• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic and magnetic properties of CrI3 nanoribbons and nanotubes?

    2019-08-06 02:07:22JiZhangWang王吉章JianQiHuang黃建啟YaNingWang王雅寧
    Chinese Physics B 2019年7期

    Ji-Zhang Wang(王吉章), Jian-Qi Huang(黃建啟), Ya-Ning Wang(王雅寧),

    Teng Yang(楊騰)1,?, and Zhi-Dong Zhang(張志東)1

    1Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences,Shenyang 110016,China

    2School of Materials Science and Engineering,University of Science and Technology of China,Shenyang 110016,China

    Keywords: CrI3,nanoribbon,nanotube,magnetism

    1. Introduction

    Two-dimensional (2D) van der Waals crystals have attracted broad attention due to their novel properties and potential applications in the last two decades.[1]The excellent mechanical,[2]electronic,[1,3-5]optical,[6-8]and especially magnetic properties[9]due to the quantum confinement effect have been widely reported. Isotropic long-range ferromagnetic(FM)order at low dimension has been proved to be thermodynamically unstable in Heisenberg systems from the Mermin-Wagner theorem.[10]However,a number of magnetic 2D-layered structures, such as FePS3,[11]Cr2Ge2Te6,[12-14]and CrI3,[15,16]have recently been demonstrated by experiments to be stable with finite ordering temperature, largely due to the magnetic anisotropy and/or the Ising systems.[17-19]Among them, CrI3exhibits in-plane FM ordering but interlayer antiferromagnetic ordering(AFM).[15]Interestingly,the layer-dependent magnetic order can be switched by an electrical gating, for example, from an interlayer AFM ordering to ferromagnetic state between the layers in bilayer CrI3by electron doping.[20,21]Circular polarized photoluminescence has also been reported in CrI3monolayer.[22]Those findings may promise CrI3for applications in spintronics and optoelectronics.

    Transforming 2D atomic-thick crystals into onedimensional structures strengthens the quantum size effect in some manner and supplies a new playground for tuning electronic properties.[23-25]Especially, ribbon width and edge configuration in ribbon structures, tube diameter and chirality in nanotubes,[26]decoration style and end-size in nanowires[23]play essential roles on determining the emergent electronic and magnetic properties, as is the case with graphene nanoribbons,[27,28]MoS2nanoribbons,[29]transition metal chalcogenides nanowires,[30-32]and phosphorene nanoribbons.[33]So it is intriguing to know how different the electronic properties one can achieve or whether it is possible to enhance the magnetic properties through edge structures when bringing CrI3down from the 2D form to its ribbon or tube counterparts. Reports have barely been found in literature on this topic except for a computation study on the edge-tunable band structure in zigzag CrI3nanoribbons by Jiang et al.[34]A more systematic and thorough exploration on the size effect on the electronic and magnetic properties of CrI3nanoribbons and nanotubes is yet to be made.

    In this paper, we studied the edge configuration and size dependent electronic and magnetic properties of CrI3nanoribbons(NRs)and nanotubes(NTs)by using first-principles density functional calculations. Typical zigzag and armchair edge configurations were chosen for both ribbon and tube structures, with ribbon width ranging from 12 ?A to 70 ?A. Both zigzag (ZZNR) and armchair nanoribbons (ACNR) are reasonably endothermic with respect to their 2D counterparts,with ZZNR slightly more stable than ACNR. Encouragingly,the Curie temperature for both nanoribbons and nanotubes(ACNT and ZZNT), as evaluated from the energy difference between the FM and AFM states,is obviously enhanced from the CrI32D crystals. Part contribution is due to the increased spin moment,especially in the case of nanotubes in which the spin moment of Cr is increased by 4%. Iodine edge atoms are also found to contribute to the increased magnetization in the ribbons. Moreover, the band gap Egof ZZNR increases with increasing ribbon width, while in contrast, the band gap of ACNR and nanotubes (ACNT, ZZNT) decreases with increasing ribbon width and tube diameter unexpectedly. More interestingly, oscillations of band gap size and spin moment of ACNT with ribbon width were found, which may be ascribed to the quantum confinement and the crucial effect of the edges.[27]Polarized optical absorption was also calculated and found to occur in the whole Brillouin zone, due to parallel flat valence and conduction bands, which is promising for optoelectronic applications.

    2. Methods

    We used ab initio density functional theory with the exchange-correlation functional of Perdew, Burke, and Ernzerhof (PBE) flavor[35]as implemented in the Vienna ab initio simulation package(VASP).[36]The cut-off energy for the plane-wave basis set was set to be 350 eV. The Monkhorst-Pack scheme[37]was used to sample the Brillouin zone (BZ)over a 16×1×1 k-mesh. The energy difference threshold for electronic self-consistency was set to be 10-7eV.We used the plus U method with U =2.65 eV for the Cr atom.[38]All the structures were fully relaxed with the method of conjugate gradients[39]until the atomic force was less than 0.02 eV/?A.The van der Waals interaction was taken into account for all the structures. The vacuum space between two neighboring slabs was set to be 15 ?A to avoid the artificial inter-slab interactions.

