• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice?

    2019-08-06 02:07:28XingchuanZhu朱興川TaoYing應(yīng)濤HuaimingGuo郭懷明andShipingFeng馮世平
    Chinese Physics B 2019年7期

    Xingchuan Zhu(朱興川), Tao Ying(應(yīng)濤), Huaiming Guo(郭懷明), and Shiping Feng(馮世平)

    1Department of Physics,Beijing Normal University,Beijing 100875,China

    2Department of Physics,Harbin Institute of Technology,Harbin 150001,China

    3Department of Physics,Key Laboratory of Micro-Nano Measurement-Manipulation and Physics(Ministry of Education),Beihang University,Beijing 100191,China

    Keywords: determinant quantum Monte Carlo(DQMC)simulation,honeycomb lattice,superconducting pairing symmetry

    1. Introduction

    Graphene, which is a single layer of carbon atoms arranged in the honeycomb lattice, has been intensely studied recently.[1-4]While most interest has focused on the unusual properties of Dirac fermions, the honeycomb geometry also results in an exotic state-i.e., the chiral d-wave superconductor.[5,6]The chiral d-wave state is a topological superconducting state. Its topological invariant is a Chern number with the valueC=2.Under the open condition,Majorana edge states that traverse the gap appear,which may have potential applications in topological computations. However,this state has never been observed experimentally,even though its possible realization in graphene has attracted great interest.

    A large number of theoretical works have studied the pairing mechanism in doped graphene. In the mean-field theory for the t-J model, a d-wave solution is found to be dominant over a large range of doping.[7-9]A variational Monte Carlo study of the Hubbard Hamiltonian with intermediate interaction yields a similar result.[10]The prediction for the low doping region is further supported by a variational study using Grassman tensor product state on the t-J model[11]and a determinant quantum Monte Carlo (DQMC) study on the Hubbard model.[12]Nevertheless, a functional renormalization calculation on a lightly doped honeycomb lattice finds that there is no d+id pairing instability in the simple Hubbard model and a finite antiferromagnetic Heisenberg interaction is needed for its realization.[13]The dominant pairing symmetry by the variational cluster approximation in the vicinity of half filling is a triplet p-wave symmetry or Kekule superconductivity.[14,15]A random phase approximation method shows that a singlet d+id is the leading superconducting pairing symmetry, while an additional staggered potential changes the favorable paring to the next-nearestneighbor(NNN)triplet f-wave.[16]

    The band structure of the honeycomb lattice has a van Hove singularity(VHS)at the filling ρ=3/4. The interaction effect is greatly enhanced near the VHS due to the divergent density of states, which means that superconductivity may probably happen. A renormalization group study on the Hubbard model finds that the chiral d-wave state dominates over all competing orders at the VHS.[17]Including a finite NNN hopping, a functional renormalization group method finds that a NNN d+id pairing instability is dominant at the VHS for the realistic U0~10 eV and then the spin density wave (SDW)becomes dominant for U0>18 eV.The critical interaction for the SDW phase decreases when the NNN hopping is reduced,and the SDW already wins for U0>8.5 eV when the NNN hopping vanishes.[18]Away from the VHS,the system still favors the d+id state. When a large enough NNN repulsion is included,a second-nearest-neighbor triplet f-wave pairing becomes competitive.[18]However the singular-mode renormalization group and variational Monte Carlo calculations find that the system at the VHS is a chiral SDW for U = 3.6t(t=2.8 eV).Then,a nearest-neighbor(NN)d+id paring becomes the leading instability when the system is doped away from the VHS,which is stable even in the presence of the NNN interaction.[19]This result of the VHS agrees with calculations using a combination of exact diagonalization, density matrix renormalization group, variational Monte Carlo method, and quantum field theories on the Hubbard model.[20]In particular,a recent DQMC study finds that the singlet d+id wave is the dominant pairing channel both at and away from the VHS filling for U =2t. It also observes that the chiral SDW is similarly relevant at the VHS, but weakens quickly upon doping away from the filling.[21]However,since the two instabilities are not calculated on an equal footing, the leading instability is undetermined.The dynamical cluster approximation(DCA)calculations at the VHS show that while the chiral d+id pairing dominates at weak coupling,there is an enhanced tendency towards p-wave upon increasing the interactions.[22]

