(zhì)提供了理論依據(jù)。

      關鍵詞:玉米;擬南芥;ApGSMT2;ApDMT2;甘氨酸甜菜堿;耐鹽性

      中圖分類號:S513.034+Q949.748.306??文獻標識號:A??文章編號:1001-4942(2019)06-0010-07

      Abstract?Maize is a moderately sensitive crop to soil salinization and is vulnerable to saline-alkali damage. Glycine betaine (GB), as a major osmotic protective solute, has shown the ability to improve plant resistance to a variety of abiotic stresses, such as salinity, drought and low temperature. Two methyltransferase genes, ApGSMT2 and ApDMT2, which are involved in the synthesis of GB, were cloned from Aphanothece halophytica in our previous studies. The two genes were overexpressed in Arabidopsis and maize through Agrobacterium-mediated method, and the transgenic positive strains were obtained. The T2 generation was obtained through selfing-cross from T1 generation. With the T2 seeds of Arabidopsis as materials, the germination test was conducted by setting the treatments of 0, 50, 100, 150 and 200 mmol/L NaCl. The germination rate of transgenic Arabidopsis seeds was significantly higher than that of wild-type plants under various concentrations of salt treatment. It indicated that overexpressing ApGSMT2 and ApDMT2 could significantly enhance the salt tolerance of Arabidopsis. The test was further conducted on the salt tolerance of T2 maize seedlings. Under the treatment of 180 mmol/L NaCl, the transgenic maize seedlings developed better, while the control plants wilting. The plant height, root length, leaf relative water content and fresh weight of transgenic lines were significantly higher than those of untransformed control plants. These results demonstrated that ApGSMT2 and ApDMT2 overexpression significantly increased the tolerance of Arabidopsis and maize to salt stress.

      Keywords?Maize; Arabidopsis; ApGSMT2;ApDMT2; Glycine betaine; Salt tolerance

      土壤鹽漬化是造成作物減產(chǎn)的主要因素之一[1]。玉米既是重要的糧食和飼料作物,又可作為醫(yī)藥和工業(yè)原料。由于玉米屬于中度鹽敏感植物,耐鹽能力比較低,因此其種植面積和產(chǎn)量受到一定的限制[2, 3]。隨著生物技術的迅速發(fā)展,利用基因工程技術培育轉(zhuǎn)基因玉米已成為提高玉米耐鹽性和解決其在鹽堿化土壤上種植的有效途徑之一[4, 5]。

      甘氨酸甜菜堿(glycine betaine,GB)作為一種主要的滲透保護物質(zhì),能夠提高植物對多種非生物脅迫(如鹽堿、干旱、低溫等)的抗性[6-10]。在自然界中,已知的甘氨酸甜菜堿的生物合成途徑主要有兩種,即膽堿氧化途徑和甘氨酸甲基化途徑[11-13]。以甘氨酸為底物合成甜菜堿的途徑首先是在兩種極嗜鹽的微生物中發(fā)現(xiàn)的,由甘氨酸經(jīng)過連續(xù)三步N-甲基化生成甜菜堿,該途徑由依賴S-腺苷甲硫氨酸(SAM)的甘氨酸肌氨酸甲基轉(zhuǎn)移酶(glycine sarcosine methyltransferase,GSMT)和依賴SAM的肌氨酸二甲基甘氨酸甲基轉(zhuǎn)移酶(sarcosine dimethylglycine methyltransferase,SDMT)分別催化完成[13]。將該甘氨酸甲基化途徑引入作物中可顯著增加GB的累積并提高作物的耐逆性[14-17]。2005年,Waditee等從耐鹽藻青菌(Aphanothece halophytica)中克隆出ApGSMT和ApDMT基因并共轉(zhuǎn)化到淡水藻青菌(Synechococcus sp. PCC7942)和擬南芥中,發(fā)現(xiàn)在0.5 mol/L NaCl脅迫下,轉(zhuǎn)ApGSMT和ApDMT基因的淡水藻青菌細胞內(nèi)的GB濃度高達200 mmol/L,比轉(zhuǎn)膽堿氧化途徑基因的細胞GB含量高了5倍,使其耐鹽能力足夠在海水中生活;GB在轉(zhuǎn)ApGSMT/ApDMT基因擬南芥的根、莖、葉和花等中都有積累,轉(zhuǎn)基因植株的耐鹽、耐冷和抗旱性與轉(zhuǎn)膽堿氧化途徑基因的擬南芥相比都有明顯提高[15]。Niu等在水稻中共表達ApGSMT和ApDMT基因,轉(zhuǎn)基因株系體內(nèi)積累了較高的GB含量且耐鹽耐冷性得到了顯著性提高[18]。山東大學He等從南京大學提供的一株被命名為Aphanothece halophytica GR20的嗜鹽隱桿藻中克隆出ApGSMT2和ApDMT2基因,并在煙草中驗證了其功能,確定了共表達ApGSMT2和ApDMT2的轉(zhuǎn)基因煙草耐旱性大幅度提高[19]。Song等的研究表明,共表達密碼子經(jīng)過優(yōu)化的ApGSMT2g和ApDMT2g基因顯著提高了轉(zhuǎn)基因棉花在鹽堿地的抗性及產(chǎn)量[20]。此外,共表達ApGSMT2和ApDMT2的轉(zhuǎn)基因玉米體內(nèi)積累了較高的GB含量且耐旱性得到顯著提高[21],目前,關于引入甘氨酸甲基化途徑基因ApGSMT2和ApDMT2對玉米耐鹽性的影響還未見相關報道。

