• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancement of MAD/MIR phasing at low resolution and a new procedure for automatic phase extension?

    2019-08-06 02:07:18PuHan韓普YuanXinGu古元新WeiDing丁瑋andHaiFuFan范海福
    Chinese Physics B 2019年7期

    Pu Han(韓普), Yuan-Xin Gu(古元新), Wei Ding(丁瑋),?, and Hai-Fu Fan(范海福),?

    1Key Laboratory of Soft Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physics Science,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: direct methods, multi-wavelength anomalous diffraction (MAD)/multiple isomorphous replacement(MIR)phasing,phase extension,low-resolution

    1. Introduction

    Experimental phasing methods are the major choices for de novo protein structure determinations in x-ray crystallography. In these methods, phasing process starts with finding the substructures in the asymmetric unit of derivative crystals and the initial phases are calculated via different types of techniques, such as single-wavelength anomalous diffraction (SAD), single isomorphous replacement (SIR), multiwavelength anomalous diffraction (MAD), multiple isomorphous replacement (MIR), SIR with anomalous scattering(SIRAS),and MIR with anomalous scattering(MIRAS).[1]As the phase ambiguity is intrinsic in SAD/SIR, the MAD/MIR phasing is more powerful for combining the bimodal phase distribution of several SAD/SIR data sets to give the unique phase indication for each individual reflection. Programs such as SHARP, SOLVE, and MLPHARE are all available to obtain the phase information via conventional MAD/MIR methods.[2-4]In some challenging cases of membrane proteins or large complexes, the intrinsic disorder or flexibility often results in low resolution[5](say about 6.00 ?A lower) in the heavy-atom derivative data, making it difficult for crystallographers to obtain the initial phases. Even under this condition,MAD and MIR are still reliable and can provide useful information for the structure determination.

    However,MAD and MIR have their own limitations: for MIR,the isomorphism between the native and the derivatives is not always perfect;for MAD,the severe radiation damages may lead to weak anomalous signals in the individual SAD data sets. These problems can be even serious when dealing with cases from poorly diffracted crystals,making the phases interpretation ambiguous in high-resolution and the goodquality phases only available at lower resolution.[6]Therefore, we propose here an iterative direct-methods MAD/MIR phasing procedure in order to eliminate the effects of these problems. It integrates the iterative direct-methods SAD/SIR phasing[7,8]with the conventional MAD/MIR methods and testing results with three cases at low resolution have shown this hybrid-procedure is better than using single method alone.

    During our test,we find that the resulting low-resolution initial phases obtained by the hybrid procedure mentioned above are far from sufficient to generate an interpretable electron density map from either manual or automated model building. Phase extension is therefore becoming an essential part in the following process. In addition, prior knowledge of the structure such as the non-crystallographic symmetry(NCS),homologous template,or multi-crystal information is often needed in difficult phase extension cases.[9,10]And when the prior structure knowledge is unavailable, the automated phase extension would become a grand challenge.

    There are many different methods for conducting the phase extension procedure, such as the solvent-flattening,[11]histogram matching,[12]the maximum-entropy method,[13]and the maximum likelihood density modification.[14]In practice,all the methods above were incorporated with the solventflattening technique within a dual-space framework to improve their own efficiency. We present here an iterative directmethods phase extension procedure by modifying the iterative direct-methods-aided partial-model extension proposed in 2007.[15]This method differs from all the above in that it uses direct methods to provide phase constraint in the reciprocal space and, in addition, it is independent of prior structure knowledge. Two testing cases with starting phases at 6.90 ?A and 6.80 ?A have been successfully extended to native data at resolutions of 2.80 ?A and 3.00 ?A, respectively, and the final resulting models agree well with the previous entry structures in Protein Data Bank(PDB;http://www.pdb.org/).

    2. Methods

    The method consists of two stages, the first stage is to obtain the low-resolution initial phases via a direct-methods MAD/MIR phasing procedure, while the second stage is to extend the low-resolution phases to higher resolution automatically. The details of these two stages will be described in the following sections.

    2.1. Stage 1: iterative direct-methods MAD/MIR phasing procedure

    This procedure is featured as follows.

    (i) Phases are first calculated by the conventional MAD/MIR methods;

    (ii) MAD/MIR phases from step (i) are cut off to low resolution and used as the starting “known phases” for the direct-methods SAD/SIR phasing. For details of direct methods SAD/SIR phasing,please refer to Refs.[7]and[8].