    Several studies have considered the low-filling levels.For example, a DQMC study on the Hubbard model at the filling ρ =0.4 finds that the d+id pairing is dominating for weak coupling U =2t.[21]By including additional NNN hopping to flatten the band, a triplet chiral p-wave state is reported at ρ =0.2 for U =3t.[23]

    It is clear that the studies concerning the leading order and pairing symmetry in a doped honeycomb lattice are not consistent. This is due to the absence of precise methods for 2D interacting Hamiltonians,while each of the above-used methods has shortcomings.[24-28]The DQMC method is a numericallyexact and unbiased approach to simulate quantum many-body models on large-scale lattices. Although the fermion-sign problem usually exists in doped systems, it can be circumvented to some extent by averaging the calculating quantity over the sign at the expense of much longer runs.[29]There are mainly two studies applying the DQMC method to the Hubbard model describing the doped graphene,[12,21]where results of specific fillings and weak couplings are presented. In this paper, we extend the previous studies and perform a systematic DQMC study of the pairing symmetry in a doped honeycomb lattice. We consider a full range of fillings from ρ =0 to 1 for both weak and strong couplings. Sizable lattices up to 512 sites are used,and the temperature is lowered to the extent beyond which the DQMC method fails to generate reliable results. Our systematic DQMC results provide new insights into the problem of superconductivity in A doped honeycomb lattice.

    2. Model and method

    We consider a Hubbard Hamiltonian describing interacting Dirac fermions on a honeycomb lattice

    where c?jσand cjσare the creation and annihilation operators,respectively, at site j with spin σ =The hopping amplitudes between the NN sites l and j are t,which we set to 1 as the unit of energy throughout this paper.s the number of electrons of spin σ on site i, and U is the on-site repulsion.

    The honeycomb lattice has a two-site unit cell. By a Fourier-transformation, the energy spectrum without interaction is directly obtained as εk=±|γk|with γk=-t ∑jeik·ej(j=1,2,3). This noninteracting system is a semi-metal with two inequivalent Dirac points at K±=.When the system is doped to 3/4 filling,the Fermi surface forms a perfect hexagon with the vortexes located at the saddle points(M points of the Brillouin zone). The density of states is logarithmically divergent at the filling,which is known as the VHS.

    The Hubbard model (1) is solved numerically by means of the DQMC method.[30-32]In DQMC,one decouples the onsite interaction term through the introduction of an auxiliary Hubbard-Stratonovich field, which is integrated out stochastically. The only errors are those associated with the statistical sampling, the finite spatial lattice size, and the inverse temperature discretization. These errors are well controlled in the sense that they can be systematically reduced as needed,and further eliminated by appropriate extrapolations. Since the ”sign” problem is free at half-filling, the simulations can be carried out at very low temperatures. In addition to halffilling, the infamous sign problem[33-35]can become severe upon lowering the temperature and increasing the interaction strength.[36]To obtain reliable results,we control the average sign to be better than 0.5 by choosing proper temperatures. In the following simulations,we use the inverse temperature discretization Δτ=0.1,which has been verified to produce stable results. The temperature accessed in the simulations is down to T =1/12. The lattice has N=2×L×L sites with L up to 16.

    To determine the dominating pairing symmetry,the quantity we calculate is the uniform pairing susceptibility,which is defined as [37,38]

    Fig.1. The honeycomb lattice and phases of the bonds for the considered pairing symmetries.For a triplet pairing,there is an additional sign when the pairing is along the opposite direction of the arrow.

    The superconducting pairing induced by the repulsive interaction has to be nonlocal, and here we consider the NN ones. The crystal symmetry group of the honeycomb lattice is D6hwith kz= 0. Its irreducible representations classify the paring states. We can have s-wave,dx2-y2-wave,dxy-wave singlet states and px-wave, py-wave, f-wave triplet states(see Fig. 1). Since dx2-y2and dxyare the two basis functions of the representation E2g,they are degenerate. Similarly,the two p-wave states are also degenerate(they belong to the representation E1u). From our finite lattice DQMC results,where any linear combination of the degenerate states has the same effective susceptibility,we can infer only that a chiral d+id(p+ip)symmetry is a candidate phase. A qualitative argument in favor of the chiral phase is that it allows a non-trivial solution of the gap equation while leaving the gap everywhere large. This suggests that it is energetically favored.