    To evaluate the optical absorption, the electron-photon matrix element M(c,v,k) was computed based on the Fermi golden rule to obtain the absorption probability α,

    in which the electron-photon matrix element M(c,v,k)is[40-42]

    where m is the carrier mass, ∈0is the dielectric constant of vacuum, I is the intensity of the incident laser, D(c,v,k)(=〈ψc(k)|?|ψv(k)〉) is the dipole vector taking care of the photon-excited electronic transition from valence state ψv(k)to conduction state ψc(k), and P is the laser polarization.Jone vectors(1, ±i, 0)were used to simulate the circular polarization of laser.

    3. Results and discussion

    In the following, we shall discuss the size dependence of the electronic and magnetic properties of CrI3nanoribbons and nanotubes.

    Fig.1.(a)Definition of CrI3 ribbon structures with zigzag and armchair edges. Arrows in red and blue show periodic axial directions of ZZ and AC ribbons, respectively. Dashed lines with numbers define the width index nW. (b) The nW dependence of formation enthalpy ΔH of both ZZNR and ACNR,ΔH is defined in Eqs.(3)and(4).

    3.1. CrI3 nanoribbons

    Let us firstly define the ribbon structures for CrI3. Two typical structures of ZZNR and ACNR are defined according to the sublattice of Cr atoms (blue), similar to the definition of graphene nanoribbon type, as shown in Fig. 1(a). Iodine atoms(purple)are selected to terminate the dangling bonds in Cr edge atoms for both types of ribbons,because it costs much more energy to have edge Cr atoms with dangling bonds from our formation enthalpy calculations. Guided by this rule, the edge structures with various ribbon widths were constructed,as highlighted in Fig. 1(a) by red and blue dashed lines and width index nWfor ZZNR and ACNR, respectively. To estimate the relative stability of ribbons with respect to the 2D CrI3crystal,the formation enthalpy ΔH for ZZNR and ACNR were calculated based on the following equations:

    where ECrI3, ECr, EZZ, and EACare respectively the total energies of 2D CrI3, elementary Cr solid, ZZNR, and ACNR.Each ZZNR with width index nWconsists of 2nWCr atoms and 2+6nWI atoms, while each ACNR has 2nWCr atoms and 4+6nWI atoms.

    As evident by the negative formation enthalpy given in Fig.1(b),it is always endothermic to obtain ribbon structures of any type from 2D CrI3. With decreasing ribbon width,ΔH normalized by the total number of atoms increases, suggesting that it is more difficult to get the narrower ribbon. ZZNR is more stable than ACNR at similar width, probably due to the energy gain from dimerization of the edge iodine pair in ZZNR compared with the single iodine edge atom in ACNR.

    Firstly we studied the electronic properties of ZZNR,specifically the electronic band structure, magnetic properties, and relative stability between FM and AFM states, as shown in Fig. 2. The typical spin alignments of FM/AFM states are schematized in Fig 2(a), with the spin moment of Cr atoms pointing out of the structural basal plane from magnetocrystalline anisotropy calculation. The Curie temperature TCcan be estimated upon both the exchange stiffness J and saturated magnetization m according to the Weiss-Heisenberg model.[40]Exchange stiffness J can be calculated from energy difference ΔEAFM-FMbetween AFM and FM states.[43]In Figs. 2(b)-2(d), we show the ribbon-widthnormalized ΔEAFM-FMand spin moment m as a function of 1/W. As seen from Fig. 2(b), FM remains more stable than AFM regardless of the ribbon width(which is consistent with the results from Ref.[34]),and J can be increased by up to 3-4 times from 2D CrI3to ZZNR structures(width index nW≥5).Spin moment m in Fig.2(c)does not show much improvement upon the 2D counterpart.But the spin charge density ΔρFMindicated in Fig. 2(d) shows some additional contribution from the edge iodine atoms in the ZZNR (left panel) compared to the 2D crystal(right panel). It is most likely to obtain an enhancement of TCof the ribbon structures upon the bulk(61 K)and monolayer CrI3(45 K).[15,44]

    Fig.2. (a)Schematic spin alignment on Cr atoms for both FM and AFM states in ZZNR.Up arrow(red)represents spin majority and down arrow(blue)spin minority. (b)Energy difference ΔEAFM-FM (=EAFM-EFM)for ZZNR as a function of inverse ribbon width. (c)Maximal magnetic moment for Cr atoms in FM (red square) and AFM (blue triangle) states in ZZNR as a function of 1/W. (d) Spin charge density ΔρFM between spin majority and minority states for ZZNR-nW(nW=6)and 2D CrI3 with Δρ=0.118 e/Bohr-3. (e)Electronic band structure and projected density of states(PDOS)for ZZNR-6. The Cr-3d and I-5p orbitals are shown in green and gray lines,respectively. (f)Band gap of both FM and AFM states as a function of 1/W. Eig(left panel)and Eg(right panel),as defined in the band structure in(e),represent intrinsic and spin-flip band gaps,respectively.