      本試驗將ApGSMT2和ApDMT2基因重組到植物表達載體中,利用農(nóng)桿菌介導法分別轉(zhuǎn)化擬南芥和玉米,以T2代轉(zhuǎn)基因株系為材料,通過分析不同濃度NaCl處理下擬南芥種子的萌發(fā)率來明確過表達ApGSMT2和ApDMT2基因的耐鹽效果,并進一步對NaCl脅迫下轉(zhuǎn)基因玉米幼苗的生長發(fā)育和基因表達情況進行分析,探討過表達ApGSMT2和ApDMT2基因與玉米耐鹽性的關系,以期為玉米耐鹽育種提供理論基礎和潛在優(yōu)異耐鹽種質(zhì)資源。

      1?材料與方法

      1.1?試驗材料與試劑

      以本實驗室前期構建的植物雙元表達載體p3300-ApGSMT2-ApDMT2-bar為基礎,通過農(nóng)桿菌介導的幼胚遺傳轉(zhuǎn)化方法分別轉(zhuǎn)化擬南芥Col-0和玉米自交系HiII,獲得轉(zhuǎn)基因陽性植株,收獲T1代轉(zhuǎn)基因種子,經(jīng)自交后得到T2代種子,以此為材料,進行耐鹽性鑒定。

      RNAiso Plus和PrimeScript RT reagent Kit with gDNA Eraser試劑盒購自大連寶生物工程公司;2×Taq Plus Master Mix購自南京諾唯贊生物科技有限公司;其余試劑均為進口或國產(chǎn)分析純。

      1.2?試驗方法

      1.2.1?轉(zhuǎn)基因陽性植株的PCR鑒定?采用CTAB法提取擬南芥或玉米葉片基因組DNA[22],進行PCR檢測,以確定轉(zhuǎn)基因陽性植株。PCR鑒定所用引物為UBI-F:5′-CTTTTTGTTCGCTTGGTTGTGATGA-3′和G-R:5′-CGCGCTTGCCAATTGATTAAC-3′(擴增產(chǎn)物560 bp)。PCR反應體系為20 μL,包括:2×Taq Plus Master Mix 10 μL,上下游引物(10 μmol/L)各0.8 μL,基因組DNA(50 ng/μL)2 μL,滅菌水6.4 μL。PCR反應程序為:94℃預變性5 min;94℃變性30 s,56℃退火30 s,72℃延伸30 s,循環(huán)35次;72℃過度延伸5 min。

      1.2.2?鹽脅迫下擬南芥轉(zhuǎn)基因株系的種子萌發(fā)試驗?隨機選取5個擬南芥T2代轉(zhuǎn)ApGSMT2和ApDMT2基因株系(L2~L6),以擬南芥Col-0為對照(WT),種子置于4℃處理48 h,然后經(jīng)次氯酸鈉消毒后,分別播種于含0、50、100、150、200 mmol/L NaCl的1/2MS固體培養(yǎng)基(pH 5.8)上。培養(yǎng)溫度為22℃,光周期為16 h光照、8 h黑暗。每個處理重復3次。處理12 d后,統(tǒng)計種子萌發(fā)率。

      1.2.3?玉米轉(zhuǎn)基因株系的基因表達量鑒定?取轉(zhuǎn)ApGSMT2和ApDMT2玉米T2代株系及對照HiII(WT)的幼苗葉片,液氮速凍,按照RNAiso Plus試劑盒說明書提取總RNA,參照PrimeScript RT reagent Kit with gDNA Eraser試劑盒說明書進行反轉(zhuǎn)錄合成cDNA。