    3. The DQMC results

    Figure 2(a) shows the effective susceptibility as a function of ρ at U =2t. While the values of the p-and f-channels are negative,that of the d-wave symmetry χdeffis always positive. This implies that the corresponding pairing interaction is attractive, and the instability to the d-wave superconductivity is favored. It is noted that the effective susceptibility of the s-wave channel increases rapidly and becomes positive near half filling. Both the s- and d-wave channels have finite values at half filling(ρ =1). It is known that superconductivity should not appear in the undoped system. The finite value can be understood as a possible tendency to the corresponding paring state. When the system is doped,the two channels behave differently. The d-wave is strengthened, while the s-wave is weakened. This implies that an instability to d-wave channel develops upon doping. We do not show the results for the filling ρ <0.4, where the values of the d-wave are almost zero,and it is less possible to have a superconducting instability.on the pairing symmetry α (see Fig.1). The pairing susceptibility can be expressed in terms of dressed Green’s functions and an interaction vertex.[32]Usually,the single quasiparticle effect masks the pairing interactions.So we subtract the uncorrelated part χα0from the full susceptibility to obtain the pairing interaction.The effective pairing susceptibility χαeff=χα-χα0more directly measures the superconducting enhancement due to the interaction.

    Fig.2. (a)The effective susceptibility of several pairing channels as a function of filling on L=12 lattice.(b)Size dependence of the effective susceptibility of d-wave symmetry. The inset shows the corresponding average signs for the linear sizes L=8,10,12,16. In both figures, the temperature is T =1/12,and the Hubbard interaction is U =2t.

    We have shown that the d-wave pairing is the leading superconducting instability on a finite-size system. It is necessary to check its size dependence. Figure 2(b) plots the effective susceptibility of the d-wave state for sizes L=8, 10,12, 16. While the size dependence is negligible on either side of the ρ axis, it is pronounced in the middle region, i.e.,0.65 <ρ <0.85, surrounding the VHS. The sign problem is severe in this region,and the data have large error bars.Nevertheless,the average sign is still better than 0.7 at T =1/12 for U=2t.As we enlarge the lattice sizes,the sign problem is improved and the value of χeffincreases. The reason for this may be the finite-size effect on the density of states,which contains discrete peaks instead of being continuous on a finite lattice.For larger lattice sizes, there are more states near the VHS,which may result in an enhanced superconducting response.

    It is also observed that the curve of the effective susceptibility is peaked at about ρ ~0.9 at T =1/12. As the temperature is increased,the position of the peak shifts to larger ρ and finally locates at half filling(see Fig.3(a)). This represents the process of weakening the superconducting state by increasing the temperature. It is expected that the peak moves leftwards when the temperature is lowered and the optimal filling of the ground state should be less than ρ =0.9.

    Fig.3. The effective susceptibility of d-wave channel as a function of filling at several temperatures for(a)U =2t,(b)U =3t,(c)U =4t;(d)χdeff as a function of filling for several values of U at a fixed temperature. Insets in panels(b)and(c)show the corresponding average signs. In all figures,the linear lattice size is L=12.

    The effective susceptibility should be divergent at the superconducting transition temperature. However, due to the sign problem, the simulations are limited to relatively high temperatures, which are above the transition point. We can only deduce the possible low-temperature behavior based on the trend of the high-temperature data. Figure 3(a) shows the effective susceptibility of the d-wave channel as a function of density ρ at several temperatures for U =2t. As the temperature is lowered,χdeffis increased,implying that the superconducting instability is enhanced. From the trend of the T-dependent curve at a fixed density,it is possible that χdeffis divergent at a finite low temperature. We also perform simulations for stronger couplings,where the sign problem becomes severe. We make the temperatures as low as possible while maintaining acceptable average signs. As shown in Figs.3(b)and 3(c), the average sign almost approaches zero near the VHS at T =1/10 for U =3t and T =1/6 for U =4t,which results in a huge error bar. To generate reliable results, the simulations have to be limited to higher temperatures.