    To have more insight into the magnetic property,we calculated the electronic band structure and density of states(DOS),as showed in Fig.2(e).The projected DOS on the right panel of Fig.2(e)illustrates that not only the Cr-d orbitals(in green) but also the I-p orbitals (in grey) contribute to the net spin moment,especially the flat bands due to the I-5p orbitals near the Fermi level. The electronic instability arising from a large DOS of I-5p orbitals and the electron-electron Coulomb repulsion occurs at EF, which gives rise to a splitting of spin majority and minority bands. This is a new feature for the ribbon structures, which is not observed in the 2D counterpart.Band gap Egdue to the spin splitting, as defined in the band structure in Fig. 2(e), is about 0.2-0.3 eV (which is similar to the result in Ref. [34]), almost independent on the ribbon width, as seen from the right panel in Fig. 2(f). The optical absorption across Egshould be forbidden due to the electricdipole selection rule (Δl =±1, Δms=0), which is the case from the calculated optical absorption in Fig. 3. Meanwhile,the band gap Eigof the spin majority bands between the I-5p and Cr-4d, as defined in Fig. 2(e), should be optically active due to Δl=±1,as confirmed also in Fig.3. In contrast to the spin flip band gap Egindependent of the ribbon width,Eigincreases with decreasing ribbon width W,obviously due to the quantum size effect.

    Fig.3. The optical absorption of FM ZZNR-2 with spin and momentum resolution for(a)linear polarized laser and(b)circular polarized laser.Up and down arrows in the lower left corner show majority and minority spins,respectively.

    Helicity dependence of photoluminescence was reported in 2D CrI3monolayer and bilayer.[22]It is worth checking whether it exists in the one-dimensional ribbon structure. We show the wave-vector, laser-energy, and (linearly and circularly)polarization dependence of optical absorption in Fig.3.The optical gap of the spin majority band is smaller than the minority one. Due to many flat bands, the wave-vector independence of the optical absorption is obviously observed.It is a pity that no circular polarization dependence is found,namely, the helicity of both σ+and σ+gives the same result in Fig.3(b). Circular polarized laser leads to two times as big intensity as the linear polarized laser,basically due to the fact that circular polarization is due to two linearly polarized lasers with 90°phase difference.

    Fig. 4. Ribbon width dependence of electronic properties of ACNR. (a) FM and AFM spin alignments of Cr atoms. (b) Width normalized energy difference ΔEAFM-FM (=EAFM-EFM). (c) Band structure and projected DOS for ACNR-6. (d) Net spin charge density ΔρFM. (e)Maximal magnetic moment of Cr atoms in both FM and AFM states. (f)Band gap Eg of both FM and AFM states.

    The edge type has been seen to significantly change the electronic and magnetic properties of NRs such as carbon NRs,[27]phosphorene NRs,[33]and MoS2NRs.[29]Besides the zigzag edge in honeycomb lattices, the armchair edge is another typical structure. Now let us shift from ZZNR to ACNR to see the edge structure effect on the electronic properties of nanoribbons. The spin configurations for both AFM and FM states are given in Fig. 4(a). It is encouraging to anticipate that the Curie temperature TCwill be much improved upon 2D CrI3as well in ACNR, largely thanks to the much enhanced exchange stiffness J as shown in Fig. 4(b) and slightly increased spin moment m as shown in Fig.4(e). The discussion on ACNR will, therefore, be similar to that on ZZNR. However,the oscillation of both spin moment mCrand band gap Egwith the ribbon width W is unique in ACNR, as indicated in Figs.4(e)and 4(f). Similar results have also been reported in graphene nanoribbons with armchair edge.[27]So likewise,we may ascribe such an oscillation of band gap Egas well as of m with ribbon width in the ACNR to both quantum confinement and the crucial effect of the edges.[27]

    3.2. CrI3 nanotubes

    Compared to ribbon structures with dangling bonds at the edge,tubular structures without edges should be more advantageous for many applications. But how about the magnetic properties in the tubular structures?Here we studied CrI3nanotubes with two typical chiralities,ZZNT(n,0)and ACNT(n,n). Figure 5(a)shows the top view and side view of two representative nanotubes,ZZNT(6,0)and ACNT(6,6). Diameter D is defined as the largest distance between two furthest iodine atoms in the cutting plane perpendicular to the tube axial direction. The strain energy is evaluated in Fig.5(b). In contrast to the weak dependence of strain energy on ribbon width in ZZNR and ACNR, the strain energy of NTs is inversely proportional to the square of the nanotube perimeter W (or diameter D),namely,E/NCr~α/D2,with α =24.03 eV·?A2. The weak dependence of strain energy on tube chirality is very similar to that in carbon nanotubes and other tubular structures.[26]Our calculation results show that the FM state is energetic favorable compared to the NM and AFM states of CrI3NT,and the energy difference between the FM and AFM states is about 20 meV per Cr atom in CrI3NT.