      表達量鑒定采用半定量RT-PCR方法,PCR所用ApGSMT2引物為GT-F: 5′-GCAAGCGCG

      ATCGACCAGTGA-3′和GT-R: 5′-CCCGTTCCCGTGGCAGCATCT-3′;ApDMT2引物為DT-F: 5′-TGCGAGTGTGCGTACCGTTGC-3′和DT-R: 5′-TGCCATATAACGAGCGGAGCC-3′;內(nèi)參FPGS[23]引物為:FP-F: 5′-ATCTCGTTGGGGATGTCTTG-3′ 和FP-R: 5′-AGCACCGTTCAAATGTCTCC-3′。半定量PCR反應程序為:94℃預變性5 min;94℃變性30 s,56℃退火30 s,72℃延伸15 s,循環(huán)28次;72℃過度延伸5 min。

      1.2.4?玉米轉(zhuǎn)基因株系苗期的耐鹽性鑒定?選取3個T2代轉(zhuǎn)ApGSMT2和ApDMT2基因玉米株系(D1~D3),以玉米自交系HiII(WT)為對照,幼苗經(jīng)1/2MS營養(yǎng)液水培一周后,轉(zhuǎn)移至含180 mmol/L NaCl的1/2MS營養(yǎng)液中鹽處理7 d。分別對處理前后的玉米株系拍照并測量株高、根長、葉片相對含水量和單株鮮重,取3株植株進行重復。

      葉片相對含水量的測定:稱取玉米幼苗第二片全展葉約0.1 g,浸入去離子水中約4 h至恒重,取出用濾紙吸去表面水分,稱飽和鮮重;再將葉片放入烘箱于70℃烘干至恒重,稱干重。

      1.3?數(shù)據(jù)處理與統(tǒng)計分析

      利用軟件Microsoft Excel 2019和SigmaPlot 12.5進行數(shù)據(jù)的統(tǒng)計分析和作圖,采用One-Way ANOVA方法進行差異顯著性分析。數(shù)據(jù)結果以3次重復的平均值±標準差表示。

      2?結果與分析

      2.1?轉(zhuǎn)基因陽性植株的分子鑒定

      通過農(nóng)桿菌介導法將植物雙元表達載體p3300-ApGSMT2-ApDMT2-bar分別轉(zhuǎn)化擬南芥Col-0和玉米自交系HiII,ApGSMT2基因由玉米Ubiquitin1啟動子pUbi驅(qū)動表達,而ApDMT2基因由煙草花葉病毒(CaMV)35S啟動子驅(qū)動表達。根據(jù)載體T-DNA區(qū)結構圖(圖1A),設計載體啟動子pUbi上的正向引物和ApGSMT2基因特異反向引物進行PCR鑒定。擬南芥轉(zhuǎn)基因PCR鑒定結果如圖1B所示,玉米轉(zhuǎn)基因鑒定結果如圖3A所示。結果表明,擬南芥轉(zhuǎn)基因株系L2~L6和玉米轉(zhuǎn)基因株系D1~D3均擴增出與重組質(zhì)粒同等大小的基因片段,而對照(WT)則未擴增出目的基因片段,說明以上株系均為轉(zhuǎn)基因陽性株系。

      2.2?不同濃度NaCl處理對轉(zhuǎn)ApGSMT2和ApDMT2擬南芥種子萌發(fā)率的影響

      將轉(zhuǎn)ApGSMT2和ApDMT2基因擬南芥株系和WT種子播于含不同濃度NaCl(0、50、100、150、200 mmol/L)的1/2MS培養(yǎng)基上培養(yǎng)12 d,觀察各株系表型。結果表明,在不含NaCl的1/2MS培養(yǎng)基上進行培養(yǎng)時,轉(zhuǎn)基因擬南芥與WT均萌發(fā)和生長正常;但隨著鹽濃度的提高,各株系的生長均受到明顯抑制,與WT相比,轉(zhuǎn)基因株系生長受抑制程度較低,在100、150 mmol/L NaCl處理時差異非常明顯(圖1C)。