    (iii) Among the MAD/MIR derivative datasets, one set with the strongest anomalous signal or the highest resolution is selected to conduct the iterative direct-methods SAD/SIR phasing based on the starting known phases from step(ii).

    (iv)Each cycle of the procedures consists of three parts:direct method phasing,density modification,and model building/refinement. Starting from the second cycle onwards,models from last cycle will be fed back to the current cycle. The known phases will be“fixed”in each cycle until the percentage of residues built has reached certain standard that users define(say about 80%).

    In practice, SAD/SIR phase estimations are not as accurate as MAD/MIR because of the intrinsic phase ambiguity, while the direct-methods proposed by Fan and Gu[16]in 1985 was designed to overcome this problem by changing the 0-2π phase problem into making a choice between the sign of plus and minus. In addition, with the help of those highquality and low-resolution known phases as starting point,the P+formula deduced from this theory[16]will give a more accurate modulation to the bimodal phase probability distribution, thus strengthening the phasing power. The “fixed” in step (iv) means the known phases remain unchanged in the direct-methods phase calculation, and these phases are used to calculate the value of P+instead of setting it to a constant value of 0.5. Please refer to Ref.[6]for more details.

    So as it is, the procedure has achieved two things at one stock. The starting known phases from the MAD/MIR procedure at low resolution can greatly enhance the phasing power of direct methods,while the low-resolution MAD/MIR phases can be extended to higher resolution with the aid of SAD/SIR iteration. What is more, by choosing only one set of derivative data with strongest anomalous signal or highest resolution, the phasing result would be less affected by the imperfect isomorphism or the weak anomalous signals. The highresolution derivative data will not be limited by other lowresolution datasets and can be used to its full potential.

    The flowchart of the iterative direct-methods MAD/MIR phasing procedure is presented in Fig.1. Programs in charge of this procedure are OASIS for direct method phasing,DM[17]for density modification, and AutoBuild[18]for the model building and refinement.

    Fig.1. Flowchart of the iterative direct-methods MAD/MIR phasing.

    2.2. Stage 2: iterative direct-methods phase extension

    This procedure was originally proposed in 2007 as a direct-methods-aided partial-model extension without the needs of SAD/SIR information. By redefining the variables in the P+ probability formula proposed by Fan and Gu,[16]the phase extension process of finding a value in the range of 0-2π for each unknown phase is reduced into that of just making a choice between two possible values.It is more like a“phaseflipping”process,where the phases that differ much from the correct value will undergo a large shift, while the phases that are close to the correct value will remain unchanged.For more details,please refer to Ref.[15].

    Fig.2. Flowchart of the iterative direct-methods phase extension.

    Usually, the direct-methods-aided partial-model extension starts with an incomplete model. However, the density map calculated at low resolution from stage 1 may not be sufficient enough to build a reliable structural model,so we first use the initial phases to build up a model against the structure amplitudes with high-resolution. Then the resulting initial model will be the starting information for the direct methods phasing in OASIS.At the same time,the initial phases can also be used as“known phases”that remain fixed in the iteration until the resultant model has grown to the standard defined by users(say about 80%of the whole structure).

    The flowchart of the iterative direct-methods phase extension procedure is displayed in Fig. 2. Programs involved in this procedure are AutoBuild for the initial model building,OASIS for the direct method phasing,DM for the density modification,and AutoBuild and Buccaneer[19]for the model building and refinement.

    3. Testing and results

    All the tests stated in this section are conducted in the newly released IPCAS 2.0 pipeline. The programs and their usage in the tests are listed in Table 1. The details of the testing processes are described as follows.

    Table 1. Programs used in the test.

    3.1. Testing data sets

    Three sets of protein data are used to test the methods,including the MAD data of the human K2P TRAAK channel[20]the MAD data of the human BK channel Ca2+gating apparatus(PDB

    Table 2. Crystallographic statistics of testing cases.

    ID:3MT5),[21]and the MIR data of the R-phycoerythrin(PDB ID:1LIA).[22]In addition,the derivative data sets of 3MT5 and 1LIA are manually truncated to 6.80 ?A(original resolution: 3.30 ?A)and 6.90 ?A(original resolution: 3.00 ?A).For all the three cases above,we use the previously deposited model in the PDB as the reference model in our test. Detailed data statistics are listed in Table 2.

    3.2. MAD and MIR phasing

    The human K2P TRAAK channel(3UM7)is a membrane protein.In the original work,the initial phases were calculated in SHARP via MIRAS method and the final model was built by iterative manual building.