    Fig.5. Tube-size dependence of electronic properties of CrI3 nanotubes. (a)Top view and side view of two chiralities(left: ZZNT(6,0)and right:ACNT(6,6)). (b) The 1/W dependence of total energy normalized by the number of Cr atoms for both nanotubes and nanoribbons. For NT,W is defined as the perimeter of the tube W =πD, with D being the diameter. (c) Maximal magnetic moment of Cr atom as a function of inverse diameter 1/D. 2D CrI3 sheet is also shown at 1/D=0. (d)Band structures for ZZNT(6,0)and ACNT(6,6). (e)Band gap as a function of 1/D.

    More interestingly, the spin moment of Cr atoms mCris sensitive to the tube diameter D,as shown in Fig.5(c). The increase in mCrfrom 2D counterpart to tube is evident and about 4%can be achieved in ZZNT(5,0)(with D ~12.5 ?A).The narrower the tube,the larger the mCr,and mCr~1/D2seems to fit well the calculation data. Such a curvature-enhanced spin moment is probably due to the distorted octahedral crystal field in the tubes. In consequence,Coulomb repulsion can surpass the crystal-field band gap Δ between the egand t2gorbitals to increase the net spin moment. Such a hypothesis can be partly confirmed from the electronic band structure. As seen from Figs. 5(d) and 5(e), the band gap Egdecreases with decreasing tube diameter D,suggesting that it becomes easier to cross the crystal field gap Δ to flip the spin when the tube becomes narrower. However,the relationship between Egand the tube size D is quite opposite to that found in carbon nanotube,[26]which needs a further study.

    4. Conclusion

    In summary,we have studied the structural stability,electronic properties,and magnetic properties of low-dimensional nanoribbons and nanotubes of CrI3by ab initio density functional calculations. Ferromagnetic ordering is found to be stable in all the NR and NT structures of interest. An enhancement of the Curie temperature TCcan be expected when CrI3structure goes from 2D to NR/NT. The energy difference between the FM and AFM states can be improved by even up to 3 to 4 times in ZZNR,largely because of the electronic instability arising from a large DOS of I-5p orbitals at EF. In NT structures,shrinking the tube size can reduce the crystal-field gap and drive a re-balance between spin majority and minority populations to harvest an enhancement of spin moment by up to 4%. Our theoretical results may give a guidance to the size and edge control of electronic and magnetic properties in low-dimensional magnetic devices.