      2.3?玉米轉(zhuǎn)基因株系中ApGSMT2和ApDMT2基因的表達豐度分析

      利用半定量RT-PCR方法對玉米轉(zhuǎn)基因株系中ApGSMT2和ApDMT2基因表達豐度的鑒定結果(圖3A、B)表明,WT中無目的基因表達,而各轉(zhuǎn)基因株系中ApGSMT2和ApDMT2均有較高表達;內(nèi)參基因FPGS在WT及各轉(zhuǎn)基因株系中表達穩(wěn)定,無差異,說明ApGSMT2和ApDMT2基因在各個轉(zhuǎn)基因株系中均成功表達。

      2.4?NaCl處理對轉(zhuǎn)ApGSMT2和ApDMT2基因玉米表型的影響

      對萌發(fā)后水培一周的轉(zhuǎn)基因玉米株系及WT幼苗進行鹽脅迫(180 mmol/L NaCl)處理,結果(圖3C、圖4A)表明,處理前各株系長勢良好,轉(zhuǎn)基因株系稍高于對照植株,說明轉(zhuǎn)ApGSMT2和ApDMT2基因?qū)τ衩椎纳L具有促進作用。鹽處理7 d后,WT葉片黃化和萎蔫嚴重,莖稈因失水而變細倒伏,且根部生長受到抑制;而轉(zhuǎn)基因株系葉片僅出現(xiàn)輕微黃化和萎蔫,莖稈較粗壯,根系發(fā)達,整體長勢仍然良好。

      3?討論與結論

      鹽脅迫能顯著影響植物的生長和發(fā)育。本試驗中,隨著鹽濃度的增加,未轉(zhuǎn)基因擬南芥種子的萌發(fā)率降低,而過表達ApGSMT2和ApDMT2基因顯著提高了不同鹽濃度處理下擬南芥種子的萌發(fā)率,對提高擬南芥的耐鹽性具有明顯效果。比較鹽處理前后玉米轉(zhuǎn)ApGSMT2和ApDMT2基因株系與未轉(zhuǎn)基因?qū)φ盏谋硇图吧碇笜税l(fā)現(xiàn),NaCl處理前,除株高外,根長、葉片相對含水量和鮮重兩者間均沒有顯著差異;但是在鹽脅迫條件下,轉(zhuǎn)基因株系的株高和鮮重極顯著高于對照,葉片相對含水量和D1株系的根長顯著高于對照,說明轉(zhuǎn)ApGSMT2和ApDMT2基因玉米株系在鹽脅迫條件下維持了較好的長勢。

      玉米是易受鹽堿危害的作物,由于玉米種質(zhì)資源缺乏和田間選擇困難等原因,常規(guī)育種選育玉米耐鹽品種的工作收效不大。本研究發(fā)現(xiàn)轉(zhuǎn)ApGSMT2和ApDMT2基因可以顯著提高玉米對鹽脅迫的耐受性,利用基因工程技術結合常規(guī)育種有望在較短時間內(nèi)創(chuàng)造出玉米耐鹽新種質(zhì)[24, 25],這不僅可以擴大玉米的種植面積,而且可以提高玉米的穩(wěn)產(chǎn)性,對于我國農(nóng)業(yè)生產(chǎn)有重大意義。

      參?考?文?獻:

      [1]?Deinlein U, Stephan A B, Horie T, et al. Plant salt-tolerance mechanisms [J]. Trends in Plant Science, 2014, 19(6): 371-379.

      [2]?Farooq M, Hussain M, Wakeel A, et al. Salt stress in maize: effects, resistance mechanisms, and management. A review [J]. Agronomy for Sustainable Development, 2015, 35(2): 461-481.

      [3]?趙韋. 土壤鹽堿化對玉米脅迫的研究進展[J]. 黑龍江農(nóng)業(yè)科學,2019(1): 140-142.

      [4]?Sakamoto A, Murata N. The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants [J]. Plant Cell and Environment, 2002, 25(2): 163-171.

      [5]?郭嘉,孫傳波,楊向東,等. 耐鹽堿轉(zhuǎn)基因玉米的獲得及其抗性分析[J]. 玉米科學,2016,24(6): 24-29.

      [6]?Hayashi H, Alia A, Mustardy L A, et al. Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress [J]. The Plant Journal, 1997, 12(1): 133-142.

      [7]?Chen T H H, Murata N. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes [J]. Current Opinion in Plant Biology, 2002, 5(3): 250-257.

      [8]?Chen T H H, Murata N. Glycinebetaine: an effective protectant against abiotic stress in plants [J]. Trends in Plant Science, 2008, 13(9): 499-505.

      [9]?Yang X, Liang Z, Lu C. Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants [J]. Plant Physiology, 2005, 138(4): 2299-2309.