    During the test,the conventional MAD phases and heavyatoms are firstly calculated by SHARP,then the MAD phases are truncated to 8.00 ?A and regarded as the “known phases”.The diffraction data from the“peak”wavelength at 4.17 ?A resolution along with the known phases are used to conduct the direct-methods MAD phasing for 20 cycles of iteration (IPCAS iteration control: OASIS+DM+AutoBuild). The resulting electron density matches well with the reference model(see Fig.3(a))and the backbone structure auto traced from the density map covers 51.2%of the total residues.

    The human BK channel Ca2+gating apparatus is also a membrane protein. In the original work, initial phases were calculated by MAD phasing and the model was generated and extended against native data by iterative manual building.

    In the testing case,the heavy-atoms and MAD phases are firstly calculated by SHARP, then the MAD phases are truncated to 8.00 ?A and regarded as the“known phases”.The truncated 6.80 ?A “peak-wavelength” data along with the known phases are used to conduct the iterative direct-methods MAD phasing for 20 cycles of iteration (IPCAS iteration control:OASIS+AutoBuild). Finally, a backbone-structure has been generated with 41.8% of the total residues built from the resulting density map. The map matches reasonably with the reference model(see Fig.3(b)).

    The structure of R-phycoerythrin(Rpe)was originally determined via MIR method with four sets of derivative data and the native data.

    In our test, the heavy-atoms and the conventional MIR phases are firstly calculated by SOLVE.[3]Then the MIR phases are truncated to 8.00 ?A resolution and regarded as the “known phases”. The truncated 6.90 ?A Au-derivative data and the native data along with the initial known phases are used to conduct the iterative direct-methods MIR phasing for 20 cycles of iteration (IPCAS iteration control:OASIS+AutoBuild). 71.2% of the total residues are auto traced by the resulting electron density map which has revealed the essential features of the reference model (see Fig.3(c)).

    For all the three testing cases above, we have compared the final figure-of-merit (FOM)-weighted mean phase error of the conventional MAD/MIR phasing, the iterative directmethods SAD/SIR phasing, and the iterative direct-methods MAD/MIR phasing, respectively. The results of the iterative direct-methods MAD/MIR phasing are evidently better than the other two phasing methods, proving that it could further improve the conventional MAD/MIR phases. Detailed resulting information is listed in Table 3.

    Fig.3. Results of three cases from stage 1: (a)3UM7;(b)3MT5;(c)1LIA.The upper part represents the resulting electron density maps(the orange meshes)contoured at 1.5 σ,and the reference models are shown in gray cartoons. The bottom part shows the resulting models(blue)superimposed with the corresponding reference models(grey). This figure is made by PyMOL.[23]

    Table 3. Results for three testing cases in stage 1.

    3.3. Phase extension

    Although the “sausage-like” electron density maps obtained in stage 1 have revealed some basic characteristics of the structure,the models are lack of accurate side-chain information owing to the low resolution of the diffraction data. In order to obtain more precise structures,the phase extension is conducted.

    In the human K2P TRAAK channel case,we have failed to automatically extend the phase and model to higher resolution owing to the severe anisotropy displayed in the native data which is elliptically truncated and scaled to 3.80×3.30×3.80 ?A.While for the other two cases,automated phase extensions are successfully achieved.

    For the human BK channel Ca2+gating apparatus case,the 6.80 ?A phases from stage 1 are firstly used to build an initial model and refined by PHENIX.AutoBuild against the 3.00 ?A native data. Then the model as well as the native data is used to conduct the direct-method phase extension for 17 cycles of iteration. The final model is nearly completed with Rwork/Rfreereaching 0.25/0.29. The results of cycles 0,4,10,and 17 are listed in Table 4, and the models of cycles 0, 4,and 17 are shown in Fig. 4. The electron density maps are figured by COOT[24]to show the successful phase extension from 6.80 ?A to 3.00 ?A resolution(see Fig.6(a)).As there is no NCS information within the unit cell,the testing result proves that the direct-methods phase extension procedure could be independent of the aid of the prior NCS information in the challenging case.

    Fig. 4. Results of iterative direct-methods phase extension of 3MT5(from 6.80 ?A initial phases to 3.00 ?A structure): (a)model from cycle 0; (b) model from cycle 4; (c) model from cycle 17; (d) the reference model.

    Table 4. Results of low-resolution phase extension for 3MT5 in stage 2.