    精品少妇久久久久久888优播| 亚洲午夜理论影院| 满18在线观看网站| 身体一侧抽搐| 国产激情久久老熟女| 亚洲第一青青草原| 国产精品欧美亚洲77777| 国产欧美日韩精品亚洲av| 色婷婷久久久亚洲欧美| 国产成人精品无人区| 欧美 日韩 精品 国产| 天堂中文最新版在线下载| 欧美精品亚洲一区二区| 性少妇av在线| 中文字幕人妻丝袜一区二区| 女性被躁到高潮视频| 精品午夜福利视频在线观看一区| 免费在线观看完整版高清| 搡老熟女国产l中国老女人| 午夜精品久久久久久毛片777| 日本五十路高清| 免费在线观看亚洲国产| 国产精品自产拍在线观看55亚洲 | 99精品在免费线老司机午夜| 久久久久久久精品吃奶| 狂野欧美激情性xxxx| 黄片小视频在线播放| 欧美精品啪啪一区二区三区| 亚洲一区二区三区欧美精品| 日韩欧美国产一区二区入口| 在线观看免费高清a一片| 一边摸一边抽搐一进一小说 | 黄网站色视频无遮挡免费观看| 久久久精品国产亚洲av高清涩受| 两个人免费观看高清视频| 久久国产精品影院| 欧美乱妇无乱码| 他把我摸到了高潮在线观看| 黄色成人免费大全| 欧美精品av麻豆av| 久久精品成人免费网站| 亚洲国产精品sss在线观看 | 无遮挡黄片免费观看| 啦啦啦在线免费观看视频4| 男人操女人黄网站| 日韩欧美一区二区三区在线观看 | 操美女的视频在线观看| 好男人电影高清在线观看| 午夜成年电影在线免费观看| 18禁裸乳无遮挡免费网站照片 | 国产精品秋霞免费鲁丝片| 黄色女人牲交| 岛国在线观看网站| 精品欧美一区二区三区在线| 啪啪无遮挡十八禁网站| 亚洲精品久久成人aⅴ小说| 一级毛片精品| 在线观看免费日韩欧美大片| 午夜福利欧美成人| 人妻丰满熟妇av一区二区三区 | 日本黄色视频三级网站网址 | 99国产精品一区二区三区| 老司机午夜十八禁免费视频| 午夜福利免费观看在线| 一进一出抽搐gif免费好疼 | 国产蜜桃级精品一区二区三区 | 国产精品98久久久久久宅男小说| 亚洲精品乱久久久久久| 国产精品自产拍在线观看55亚洲 | 纯流量卡能插随身wifi吗| 欧美大码av| 少妇裸体淫交视频免费看高清 | 99热只有精品国产| 91在线观看av| 18禁黄网站禁片午夜丰满| 一区二区日韩欧美中文字幕| 国产成人免费无遮挡视频| 亚洲av电影在线进入| 午夜两性在线视频| 久久久国产成人精品二区 | 91麻豆av在线| av网站免费在线观看视频| 在线免费观看的www视频| 黄色 视频免费看| 欧美日韩国产mv在线观看视频| 最新的欧美精品一区二区| 国产精品.久久久| 在线视频色国产色| 国产精品99久久99久久久不卡| 国产激情欧美一区二区| 亚洲第一青青草原| 男女午夜视频在线观看| 欧美激情久久久久久爽电影 | 青草久久国产| 人妻一区二区av| 精品少妇一区二区三区视频日本电影| 免费久久久久久久精品成人欧美视频| 99riav亚洲国产免费| 免费高清在线观看日韩| 日本精品一区二区三区蜜桃| 国产一区二区激情短视频| 日韩精品免费视频一区二区三区| 国产亚洲精品第一综合不卡| netflix在线观看网站| 成熟少妇高潮喷水视频| 男女之事视频高清在线观看| 妹子高潮喷水视频| 又黄又爽又免费观看的视频| 国产在线精品亚洲第一网站| 黄色片一级片一级黄色片| 国产成人影院久久av| 亚洲精品自拍成人| 精品福利永久在线观看| 女人久久www免费人成看片| 精品国产亚洲在线| 搡老熟女国产l中国老女人| 中出人妻视频一区二区| 国产亚洲精品久久久久5区| 久久精品国产清高在天天线| 搡老熟女国产l中国老女人| 国产欧美日韩综合在线一区二区| avwww免费| 欧美成人午夜精品| 欧美精品av麻豆av| 日韩有码中文字幕| 叶爱在线成人免费视频播放| 亚洲国产看品久久| 精品一区二区三区视频在线观看免费 | 欧美黑人欧美精品刺激| 黑人巨大精品欧美一区二区蜜桃| 国产成+人综合+亚洲专区| 国产男女内射视频| 69精品国产乱码久久久| 1024视频免费在线观看| av有码第一页| 大型黄色视频在线免费观看| 午夜91福利影院| 精品久久蜜臀av无| 青草久久国产| 90打野战视频偷拍视频| 国产成人系列免费观看| 国产成+人综合+亚洲专区| 男男h啪啪无遮挡| 狂野欧美激情性xxxx| 国产欧美日韩一区二区精品| 日韩欧美免费精品| 亚洲中文av在线| 国产亚洲精品一区二区www | 一本大道久久a久久精品| av网站在线播放免费| 久久性视频一级片| 99国产综合亚洲精品| 国产精品.