    To study the evolution of the dominating pairing symmetry with the interaction, we plot χdeffas a function of filling at T = 1/4 for both weak and strong couplings. As shown in Fig. 3(d), all curves have the maximum values at half filling, implying that T =1/4 is much higher than the superconducting transition point. Nevertheless, the values monotonously increase as the couplings are increased for highfilling levels, implying that the d-wave state is enhanced by strong couplings. In the low-filling region, the value of χdeffis negative, which suggests that the superconductivity is further suppressed by strong couplings. Meanwhile, the values of the p-wave channel are still negative and decrease with increasing interactions. No signature of a transition to a dominating p-wave symmetry is observed upon increasing the interactions.[22]

    4. Conclusion

    We present systematic DQMC results of the dominating pairing symmetry in the doped honeycomb lattice. The simulations cover a full range of fillings, and both weak and strong couplings are considered. For weak couplings, the dwave state is dominant. From the evolution of the effective susceptibility with the temperature, the optimal filling is estimated to be around the VHS filling. Although the simulations are limited to high temperatures for strong couplings,the values of the effective susceptibility at high-filling levels increase as the interaction is strengthened, which implies that the dwave state is enhanced. Our investigation extends the existing DQMC simulations, which only focus on specific fillings for weak couplings. Moreover,our DQMC simulations for strong couplings and on larger sizes provide new insights for the understanding of the superconducting pairing symmetry in the doped honeycomb lattice.

    Acknowledgment

    The authors thank Annica Black-Schaffer and R. T.Scalettar for helpful discussions.