    The case of 1LIA has a two-fold NCS operator. The 6.90 ?A phases are firstly used to build an initial model and refined by PHENIX.AutoBuild against the 2.80 ?A native data.Then the model as well as the native data is used to conduct the direct-method phase extension for 15 cycles of iteration.The final model is nearly completed with Rwork/Rfreereaching 0.25/0.28. The results of cycles 0, 4, 8, and 15 are listed in Table 5 and the models of cycles 0, 4, and 15 are shown in Fig. 5. The electron density maps from 6.90 ?A to 2.80 ?A resolution are displayed in COOT(see Fig.6(b)).

    We have made a comparison in phase extension between RESOLVE[25]in PHENIX with our direct-methods phase extension procedure. The phases after extension in RESOLVE are then delivered to PHENIX.AutoBuild for model building and refinement, and the building results of the two cases are listed in Tables 4 and 5, respectively. We can see that RESOLVE has failed in extending phases good enough for automatic model building while the direct-methods phase extension has achieved.

    Table 5. Results of low-resolution phase extension for 1LIA in stage 2.

    Fig.6. Electron density maps before(left column)and after(right column)the iterative direct-methods phase extension: (a)6.80 ?A map extends to 3.00 ?A map for 3MT5;(b)6.90 ?A map extends to 2.80 ?A map for 1LIA.This figure is made in COOT.

    4. Conclusion and perspectives

    The iterative direct-methods MAD/MIR phasing procedure is proved to be reliable to improve the phase quality calculated from the conventional MAD/MIR methods at low resolution. The iterative direct-methods phase extension procedure is capable of extending phases automatically in two specific cases(case from 6.90 ?A to 2.80 ?A and case from 6.80 ?A to 3.00 ?A), both resulting in nearly completed models. The techniques proposed in this paper are useful and reliable when dealing with MAD/MIR data with derivative crystals diffracting to much lower resolution and native crystal diffracting to high resolution.

    Furthermore, low-resolution phases from other sources such as molecular replacement(MR)template,cryoEM map,or even nuclear magnetic resonance (NMR) data can be possibly extended to high resolution by using the procedure described in this article. In addition,as the success of the directmethods phase extension depends on the quality of the initial phases and the resolution of the high-resolution data, quantitative analysis is needed to investigate how these factors influence the final results. By accomplishing this, more applications in protein crystallography will be discovered via this low-resolution phase extension tool.

    Acknowledgment

    The authors would like to thank Professor D.C.Liang for the data courtesy of 1LIA.