久久久| e午夜精品久久久久久久| 亚洲久久久国产精品| 日韩精品免费视频一区二区三区| 国产深夜福利视频在线观看| 免费看a级黄色片| 99久久99久久久精品蜜桃| 中文字幕色久视频| 十八禁人妻一区二区| 成在线人永久免费视频| 国产一区在线观看成人免费| 麻豆乱淫一区二区| 成人精品一区二区免费| 精品一区二区三区四区五区乱码| 中文字幕另类日韩欧美亚洲嫩草| 在线视频色国产色| 国产乱人伦免费视频| 亚洲中文日韩欧美视频| 国产成人av激情在线播放| 亚洲情色 制服丝袜| 国产精品一区二区免费欧美| 欧美精品av麻豆av| 在线播放国产精品三级| 高清在线国产一区| 黑人猛操日本美女一级片| 夫妻午夜视频| 成人18禁在线播放| 高清在线国产一区| 中文字幕最新亚洲高清| 制服人妻中文乱码| 可以免费在线观看a视频的电影网站| 午夜亚洲福利在线播放| 国产91精品成人一区二区三区| 欧美+亚洲+日韩+国产| 在线观看www视频免费| 9热在线视频观看99| 国产精品久久电影中文字幕 | 人人澡人人妻人| 亚洲七黄色美女视频| 国产精品国产av在线观看| 在线观看66精品国产| 9色porny在线观看| www.熟女人妻精品国产| av一本久久久久| 亚洲第一青青草原| 欧美性长视频在线观看| 看免费av毛片| 脱女人内裤的视频| 国产人伦9x9x在线观看| 无人区码免费观看不卡| 99热国产这里只有精品6| 欧美日韩视频精品一区| 麻豆av在线久日| 午夜福利在线免费观看网站| 亚洲av日韩精品久久久久久密| 国产有黄有色有爽视频| 国产精品av久久久久免费| 亚洲视频免费观看视频| 久久精品国产清高在天天线| 黄色成人免费大全| 丝袜美足系列| 老司机午夜十八禁免费视频| 精品久久久久久久毛片微露脸| 欧美午夜高清在线| 国产蜜桃级精品一区二区三区 | 少妇 在线观看| www日本在线高清视频| 国产国语露脸激情在线看| 大香蕉久久成人网| 国产成人精品无人区| 久久国产精品大桥未久av| 十八禁网站免费在线| av视频免费观看在线观看| 欧美日韩精品网址| 亚洲av成人一区二区三| 99国产精品一区二区三区| 日日爽夜夜爽网站| 两个人看的免费小视频| 欧美丝袜亚洲另类 | 丰满饥渴人妻一区二区三| 在线观看免费视频日本深夜| 黄色毛片三级朝国网站| 国产精品一区二区在线不卡| 亚洲第一欧美日韩一区二区三区| 午夜精品久久久久久毛片777| 国产av又大| 99riav亚洲国产免费| 一个人免费在线观看的高清视频| 亚洲av美国av| 亚洲视频免费观看视频| 99国产极品粉嫩在线观看| 亚洲av成人不卡在线观看播放网| 国产视频一区二区在线看| 国产精品99久久99久久久不卡| 精品国产乱子伦一区二区三区| svipshipincom国产片| 一本综合久久免费| 精品高清国产在线一区| 黑人欧美特级aaaaaa片| 国产熟女午夜一区二区三区| 亚洲一码二码三码区别大吗| 一级片免费观看大全| 欧美日韩黄片免| 水蜜桃什么品种好| 中出人妻视频一区二区| 精品乱码久久久久久99久播| 国产淫语在线视频| 在线视频色国产色| 丰满饥渴人妻一区二区三| 日日爽夜夜爽网站| 母亲3免费完整高清在线观看| 男女床上黄色一级片免费看| 午夜福利乱码中文字幕| 动漫黄色视频在线观看| 老熟妇乱子伦视频在线观看| 在线十欧美十亚洲十日本专区| 精品一区二区三区av网在线观看| 国产成人av激情在线播放| av福利片在线| 性色av乱码一区二区三区2| 午夜福利免费观看在线| 欧美日韩亚洲综合一区二区三区_| 精品国产一区二区三区久久久樱花| 免费女性裸体啪啪无遮挡网站| 久久久水蜜桃国产精品网| 亚洲熟妇中文字幕五十中出 | 国产色视频综合| 母亲3免费完整高清在线观看| 久久久久国内视频| 男人操女人黄网站| 国产精品 国内视频| 国产成人精品无人区| 超色免费av| 亚洲人成电影观看| 大型av网站在线播放| 女性生殖器流出的白浆| 国产成人精品在线电影| 中文字幕另类日韩欧美亚洲嫩草| 国产一区二区三区综合在线观看| 午夜91福利影院| 国产区一区二久久| 一二三四社区在线视频社区8| 他把我摸到了高潮在线观看| 精品一区二区三卡| 80岁老熟妇乱子伦牲交| 身体一侧抽搐| av免费在线观看网站| 女性被躁到高潮视频| 最新美女视频免费是黄的| 在线观看免费日韩欧美大片| 在线观看免费日韩欧美大片| 自线自在国产av| 韩国av一区二区三区四区| 欧美性长视频在线观看| 国产精品国产高清国产av | 亚洲国产精品一区二区三区在线| 国产黄色免费在线视频| 日本一区二区免费在线视频| 日本vs欧美在线观看视频| 亚洲熟女精品中文字幕| av福利片在线| 久久这里只有精品19| tocl精华| 