    国产精品一区二区在线观看99| 国产成人精品久久二区二区91| 国产高清激情床上av| 成人av一区二区三区在线看| 久久久精品免费免费高清| 国产午夜精品久久久久久| 国产福利在线免费观看视频| 亚洲人成电影免费在线| 亚洲精品国产一区二区精华液| 人人妻人人添人人爽欧美一区卜| 国产精品免费视频内射| 国产淫语在线视频| 亚洲av日韩精品久久久久久密| 这个男人来自地球电影免费观看| 十分钟在线观看高清视频www| 高潮久久久久久久久久久不卡| 777久久人妻少妇嫩草av网站| av天堂在线播放| 国产一区二区三区综合在线观看| 汤姆久久久久久久影院中文字幕| 国产片内射在线| 免费在线观看视频国产中文字幕亚洲| 国产野战对白在线观看| 国产男女超爽视频在线观看| 日本vs欧美在线观看视频| 中文字幕最新亚洲高清| 又紧又爽又黄一区二区| 国产日韩欧美在线精品| 中文字幕另类日韩欧美亚洲嫩草| 最新在线观看一区二区三区| 香蕉久久夜色| 日本欧美视频一区| 亚洲欧美一区二区三区黑人| 一本色道久久久久久精品综合| 中文字幕av电影在线播放| 9热在线视频观看99| 丁香六月天网| 国产伦人伦偷精品视频| e午夜精品久久久久久久| 国产99久久九九免费精品| 在线观看66精品国产| 久久狼人影院| 精品福利永久在线观看| 欧美中文综合在线视频| 欧美精品亚洲一区二区| 久久久精品免费免费高清| 亚洲av第一区精品v没综合| 日本wwww免费看| 国产精品电影一区二区三区 | 久久精品国产综合久久久| 亚洲国产欧美日韩在线播放| 国产一区二区激情短视频| 在线观看免费日韩欧美大片| 91老司机精品| 免费在线观看影片大全网站| 五月开心婷婷网| 香蕉国产在线看| 国产人伦9x9x在线观看| 国产亚洲一区二区精品| 亚洲成av片中文字幕在线观看| cao死你这个sao货| 2018国产大陆天天弄谢| 97人妻天天添夜夜摸| 国产精品久久久av美女十八| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 国产精品熟女久久久久浪| 日韩成人在线观看一区二区三区| 少妇裸体淫交视频免费看高清 | 精品福利观看| 亚洲专区中文字幕在线| 91成年电影在线观看| 欧美人与性动交α欧美精品济南到| 欧美大码av| 少妇 在线观看| 一区二区日韩欧美中文字幕| 亚洲av欧美aⅴ国产| 性少妇av在线| av不卡在线播放| 国产男靠女视频免费网站| 免费高清在线观看日韩| 操美女的视频在线观看| 美国免费a级毛片| 99国产极品粉嫩在线观看| 日韩三级视频一区二区三区| 国产成人一区二区三区免费视频网站| 亚洲中文日韩欧美视频| 午夜精品国产一区二区电影| 成年人免费黄色播放视频| 制服诱惑二区| 国产1区2区3区精品| 777久久人妻少妇嫩草av网站| 在线观看免费视频网站a站| videosex国产| 亚洲伊人久久精品综合| 国产亚洲精品一区二区www | 久久人妻熟女aⅴ| 最新在线观看一区二区三区| 9热在线视频观看99| 国产高清激情床上av| 久久免费观看电影| 国产日韩一区二区三区精品不卡| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 极品人妻少妇av视频| 男男h啪啪无遮挡| 精品一区二区三区视频在线观看免费 | 嫁个100分男人电影在线观看| 国产高清videossex| 女性被躁到高潮视频| 在线观看一区二区三区激情| 久久免费观看电影| 国产日韩一区二区三区精品不卡| 中文亚洲av片在线观看爽 | 又大又爽又粗| 国产99久久九九免费精品| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲高清精品| 久久久水蜜桃国产精品网| 免费观看a级毛片全部| 丁香六月欧美| 欧美精品高潮呻吟av久久| 18禁美女被吸乳视频| 一本色道久久久久久精品综合| 热99国产精品久久久久久7| 巨乳人妻的诱惑在线观看| cao死你这个sao货| 两个人看的免费小视频| 老司机靠b影院| 欧美激情极品国产一区二区三区| 99精品久久久久人妻精品| 50天的宝宝边吃奶边哭怎么回事| 999精品在线视频| 十八禁网站网址无遮挡| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| h视频一区二区三区| 久久精品91无色码中文字幕| 国产人伦9x9x在线观看| 午夜视频精品福利| 性高湖久久久久久久久免费观看| 十分钟在线观看高清视频www| www日本在线高清视频| 国产日韩欧美在线精品| 亚洲精品自拍成人| 久久国产精品人妻蜜桃| 伊人久久大香线蕉亚洲五| 