    亚洲av电影在线进入| 色综合婷婷激情| 久久久久久久久久成人| 国内精品一区二区在线观看| 在线观看av片永久免费下载| 国产极品精品免费视频能看的| 在线天堂最新版资源| 免费在线观看影片大全网站| 1000部很黄的大片| 成年女人看的毛片在线观看| 999久久久精品免费观看国产| 亚洲人成网站在线播放欧美日韩| 日本成人三级电影网站| 国产在视频线在精品| 女生性感内裤真人,穿戴方法视频| 色播亚洲综合网| 精品无人区乱码1区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲午夜理论影院| 国内少妇人妻偷人精品xxx网站| 国产欧美日韩一区二区三| 嫩草影院新地址| 亚洲欧美激情综合另类| 丁香六月欧美| 又粗又爽又猛毛片免费看| 欧美精品国产亚洲| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久久久久| 成人美女网站在线观看视频| 99久久精品一区二区三区| 亚洲中文字幕日韩| АⅤ资源中文在线天堂| av女优亚洲男人天堂| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影| 美女免费视频网站| 欧美性感艳星| 男人的好看免费观看在线视频| 高清毛片免费观看视频网站| 麻豆久久精品国产亚洲av| 亚洲欧美日韩无卡精品| 亚洲自拍偷在线| 国产精品一及| 免费大片18禁| 日本一二三区视频观看| 成年免费大片在线观看| av黄色大香蕉| 亚洲在线自拍视频| 国内少妇人妻偷人精品xxx网站| 一二三四社区在线视频社区8| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添小说| 一区二区三区高清视频在线| 免费高清视频大片| 亚洲人成伊人成综合网2020| 在线十欧美十亚洲十日本专区| 亚洲成人精品中文字幕电影| 亚洲av熟女| 亚洲av电影不卡..在线观看| 熟女电影av网| 九色成人免费人妻av| 国产淫片久久久久久久久 | 欧美高清成人免费视频www| 久久热精品热| 亚洲国产欧美人成| 久99久视频精品免费| 国产aⅴ精品一区二区三区波| 欧美最新免费一区二区三区 | 成人鲁丝片一二三区免费| 国产精品亚洲美女久久久| 午夜福利18| 俄罗斯特黄特色一大片| 最新在线观看一区二区三区| 免费无遮挡裸体视频| 最新中文字幕久久久久| 日本一二三区视频观看| 日韩欧美在线乱码| 日本五十路高清| 俄罗斯特黄特色一大片| 久久精品国产99精品国产亚洲性色| 成人永久免费在线观看视频| 国产精品av视频在线免费观看| 啪啪无遮挡十八禁网站| 国产综合懂色| 一进一出抽搐gif免费好疼| 亚洲精品粉嫩美女一区| 日本黄色片子视频| h日本视频在线播放| 一区福利在线观看| 老鸭窝网址在线观看| 简卡轻食公司| 热99re8久久精品国产| 国产真实乱freesex| 亚洲成av人片免费观看| 日韩 亚洲 欧美在线| 欧美中文日本在线观看视频| 国产在视频线在精品| 怎么达到女性高潮| 亚洲,欧美,日韩| 亚洲中文字幕日韩| 麻豆久久精品国产亚洲av| 日韩成人在线观看一区二区三区| 3wmmmm亚洲av在线观看| 久久久精品欧美日韩精品| 国产亚洲精品久久久com| 一级av片app| 在线十欧美十亚洲十日本专区| 精品久久久久久久久亚洲 | 99久国产av精品| 成年版毛片免费区| 亚洲18禁久久av| 简卡轻食公司| 免费人成在线观看视频色| 国产伦精品一区二区三区四那| 国产欧美日韩精品亚洲av| 丰满人妻一区二区三区视频av| 亚洲熟妇熟女久久| 露出奶头的视频| 亚洲精品影视一区二区三区av| 国产精品美女特级片免费视频播放器| 亚洲av成人精品一区久久| 国产亚洲精品综合一区在线观看| 搡老熟女国产l中国老女人| 精品国产亚洲在线| 久久精品夜夜夜夜夜久久蜜豆| 国产成年人精品一区二区| 欧美性感艳星| 俺也久久电影网| 亚洲av免费高清在线观看| 热99re8久久精品国产| 国产色爽女视频免费观看| 我的老师免费观看完整版| 很黄的视频免费| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 日本黄色视频三级网站网址| 国产精品自产拍在线观看55亚洲| 亚洲成a人片在线一区二区| 国产精品乱码一区二三区的特点| 深夜精品福利| 首页视频小说图片口味搜索| 黄色日韩在线| 国产精品日韩av在线免费观看| xxxwww97欧美| 在线天堂最新版资源| 国产一区二区在线av高清观看| 亚洲欧美日韩高清专用| 亚洲va日本ⅴa欧美va伊人久久| 