国产成人精品无人区| 午夜亚洲福利在线播放| 国产精品久久久久久人妻精品电影| 国产欧美日韩精品亚洲av| 国产成人精品无人区| 久久亚洲精品不卡| 国产免费现黄频在线看| 一区二区日韩欧美中文字幕| 99国产极品粉嫩在线观看| 欧美精品啪啪一区二区三区| a级毛片黄视频| 亚洲一区二区三区不卡视频| 999久久久国产精品视频| 欧美 日韩 精品 国产| 波多野结衣av一区二区av| 91av网站免费观看| 日韩有码中文字幕| 国产aⅴ精品一区二区三区波| 国产人伦9x9x在线观看| a在线观看视频网站| 日本a在线网址| 少妇的丰满在线观看| 亚洲av片天天在线观看| 中文亚洲av片在线观看爽 | 99香蕉大伊视频| 久久热在线av| 婷婷精品国产亚洲av在线 | 脱女人内裤的视频| 丰满饥渴人妻一区二区三| 99在线人妻在线中文字幕 | 在线十欧美十亚洲十日本专区| 亚洲国产看品久久| 精品福利永久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 制服人妻中文乱码| 在线观看www视频免费| 一进一出抽搐gif免费好疼 | 99久久99久久久精品蜜桃| 妹子高潮喷水视频| 亚洲男人天堂网一区| 国产黄色免费在线视频| 18在线观看网站| 国产激情久久老熟女| 在线观看免费视频日本深夜| 老司机影院毛片| 精品无人区乱码1区二区| 男女高潮啪啪啪动态图| 侵犯人妻中文字幕一二三四区| 两个人免费观看高清视频| 亚洲人成电影观看| 国产精品电影一区二区三区 | 老汉色av国产亚洲站长工具| 成人黄色视频免费在线看| 国产亚洲精品一区二区www | 超色免费av| 国产精品欧美亚洲77777| 精品少妇一区二区三区视频日本电影| 欧美黄色片欧美黄色片| 日韩有码中文字幕| 丁香六月欧美| av天堂在线播放| 一个人免费在线观看的高清视频| 国产av又大| 天天躁日日躁夜夜躁夜夜| 成年动漫av网址| 色精品久久人妻99蜜桃| 怎么达到女性高潮| 欧美av亚洲av综合av国产av| videosex国产| 久9热在线精品视频| 欧美最黄视频在线播放免费 | 夜夜夜夜夜久久久久| 国产aⅴ精品一区二区三区波| 9热在线视频观看99| tube8黄色片| 麻豆av在线久日| 亚洲av片天天在线观看| 波多野结衣av一区二区av| 18禁美女被吸乳视频| 法律面前人人平等表现在哪些方面| 一级黄色大片毛片| 国产一区二区激情短视频| 久久精品国产99精品国产亚洲性色 | 18在线观看网站| 欧美日韩一级在线毛片| 精品国产乱子伦一区二区三区| 纯流量卡能插随身wifi吗| 亚洲性夜色夜夜综合| 多毛熟女@视频| 伊人久久大香线蕉亚洲五| 在线av久久热| 亚洲一区中文字幕在线| 久久中文看片网| 老司机午夜十八禁免费视频| 国产精品99久久99久久久不卡| 国产三级黄色录像| 亚洲第一欧美日韩一区二区三区| 变态另类成人亚洲欧美熟女 | 国产男女内射视频| 热re99久久精品国产66热6| 精品国产乱码久久久久久男人| 搡老乐熟女国产| 国产不卡一卡二| 18禁黄网站禁片午夜丰满| 久久精品亚洲熟妇少妇任你| 一进一出好大好爽视频| 人人妻人人澡人人看| 国产精品一区二区精品视频观看| 国产一区二区三区综合在线观看| 亚洲国产中文字幕在线视频| 老司机靠b影院| 久久久久久久精品吃奶| 熟女少妇亚洲综合色aaa.| 水蜜桃什么品种好| 十八禁网站免费在线| 日本撒尿小便嘘嘘汇集6| 久久精品亚洲熟妇少妇任你| 99re6热这里在线精品视频| 成人黄色视频免费在线看| 校园春色视频在线观看| 欧美+亚洲+日韩+国产| 香蕉丝袜av| av一本久久久久| 亚洲成人免费av在线播放| 婷婷丁香在线五月| 亚洲 欧美一区二区三区| 亚洲国产欧美日韩在线播放| 90打野战视频偷拍视频| 在线播放国产精品三级| 美女视频免费永久观看网站| 欧美日韩亚洲综合一区二区三区_| 久久ye,这里只有精品| 国产成人欧美| 91成年电影在线观看| 人人澡人人妻人| 亚洲全国av大片| 亚洲九九香蕉| svipshipincom国产片| 午夜免费成人在线视频| 久久中文字幕人妻熟女| 婷婷丁香在线五月| 亚洲专区国产一区二区| eeuss影院久久| 久久香蕉国产精品| 国产成人av教育| 午夜精品一区二区三区免费看| 日韩人妻高清精品专区| 欧美一区二区国产精品久久精品| 国产精华一区二区三区| 精品久久久久久久久久免费视频| 国产高清视频在线播放一区| 国产高清有码在线观看视频| 色综合婷婷激情| 国产精品av视频在线免费观看| 一个人观看的视频www高清免费观看| 