国产精品国产av在线观看| 欧美日韩成人在线一区二区| 丝袜美足系列| avwww免费| 国产成人精品无人区| 久久久精品94久久精品| 国产高清视频在线播放一区| 午夜福利免费观看在线| 欧美成人免费av一区二区三区 | 婷婷成人精品国产| 亚洲精品美女久久av网站| 日本撒尿小便嘘嘘汇集6| 又黄又粗又硬又大视频| 国产不卡av网站在线观看| 91国产中文字幕| 真人做人爱边吃奶动态| 一边摸一边做爽爽视频免费| 老汉色av国产亚洲站长工具| 亚洲第一欧美日韩一区二区三区 | 99国产综合亚洲精品| 成年女人毛片免费观看观看9 | 国产亚洲一区二区精品| 日韩视频一区二区在线观看| 多毛熟女@视频| 在线观看www视频免费| 美女高潮到喷水免费观看| 亚洲人成伊人成综合网2020| 久热爱精品视频在线9| 中文字幕人妻丝袜一区二区| 亚洲成国产人片在线观看| 欧美日韩精品网址| 国产一区二区激情短视频| 在线av久久热| 妹子高潮喷水视频| 91av网站免费观看| 人人澡人人妻人| 黑人巨大精品欧美一区二区蜜桃| 1024视频免费在线观看| 日日爽夜夜爽网站| 一区福利在线观看| 精品熟女少妇八av免费久了| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| 精品久久蜜臀av无| 欧美 日韩 精品 国产| 久久中文字幕一级| 久久人妻av系列| 丰满饥渴人妻一区二区三| 99精品欧美一区二区三区四区| 亚洲国产av新网站| 国产视频一区二区在线看| 99re6热这里在线精品视频| 亚洲人成伊人成综合网2020| 天堂俺去俺来也www色官网| 五月开心婷婷网| av网站在线播放免费| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 91大片在线观看| 日韩免费av在线播放| 免费观看av网站的网址| 黄色怎么调成土黄色| 亚洲成人免费av在线播放| 国产精品 国内视频| 一级毛片精品| 国产真人三级小视频在线观看| 黄片大片在线免费观看| av不卡在线播放| 欧美黄色片欧美黄色片| 国产成人欧美在线观看 | 热99久久久久精品小说推荐| 精品国产乱码久久久久久男人| 丝袜美腿诱惑在线| 亚洲久久久国产精品| 欧美在线黄色| 午夜视频精品福利| 波多野结衣av一区二区av| 黑人巨大精品欧美一区二区mp4| 热99国产精品久久久久久7| 国产成人av激情在线播放| 国产成人精品久久二区二区免费| av一本久久久久| 免费在线观看日本一区| 美国免费a级毛片| 天堂俺去俺来也www色官网| 人人妻,人人澡人人爽秒播| 久久精品人人爽人人爽视色| 国产精品一区二区在线不卡| 啦啦啦免费观看视频1| 男人操女人黄网站| 亚洲专区国产一区二区| 男女之事视频高清在线观看| 黄色怎么调成土黄色| 日韩视频在线欧美| 精品一区二区三区四区五区乱码| 老司机靠b影院| 久久久久久久精品吃奶| 咕卡用的链子| 亚洲精品粉嫩美女一区| 国产精品一区二区在线不卡| av欧美777| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩另类电影网站| 亚洲欧美一区二区三区黑人| 91九色精品人成在线观看| 日韩欧美一区二区三区在线观看 | 亚洲国产欧美在线一区| av线在线观看网站| 男人操女人黄网站| 一区二区三区激情视频| 亚洲国产精品一区二区三区在线| 免费一级毛片在线播放高清视频 | 成年女人毛片免费观看观看9 | tube8黄色片| 69精品国产乱码久久久| 亚洲欧美激情在线| 啪啪无遮挡十八禁网站| 真人做人爱边吃奶动态| 美女高潮喷水抽搐中文字幕| 国产精品亚洲av一区麻豆| 999久久久精品免费观看国产| 性色av乱码一区二区三区2| 人人澡人人妻人| h视频一区二区三区| 色婷婷av一区二区三区视频| 欧美+亚洲+日韩+国产| 亚洲av欧美aⅴ国产| 咕卡用的链子| 一个人免费在线观看的高清视频| 丁香六月欧美| 亚洲成人国产一区在线观看| av又黄又爽大尺度在线免费看| 亚洲全国av大片| 一边摸一边抽搐一进一小说 | 午夜免费成人在线视频| 如日韩欧美国产精品一区二区三区| 成年版毛片免费区| 男女下面插进去视频免费观看| 精品卡一卡二卡四卡免费| 国产又色又爽无遮挡免费看| 91麻豆av在线| 天天影视国产精品| 国产成人欧美在线观看 | 国产精品一区二区在线观看99| 欧美久久黑人一区二区| 国产淫语在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版| 亚洲自偷自拍图片 自拍| 在线天堂中文资源库| 