久久精品久久久久久噜噜老黄 | 久久久久国内视频| 免费av观看视频| 搡老岳熟女国产| 免费搜索国产男女视频| 欧美潮喷喷水| 精品久久久久久久久亚洲 | 国产在视频线在精品| 全区人妻精品视频| 长腿黑丝高跟| 成熟少妇高潮喷水视频| 国产高清视频在线播放一区| 亚洲aⅴ乱码一区二区在线播放| 高清在线国产一区| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 如何舔出高潮| 亚洲 国产 在线| 午夜亚洲福利在线播放| 精品久久久久久久久久免费视频| 国产三级在线视频| 久久久久国内视频| 国产精品不卡视频一区二区 | 中文字幕久久专区| 久久国产乱子免费精品| 欧美色视频一区免费| 国产亚洲精品av在线| 少妇丰满av| 一本久久中文字幕| 看黄色毛片网站| 亚洲自拍偷在线| 嫩草影院入口| 国产精品人妻久久久久久| 午夜福利欧美成人| 18禁黄网站禁片午夜丰满| 日本熟妇午夜| 欧美一区二区国产精品久久精品| 亚洲第一电影网av| 日韩免费av在线播放| 嫩草影院新地址| 男女那种视频在线观看| 婷婷色综合大香蕉| 国产成人aa在线观看| 欧美绝顶高潮抽搐喷水| 亚洲熟妇熟女久久| 直男gayav资源| 好男人电影高清在线观看| 日本免费a在线| 又爽又黄a免费视频| 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 精品一区二区三区视频在线| netflix在线观看网站| 亚洲精品在线观看二区| or卡值多少钱| 黄色丝袜av网址大全| 亚洲 国产 在线| 亚洲欧美日韩卡通动漫| 久久久久久久久中文| 少妇丰满av| 久久久国产成人免费| 色5月婷婷丁香| 国产伦精品一区二区三区视频9| 麻豆国产av国片精品| 久久精品国产亚洲av涩爱 | 欧美最黄视频在线播放免费| 午夜a级毛片| 亚洲av免费高清在线观看| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 日本撒尿小便嘘嘘汇集6| 亚洲av二区三区四区| 国产av不卡久久| 欧美成人免费av一区二区三区| 三级国产精品欧美在线观看| 欧美成人a在线观看| 少妇的逼水好多| 3wmmmm亚洲av在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲经典国产精华液单 | 伊人久久精品亚洲午夜| 丰满乱子伦码专区| 亚洲人成网站高清观看| 少妇丰满av| 熟女人妻精品中文字幕| 国产亚洲精品久久久久久毛片| 噜噜噜噜噜久久久久久91| 直男gayav资源| 国产三级中文精品| 精品欧美国产一区二区三| 一本综合久久免费| 国产亚洲欧美在线一区二区| 亚洲人成网站高清观看| 美女免费视频网站| 色视频www国产| 一区二区三区激情视频| 91在线精品国自产拍蜜月| 日韩大尺度精品在线看网址| 热99在线观看视频| 国产精品亚洲av一区麻豆| 身体一侧抽搐| 嫩草影院新地址| 国产探花在线观看一区二区| 久久久成人免费电影| 国内精品久久久久久久电影| 两个人的视频大全免费| 国产精品久久久久久人妻精品电影| 看免费av毛片| 我的女老师完整版在线观看| 午夜福利成人在线免费观看| 国产av在哪里看| 日韩欧美精品免费久久 | 啪啪无遮挡十八禁网站| 99国产精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 欧美高清性xxxxhd video| 国内少妇人妻偷人精品xxx网站| 亚洲精华国产精华精| 国产成+人综合+亚洲专区| 亚洲自偷自拍三级| 又爽又黄a免费视频| 亚洲精品日韩av片在线观看| 国产中年淑女户外野战色| av天堂中文字幕网| 岛国在线免费视频观看| 国产熟女xx| 欧美午夜高清在线| 一卡2卡三卡四卡精品乱码亚洲| 好男人电影高清在线观看| 在线观看午夜福利视频| 少妇高潮的动态图| 99国产综合亚洲精品| 成人美女网站在线观看视频| 亚洲激情在线av| av视频在线观看入口| 18+在线观看网站| 国产成年人精品一区二区| 亚洲精品456在线播放app | 综合色av麻豆| 怎么达到女性高潮| 亚洲国产欧洲综合997久久,| 一本精品99久久精品77| 草草在线视频免费看| 成年免费大片在线观看| 欧美激情久久久久久爽电影| 国产免费av片在线观看野外av| 99久久精品国产亚洲精品| 亚洲第一区二区三区不卡| 一夜夜www| 丁香六月欧美| 欧美黑人欧美精品刺激| 亚洲精品乱码久久久v下载方式| 2021天堂中文幕一二区在线观| 在线观看午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| or卡值多少钱| a级一级毛片免费在线观看| www.