      [10]?Wani S H, Singh N B, Haribhushan A, et al. Compatible solute engineering in plants for abiotic stress tolerance — role of glycine betaine [J]. Current Genomics, 2013, 14(3): 157-165.

      [11]?Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1993, 44:357-384.

      [12]?Rathinasabapathi B, Burnet M, Russell B L, et al. Choline monooxygenase, an unusual ironsulfur enzyme catalyzing the first step of glycine betaine synthesis in plants: prosthetic group characterization and cDNA cloning [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(7): 3454-3458.

      [13]?Nyyssola A, Kerovuo J, Kaukinen P, et al. Extreme halophiles synthesize betaine from glycine by methylation [J]. The Journal of Biological Chemistry, 2000, 275(29): 22196-22201.

      [14]?Waditee R, Tanaka Y, Aoki K, et al. Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica[J]. The Journal of Biological Chemistry, 2003, 278(7): 4932-4942.

      [15]?Waditee R, Bhuiyan M N, Rai V, et al. Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(5): 1318-1323.

      [16]?Waditee-Sirisattha R, Singh M, Kageyama H, et al. Anabaena sp. PCC7120 transformed with glycine methylation genes from Aphanothece halophytica synthesized glycine betaine showing increased tolerance to salt [J]. Archives of Microbiology, 2012, 194(11): 909-914.

      [17]?Lai S J, Lai M C, Lee R J, et al. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress [J]. Plant Molecular Biology, 2014, 85(4/5): 429-441.

      [18]?Niu X, Xiong F, Liu J, et al. Co-expression of ApGSMT and ApDMT promotes biosynthesis of glycine betaine in rice(Oryza sativa L.) and enhances salt and cold tolerance [J]. Environmental and Experimental Botany, 2014, 104: 16-25.

      [19]?He Y,He C M,Li L H,et al.Heterologous expression of ApGSMT2 and ApDMT2 genes from Aphanothece halophytica enhanced drought tolerance in transgenic tobacco [J]. Molecular Biology Reports, 2011, 38(1): 657-666.

      [20]?Song J, Zhang R, Yue D, et al. Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields [J]. Plant Science, 2018, 274: 369-382.

      [21]?He C, He Y, Liu Q, et al. Co-expression of genes ApGSMT2 and ApDMT2 for glycinebetaine synthesis in maize enhances the drought tolerance of plants [J]. Molecular Breeding, 2013, 31(1): 559-573.

      [22]?何春梅,王娟,董瑞,等. 玉米ZmGS5基因的克隆及其對轉(zhuǎn)基因擬南芥種子發(fā)育的影響[J]. 浙江農(nóng)業(yè)學報,2019,31(4): 513-518.

      [23]?Manoli A, Sturaro A, Trevisan S, et al. Evaluation of candidate reference genes for qPCR in maize [J]. Journal of Plant Physiology, 2012, 169(8): 807-815.

      [24]?Apse M P, Blumwald E. Engineering salt tolerance in plants [J]. Current Opinion in Biotechnology, 2002, 13(2): 146-150.

      [25]?Agarwal P K, Shukla P S, Gupta K, et al. Bioengineering for salinity tolerance in plants: state of the art [J]. Molecular Biotechnology, 2013, 54(1): 102-123.

      猜你喜歡
      耐鹽性擬南芥玉米
      擬南芥:活得粗糙,才讓我有了上太空的資格
      收玉米啦!
      郁金香耐鹽性鑒定方法研究
      我的玉米送給你
      玉米
      大灰狼(2018年6期)2018-07-23 16:52:44
      尿黑酸對擬南芥酪氨酸降解缺陷突變體sscd1的影響
      兩種LED光源作為擬南芥生長光源的應用探究
      擬南芥干旱敏感突變體篩選及其干旱脅迫響應機制探究
      源于大麥小孢子突變體的苗期耐鹽性研究
      三個大豆品種萌發(fā)期和苗期的耐鹽性比較
      汕头市| 嘉义市| 泰和县| 威海市| 榆中县| 丰原市| 太仆寺旗| 克山县| 张北县| 绥棱县| 陈巴尔虎旗| 通许县| 上饶市| 岳西县| 霞浦县| 莱西市| 洪泽县| 依安县| 西充县| 长葛市| 渝北区| 博爱县| 县级市| 康乐县| 普安县| 西平县| 灵宝市| 栾川县| 临邑县| 福海县| 遵义县| 南通市| 白河县| 邵武市| 新晃| 夹江县| 普陀区| 南充市| 石阡县| 扎鲁特旗| 汶川县|