欧美大码av| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看 | 午夜福利在线免费观看网站| 黄色毛片三级朝国网站| 捣出白浆h1v1| 精品国产乱子伦一区二区三区| 久久毛片免费看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 精品人妻1区二区| 精品熟女少妇八av免费久了| 午夜视频精品福利| 99香蕉大伊视频| 黄网站色视频无遮挡免费观看| 久久亚洲真实| a级毛片黄视频| 免费观看av网站的网址| 一本大道久久a久久精品| 90打野战视频偷拍视频| 中文字幕av电影在线播放| 欧美黑人欧美精品刺激| 久久午夜综合久久蜜桃| a级片在线免费高清观看视频| 一级片'在线观看视频| videos熟女内射| 一进一出抽搐动态| www.自偷自拍.com| 69精品国产乱码久久久| 久久久久久人人人人人| 麻豆国产av国片精品| 女同久久另类99精品国产91| 久久天躁狠狠躁夜夜2o2o| 不卡av一区二区三区| 亚洲av电影在线进入| 日日夜夜操网爽| 精品少妇黑人巨大在线播放| 人人澡人人妻人| 18禁国产床啪视频网站| 2018国产大陆天天弄谢| 欧美黑人精品巨大| 欧美中文综合在线视频| 久久亚洲精品不卡| 日韩中文字幕视频在线看片| 天天躁狠狠躁夜夜躁狠狠躁| 日本撒尿小便嘘嘘汇集6| 亚洲av成人不卡在线观看播放网| 两性夫妻黄色片| 亚洲成人免费电影在线观看| av超薄肉色丝袜交足视频| 老熟妇乱子伦视频在线观看| 男女免费视频国产| 激情在线观看视频在线高清 | 中亚洲国语对白在线视频| 国产精品久久久久成人av| av有码第一页| 王馨瑶露胸无遮挡在线观看| 国产精品av久久久久免费| 99久久99久久久精品蜜桃| 色94色欧美一区二区| 成人精品一区二区免费| 久久国产精品大桥未久av| 丝袜美足系列| 国内毛片毛片毛片毛片毛片| 天天躁日日躁夜夜躁夜夜| 视频区欧美日本亚洲| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲 | 国产成人欧美| 国产精品美女特级片免费视频播放器 | 国产男女超爽视频在线观看| 丰满少妇做爰视频| 久久av网站| 欧美国产精品一级二级三级| av欧美777| 亚洲国产中文字幕在线视频| 欧美黑人精品巨大| 国产高清国产精品国产三级| 中文字幕人妻丝袜一区二区| 久久 成人 亚洲| 女性生殖器流出的白浆| 天天躁日日躁夜夜躁夜夜| 久久中文字幕人妻熟女| 国产精品熟女久久久久浪| 久久精品国产亚洲av高清一级| 亚洲va日本ⅴa欧美va伊人久久| 18禁美女被吸乳视频| 五月天丁香电影| 交换朋友夫妻互换小说| 精品福利观看| 嫁个100分男人电影在线观看| 亚洲三区欧美一区| 国产欧美日韩一区二区精品| 纯流量卡能插随身wifi吗| 一进一出抽搐动态| 国产亚洲精品第一综合不卡| 久久精品国产99精品国产亚洲性色 | 黄色视频不卡| 丝袜美足系列| 天堂中文最新版在线下载| 亚洲自偷自拍图片 自拍| 亚洲国产精品一区二区三区在线| 亚洲欧美精品综合一区二区三区| 国产黄频视频在线观看| 少妇粗大呻吟视频| 午夜老司机福利片| 国产在线观看jvid| 亚洲欧洲日产国产| 一进一出好大好爽视频| 人人澡人人妻人| 成年人免费黄色播放视频| 91精品国产国语对白视频| av有码第一页| 日韩免费高清中文字幕av| 男女之事视频高清在线观看| 精品福利观看| 国产成人影院久久av| 亚洲精品成人av观看孕妇| 嫁个100分男人电影在线观看| 国产无遮挡羞羞视频在线观看| 两性夫妻黄色片| 悠悠久久av| 日本一区二区免费在线视频| av天堂在线播放| 国产单亲对白刺激| 考比视频在线观看| 久久午夜综合久久蜜桃| 国产一区二区三区综合在线观看| 亚洲av片天天在线观看| 亚洲av第一区精品v没综合| 亚洲色图av天堂| a级毛片在线看网站| 一区二区三区激情视频| 99久久国产精品久久久| 女人高潮潮喷娇喘18禁视频| 亚洲综合色网址| 在线观看免费视频网站a站| 国产人伦9x9x在线观看| 另类精品久久| 欧美乱妇无乱码| 天天躁夜夜躁狠狠躁躁| 少妇的丰满在线观看| 欧美在线黄色| 丰满迷人的少妇在线观看| 99精品欧美一区二区三区四区| 丁香六月欧美| 性色av乱码一区二区三区2| 亚洲色图av天堂| 国产精品偷伦视频观看了| 老汉色∧v一级毛片| 亚洲国产av影院在线观看| 国产野战对白在线观看| 亚洲avbb在线观看| 亚洲成av片中文字幕在线观看| 在线观看免费高清a一片| 国产精品自产拍在线观看55亚洲 | 啦啦啦免费观看视频1| 一级毛片电影观看| 天堂动漫精品| 