色视频.com| 日本黄色片子视频| 久久人人精品亚洲av| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 日韩欧美免费精品| 日日摸夜夜添夜夜添av毛片 | 男人和女人高潮做爰伦理| 成人高潮视频无遮挡免费网站| a级毛片a级免费在线| 亚洲人成网站高清观看| 国产精品久久久久久精品电影| 97超级碰碰碰精品色视频在线观看| 悠悠久久av| 99riav亚洲国产免费| 国产精品一区二区三区四区免费观看 | 欧美一级a爱片免费观看看| 男人舔女人下体高潮全视频| 如何舔出高潮| 中文字幕人成人乱码亚洲影| 如何舔出高潮| 精华霜和精华液先用哪个| 无人区码免费观看不卡| 亚洲精品在线美女| 日韩av在线大香蕉| 国产伦在线观看视频一区| 国产成人福利小说| 国产探花在线观看一区二区| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久免费视频| 香蕉av资源在线| 精品99又大又爽又粗少妇毛片 | 午夜福利在线观看吧| 国产熟女xx| 宅男免费午夜| 国产又黄又爽又无遮挡在线| 草草在线视频免费看| 中文字幕免费在线视频6| 精品一区二区三区人妻视频| 久久久久国内视频| 国产老妇女一区| 日韩av在线大香蕉| av福利片在线观看| 性色av乱码一区二区三区2| 免费av观看视频| 久久久久久国产a免费观看| 成人一区二区视频在线观看| 国产精品久久久久久精品电影| 欧美另类亚洲清纯唯美| avwww免费| 91麻豆av在线| avwww免费| 极品教师在线视频| 欧美在线黄色| 首页视频小说图片口味搜索| 精品久久久久久,| 夜夜夜夜夜久久久久| 国产精品久久久久久亚洲av鲁大| 日韩 亚洲 欧美在线| 国产高潮美女av| 欧美色视频一区免费| 三级国产精品欧美在线观看| av女优亚洲男人天堂| 国产精品一区二区性色av| 久久久久国内视频| 精品不卡国产一区二区三区| 国产高清有码在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 超碰av人人做人人爽久久| 99精品在免费线老司机午夜| 亚洲国产欧美人成| 麻豆一二三区av精品| 九色成人免费人妻av| 可以在线观看毛片的网站| 91麻豆精品激情在线观看国产| 免费黄网站久久成人精品 | 日本一本二区三区精品| 97超视频在线观看视频| 亚洲美女搞黄在线观看 | 国产精品98久久久久久宅男小说| 精品久久久久久久末码| 国产精品亚洲一级av第二区| 真人一进一出gif抽搐免费| 精品国产亚洲在线| 久久久色成人| 日韩精品青青久久久久久| 亚洲国产色片| 神马国产精品三级电影在线观看| 一级黄片播放器| 神马国产精品三级电影在线观看| 日本黄色片子视频| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| 香蕉av资源在线| 老女人水多毛片| 亚州av有码| 天堂网av新在线| 国产欧美日韩精品亚洲av| 免费观看精品视频网站| 露出奶头的视频| 亚洲午夜理论影院| 深爱激情五月婷婷| 亚洲色图av天堂| 色精品久久人妻99蜜桃| 日本黄大片高清| 亚洲成av人片免费观看| 老熟妇仑乱视频hdxx| 午夜激情福利司机影院| 久久国产乱子伦精品免费另类| 精品日产1卡2卡| 国内揄拍国产精品人妻在线| 中文字幕人妻熟人妻熟丝袜美| 97超视频在线观看视频| 可以在线观看毛片的网站| 国产一区二区亚洲精品在线观看| 久久久久免费精品人妻一区二区| 少妇裸体淫交视频免费看高清| 欧美激情久久久久久爽电影| 97热精品久久久久久| 国产视频一区二区在线看| 亚洲成av人片免费观看| 亚洲专区中文字幕在线| 日本黄色片子视频| 男女做爰动态图高潮gif福利片| 亚洲美女搞黄在线观看 | 一级a爱片免费观看的视频| 亚洲精品456在线播放app | 色精品久久人妻99蜜桃| 欧美三级亚洲精品| 国产麻豆成人av免费视频| 亚洲精品在线观看二区| 中文字幕免费在线视频6| 男人舔女人下体高潮全视频| 一本精品99久久精品77| 成年女人永久免费观看视频| 亚洲午夜理论影院| 免费搜索国产男女视频| 一区二区三区激情视频| 欧美日韩福利视频一区二区| 日本与韩国留学比较| 成年女人毛片免费观看观看9| 搡女人真爽免费视频火全软件 | 毛片一级片免费看久久久久 | 大型黄色视频在线免费观看| 国产69精品久久久久777片| 精品人妻视频免费看| 亚洲精品影视一区二区三区av| 