久久久久精品国产欧美久久久| 日本免费一区二区三区高清不卡| 国内毛片毛片毛片毛片毛片| 啦啦啦韩国在线观看视频| 亚洲真实伦在线观看| 亚洲国产欧美人成| 少妇的丰满在线观看| 免费无遮挡裸体视频| 国产国拍精品亚洲av在线观看 | 国模一区二区三区四区视频| 少妇的逼水好多| 国产真人三级小视频在线观看| 老鸭窝网址在线观看| 又爽又黄无遮挡网站| 亚洲成人免费电影在线观看| 俄罗斯特黄特色一大片| 亚洲在线观看片| 伊人久久大香线蕉亚洲五| 日日干狠狠操夜夜爽| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 午夜福利视频1000在线观看| 在线播放国产精品三级| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲| 国产精品电影一区二区三区| 久久婷婷人人爽人人干人人爱| 黄色片一级片一级黄色片| 国产精品1区2区在线观看.| 露出奶头的视频| 亚洲欧美精品综合久久99| 免费看a级黄色片| 亚洲精品久久国产高清桃花| 精品福利观看| 九色成人免费人妻av| 欧美日韩亚洲国产一区二区在线观看| av在线蜜桃| 精品久久久久久久毛片微露脸| 色尼玛亚洲综合影院| 国产三级中文精品| 免费搜索国产男女视频| 亚洲avbb在线观看| 久久久久久九九精品二区国产| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆 | 男女午夜视频在线观看| 男女之事视频高清在线观看| 婷婷丁香在线五月| 嫩草影视91久久| 乱人视频在线观看| 国产在线精品亚洲第一网站| 亚洲自拍偷在线| 国产主播在线观看一区二区| 免费观看的影片在线观看| 国产精品1区2区在线观看.| 在线观看美女被高潮喷水网站 | 一边摸一边抽搐一进一小说| 伊人久久精品亚洲午夜| 久久久国产精品麻豆| 国产激情欧美一区二区| 亚洲av美国av| 一本精品99久久精品77| 国产精品久久久久久精品电影| 99久久综合精品五月天人人| 91av网一区二区| 性欧美人与动物交配| 日韩有码中文字幕| 老汉色∧v一级毛片| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 哪里可以看免费的av片| 国产成人a区在线观看| 在线观看一区二区三区| 听说在线观看完整版免费高清| www.熟女人妻精品国产| 少妇熟女aⅴ在线视频| 香蕉丝袜av| 国产成人a区在线观看| 国产成人系列免费观看| 亚洲欧美日韩高清专用| 又黄又粗又硬又大视频| 亚洲av电影在线进入| 国内精品久久久久精免费| 97超视频在线观看视频| 国产精品亚洲av一区麻豆| 99久久久亚洲精品蜜臀av| 男人和女人高潮做爰伦理| 一个人看的www免费观看视频| 日本a在线网址| 可以在线观看毛片的网站| 十八禁网站免费在线| 少妇的丰满在线观看| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 一区二区三区国产精品乱码| 哪里可以看免费的av片| 一本精品99久久精品77| 91字幕亚洲| 免费看十八禁软件| 国产精品乱码一区二三区的特点| 亚洲精品粉嫩美女一区| 两个人看的免费小视频| 在线视频色国产色| 欧美一级毛片孕妇| 一区二区三区高清视频在线| 给我免费播放毛片高清在线观看| 欧美不卡视频在线免费观看| 91在线精品国自产拍蜜月 | 国产av麻豆久久久久久久| 午夜a级毛片| 久久久国产成人精品二区| 麻豆成人av在线观看| 九色成人免费人妻av| 中文字幕人妻熟人妻熟丝袜美 | 天天躁日日操中文字幕| 国产精品电影一区二区三区| 国产黄a三级三级三级人| 中文字幕人妻熟人妻熟丝袜美 | 欧美日韩一级在线毛片| 一区二区三区高清视频在线| a在线观看视频网站| 成人永久免费在线观看视频| 天堂动漫精品| 最新美女视频免费是黄的| 美女黄网站色视频| 国产单亲对白刺激| 悠悠久久av| 日本撒尿小便嘘嘘汇集6| 神马国产精品三级电影在线观看| 日韩欧美精品免费久久 | 国产成人啪精品午夜网站| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区精品| 日本免费一区二区三区高清不卡| 操出白浆在线播放| 国内精品美女久久久久久| 真人一进一出gif抽搐免费| 在线观看免费视频日本深夜| 午夜福利视频1000在线观看| 变态另类成人亚洲欧美熟女| 免费人成视频x8x8入口观看| 欧美精品啪啪一区二区三区| 日韩av在线大香蕉| 757午夜福利合集在线观看| 丝袜美腿在线中文|