女人爽到高潮嗷嗷叫在线视频| 精品免费久久久久久久清纯 | 久久天堂一区二区三区四区| 国精品久久久久久国模美| 99精国产麻豆久久婷婷| 水蜜桃什么品种好| 国产熟女午夜一区二区三区| 午夜免费成人在线视频| 国产亚洲午夜精品一区二区久久| 亚洲精品美女久久久久99蜜臀| 大片免费播放器 马上看| 久久精品国产亚洲av高清一级| 精品少妇一区二区三区视频日本电影| 国产欧美日韩一区二区精品| 午夜福利视频在线观看免费| 国产亚洲午夜精品一区二区久久| 亚洲精品美女久久av网站| 一区二区三区乱码不卡18| av网站免费在线观看视频| 亚洲精品在线美女| 亚洲成a人片在线一区二区| 国产又爽黄色视频| 人人澡人人妻人| 精品久久久久久久毛片微露脸| 精品久久久精品久久久| 亚洲黑人精品在线| 超碰97精品在线观看| 国产成人av教育| 日韩 欧美 亚洲 中文字幕| 丰满迷人的少妇在线观看| 成人亚洲精品一区在线观看| 9热在线视频观看99| tocl精华| 人人妻,人人澡人人爽秒播| 国产精品久久电影中文字幕 | 大陆偷拍与自拍| 国产老妇伦熟女老妇高清| 青草久久国产| av线在线观看网站| 黑人猛操日本美女一级片| 99国产精品免费福利视频| 国产亚洲精品一区二区www | 最新美女视频免费是黄的| 亚洲av日韩精品久久久久久密| 岛国在线观看网站| 桃红色精品国产亚洲av| 日韩制服丝袜自拍偷拍| 午夜成年电影在线免费观看| 国产三级黄色录像| 曰老女人黄片| 中文字幕人妻熟女乱码| 国产在线观看jvid| 色视频在线一区二区三区| 精品国产乱码久久久久久男人| 亚洲五月色婷婷综合| 欧美日韩一级在线毛片| 国产精品久久久av美女十八| av天堂久久9| 亚洲av电影在线进入| 欧美精品亚洲一区二区| 国产国语露脸激情在线看| 亚洲国产看品久久| 日日夜夜操网爽| 最近最新中文字幕大全免费视频| 999精品在线视频| 国产成人欧美在线观看 | 国产精品成人在线| 一个人免费看片子| 黄片播放在线免费| 亚洲久久久国产精品| 又黄又粗又硬又大视频| 欧美精品一区二区免费开放| 色在线成人网| 久久午夜综合久久蜜桃| 亚洲九九香蕉| 一级a爱视频在线免费观看| 99精品久久久久人妻精品| 日韩 欧美 亚洲 中文字幕| 看免费av毛片| 69av精品久久久久久 | 少妇的丰满在线观看| 热99久久久久精品小说推荐| 黑人操中国人逼视频| 夜夜夜夜夜久久久久| 考比视频在线观看| 黑人操中国人逼视频| 18在线观看网站| 免费看a级黄色片| 国产日韩一区二区三区精品不卡| 香蕉丝袜av| 久久久久久免费高清国产稀缺| 成人国产av品久久久| 欧美日韩亚洲国产一区二区在线观看 | 国产在线观看jvid| 一级毛片女人18水好多| 人成视频在线观看免费观看| 91字幕亚洲| 人妻久久中文字幕网| 国产精品九九99| 日日摸夜夜添夜夜添小说| 一级片免费观看大全| 欧美日韩亚洲高清精品| 欧美中文综合在线视频| 国产精品一区二区在线观看99| 精品少妇一区二区三区视频日本电影| 日本vs欧美在线观看视频| 精品乱码久久久久久99久播| 国产精品久久久久成人av| 欧美人与性动交α欧美精品济南到| 男女无遮挡免费网站观看| 真人做人爱边吃奶动态| 免费看十八禁软件| 91成人精品电影| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜制服| 另类精品久久| 欧美另类亚洲清纯唯美| 露出奶头的视频| 侵犯人妻中文字幕一二三四区| 亚洲国产av影院在线观看| 欧美老熟妇乱子伦牲交| 99国产精品一区二区三区| 最黄视频免费看| 国产精品香港三级国产av潘金莲| 热re99久久国产66热| 十八禁人妻一区二区| 精品亚洲成国产av| 久久青草综合色| cao死你这个sao货| 乱人伦中国视频| 搡老乐熟女国产| 91av网站免费观看| 纯流量卡能插随身wifi吗| 久久久久精品国产欧美久久久| 国产一区二区三区在线臀色熟女 | 在线 av 中文字幕| 国产成人一区二区三区免费视频网站| 宅男免费午夜| 一本大道久久a久久精品| 久9热在线精品视频| 午夜福利欧美成人| 亚洲欧洲精品一区二区精品久久久| 亚洲熟妇熟女久久| 欧美性长视频在线观看| 国产国语露脸激情在线看| 日韩欧美一区视频在线观看| 久久人人爽av亚洲精品天堂| 精品久久久久久久毛片微露脸| 一级黄色大片毛片| 十分钟在线观看高清视频www| 99在线人妻在线中文字幕 | 亚洲视频免费观看视频| 一区二区三区乱码不卡18| 国产熟女午夜一区二区三区| 国产精品久久久人人做人人爽| 在线观看舔阴道视频| 成年人黄色毛片网站| 亚洲精品久久成人aⅴ小说| 一本综合久久免费|