他把我摸到了高潮在线观看| 高清在线国产一区| 欧美精品国产亚洲| 国产精品不卡视频一区二区 | 熟女电影av网| 精品熟女少妇八av免费久了| 午夜影院日韩av| 欧美成人免费av一区二区三区| 国产欧美日韩一区二区三| 亚洲欧美日韩高清在线视频| 露出奶头的视频| 一本综合久久免费| 日本 欧美在线| 国产一级毛片七仙女欲春2| 国产精品嫩草影院av在线观看 | 国产午夜精品久久久久久一区二区三区 | 丁香欧美五月| 欧美国产日韩亚洲一区| 日本精品一区二区三区蜜桃| 麻豆一二三区av精品| 亚洲av第一区精品v没综合| 亚洲av五月六月丁香网| 十八禁人妻一区二区| 成人av一区二区三区在线看| 久久久国产成人精品二区| 欧美在线黄色| 日韩欧美国产在线观看| 国产成人福利小说| 少妇熟女aⅴ在线视频| 一边摸一边抽搐一进一小说| 精品一区二区三区人妻视频| 国产视频内射| 国产免费av片在线观看野外av| 久久久精品大字幕| 午夜福利免费观看在线| 亚洲国产精品合色在线| 好男人在线观看高清免费视频| 亚洲 国产 在线| 蜜桃亚洲精品一区二区三区| 国产精品一及| a级一级毛片免费在线观看| 日本免费a在线| 三级男女做爰猛烈吃奶摸视频| 真人一进一出gif抽搐免费| 亚洲精品在线观看二区| 蜜桃久久精品国产亚洲av| 亚洲自偷自拍三级| 搡老熟女国产l中国老女人| 精品久久久久久久末码| 欧美一区二区精品小视频在线| 亚洲欧美激情综合另类| 亚洲片人在线观看| 欧美潮喷喷水| 狠狠狠狠99中文字幕| 亚洲成人免费电影在线观看| 18禁黄网站禁片午夜丰满| 久久精品国产自在天天线| 亚洲人成网站高清观看| av在线天堂中文字幕| 免费av不卡在线播放| av女优亚洲男人天堂| 久久国产乱子伦精品免费另类| 在线播放国产精品三级| 欧美一区二区国产精品久久精品| 欧美激情久久久久久爽电影| 一本一本综合久久| 日韩成人在线观看一区二区三区| 日本一本二区三区精品| 国产一区二区三区在线臀色熟女| 亚洲色图av天堂| 日韩有码中文字幕| 日韩成人在线观看一区二区三区| 乱码一卡2卡4卡精品| 丰满乱子伦码专区| 国语自产精品视频在线第100页| 亚洲成av人片免费观看| 亚洲精品一区av在线观看| 亚洲美女搞黄在线观看 | 国产欧美日韩一区二区三| 丁香六月欧美| 一区二区三区四区激情视频 | 在线免费观看不下载黄p国产 | 免费人成视频x8x8入口观看| 亚洲电影在线观看av| 欧美丝袜亚洲另类 | 亚洲精品久久国产高清桃花| 欧美一区二区精品小视频在线| 国产精品久久久久久久久免 | 久久伊人香网站| 亚洲精品粉嫩美女一区| 黄色一级大片看看| 简卡轻食公司| 草草在线视频免费看| a级一级毛片免费在线观看| 夜夜爽天天搞| 国产免费一级a男人的天堂| 亚洲av不卡在线观看| 一二三四社区在线视频社区8| 亚洲最大成人中文| 亚洲欧美日韩高清专用| 97人妻精品一区二区三区麻豆| 久久久久久久亚洲中文字幕 | 亚洲人成网站在线播放欧美日韩| 亚洲人成伊人成综合网2020| 国产私拍福利视频在线观看| 国产亚洲精品av在线| 在线观看午夜福利视频| 亚洲美女黄片视频| 日本一本二区三区精品| 狠狠狠狠99中文字幕| 国产免费一级a男人的天堂| 人妻久久中文字幕网| 天堂√8在线中文| 黄色配什么色好看| 久久久国产成人免费| eeuss影院久久| a级一级毛片免费在线观看| 男女视频在线观看网站免费| 久久精品人妻少妇| 高清在线国产一区| 超碰av人人做人人爽久久| 亚洲精品在线美女| 国产v大片淫在线免费观看| 国产精品三级大全| h日本视频在线播放| 最后的刺客免费高清国语| 又粗又爽又猛毛片免费看| 欧美国产日韩亚洲一区| 国产精品自产拍在线观看55亚洲| 午夜两性在线视频| 国产中年淑女户外野战色| 国产精品,欧美在线| 一本综合久久免费| 国产淫片久久久久久久久 | 桃色一区二区三区在线观看| 黄色女人牲交| 韩国av一区二区三区四区| 亚洲精品久久国产高清桃花| 国产三级在线视频| 脱女人内裤的视频| 搡老妇女老女人老熟妇| 99久久久亚洲精品蜜臀av| 欧美中文日本在线观看视频| 亚洲精品粉嫩美女一区| 国产精品98久久久久久宅男小说| 99热6这里只有精品| 高清日韩中文字幕在线| 国产熟女xx| 18禁裸乳无遮挡免费网站照片| 人人妻,人人澡人人爽秒播| 乱码一卡2卡4卡精品| 舔av片在线| 亚洲电影在线观看av| 精品99又大又爽又粗少妇毛片 | 一级黄片播放器| 丰满人妻一区二区三区视频av| 伊人久久精品亚洲午夜| 欧美日韩福利视频一区二区| 国产精品一及| 伊人久久精品亚洲午夜| 国产美女午夜福利|