• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Micron-sized diamond particles containing Ge-V and Si-V color centers?

    2019-08-06 02:07:18HangChengZhang章航程ChengKeChen陳成克YingShuangMei梅盈爽XiaoLi李曉MeiYanJiang蔣梅燕andXiaoJunHu胡曉君
    Chinese Physics B 2019年7期
    關(guān)鍵詞:李曉航程

    Hang-Cheng Zhang(章航程), Cheng-Ke Chen(陳成克), Ying-Shuang Mei(梅盈爽),Xiao Li(李曉), Mei-Yan Jiang(蔣梅燕), and Xiao-Jun Hu(胡曉君)

    College of Materials Science and Engineering,Zhejiang University of Technology,Hangzhou 310014,China

    Keywords: diamond,germanium-vacancy,silicon-vacancy,photoluminescence

    1. Introduction

    In the past decades, diamond color centers have caused great interest. The combination of optical active defects with diamond is an ideal solution to many situations, such as high spatial resolution magnetic field sensing, single photon emitter, and biological marker.[1-4]More than 500 color centers in diamond have been discovered, but only about ten of them meet the requirements of ideal single-photon source.[5,6]Nitrogen-vacancy(N-V)is the most available color center,and widely exists in natural and synthetic diamonds.[7]N-V color center has long lifetime of 11-25 ns and a photoluminescence(PL) band from 550 nm to 800 nm.[8]This limits the photonic applications because only 4% of emitted photons concentrate near the zero-photon line (ZPL).[9]Another widely tracked color center is silicon-vacancy (Si-V), which has intensive emission and almost 70%of its emitted photon concentrated near ZPL.[10]The Si-V center life time is nearly 1.2 ns,and the inhomogeneous linewidth could be reduced even to 0.7 nm.[11]Furthermore,the Si-V PL band is proved to be stable in nano-diamond of 2-5 nm.[12,13]The structure of the Si-V center is D3d,making it insensitive to the electrical noise.[14]Due to these excellent properties,the Si-V center shows better potential in quantum information processing.[15-17]

    Recently, the germanium-vacancy (Ge-V) center with ZPL peak position of 602 nm has attracted increasing attention.[18,19]The Ge-V center structure is D3d,so the Ge-V center is insensitive to the electrical noise. Moreover,the Ge-V center shows stronger coupling between emitters and photons than the Si-V center.[5]However,it is difficult to prepare high quality Ge-V center since the covalent radius of germanium(122 pm)is larger than that of silicon(111 pm). Ge usually damages the diamond lattice and produces large stresses,which will seriously degrade the Ge-V performance, such as reducing the count rate and uneven displacement of ZPL.[20]The Ge-V center in diamond has been prepared by using a high temperatures and high pressures (HPHT) method, microwave plasma chemical vapor deposition(MPCVD),and ion implantation. At HPHT conditions,diamond crystals containing Ge-V color centers were synthesized from the Ge-C,[18]C-H-Ge,[21]and Mg-Ge-C[22]systems. In the MPCVD process,growing Ge-doped diamond was achieved by using both solid Ge[24]and germane GeH4gas[23]as the Ge source. Ge-V single photon color center has also been prepared by ion implantation on the surface of the bulk diamond.[24]However,ion implantation obviously damaged the diamond lattice and caused unevenly distributed color centers. It was very difficult to repair the lattice defects caused by Ge ion implantation even through high-temperature annealing.[24]

    In the applications of quantum information processing and biomarkers, diamond usually needs to couple with optical fibers or enter into cells,so small-sized diamond particles are necessary.[25,26]At present, small particles are normally produced by mechanical grinding of large diamond particles and films,but this method will cause metal contamination and structural defects in the diamond crystal,degrading the PL performance of Ge-V color centers in the diamond.

    Here,we proposed to prepare micron-sized diamond particles containing Ge-V centers by using hot filament chemical vapor deposition (HFCVD) on Ge wafer and studied the effects of growth pressure and growth time on the Ge-V PL properties. In order to introduce more Ge atoms to the diamond particles and increase the nucleation density of diamond particles on germanium wafer,we firstly bombarded the Ge wafer with argon ions in physical vapor deposition(PVD).This produced many defects on the Ge wafer,which is beneficial to increase the nucleation density of diamond particles.Also, the Ge atoms of this bombarded wafer can easily be etched into the atmosphere by hydrogen and enter into the diamond lattice in HFCVD.

    2. Experiment methods

    A Ge wafer was used as the substrate and doping source,which was cleaned through ultrasonic vibration in acetone and ethanol for 20 min and then was dried by nitrogen. The surface of the Ge wafer was bombarded by argon ions in PVD.The PVD parameters were selected as follows: Ar gas flow rate of 25 sccm, working pressure of 0.8 Pa, temperature of 400°C,working power of 100 W,bias of-50 V,and time of 30 min. Subsequently, the processed Ge wafer was used as the substrate, which was placed into the chamber of HFCVD to grow diamond particles. The HFCVD parameters were selected as follows: hot filament power of 1.6 kW,the gas mixture composition of CH3COCH3:H2=20 sccm: 200 sccm,deposition time of 75 min, and reaction chamber pressure of 1.5 kPa,2.5 kPa,3.5 kPa,and 4.5 kPa.Diamond particles were prepared under 2.5 kPa for 45 min, 60 min, 75 min, 90 min,105 min,and 120 min.

    Field emission scanning electron microscopy (FESEM)measurements were performed to investigate the morphology of the diamond particles. Here, figures with magnification of 5×104times for overall morphology were shown.Raman and PL spectra were collected by Raman spectroscopy with the excitation laser wavelength of 532 nm (Renishaw RL532C50)at room temperature. In the PL mapping, the scanning step length was 0.2μm. The data from PL mappings were then filtered in accordance with the corresponding Raman mappings and microscopy pictures to make the probability histogram of luminous intensity. Then the average PL intensities of areas were calculated based on the probability histogram.

    3. Result and discussion

    Figure 1 shows the FESEM images of particles with the growth time of 75 min under different growth pressures. It is observed that four samples consist of dispersed particles,and the surfaces of the particles in Figs. 1(a) and 1(b) are smooth. The crystal faces of the particles become rough with the growth pressure increasing. The diamond particles grown under different pressures have different crystal morphologies. The main reason is that the growth pressure has different effects on the growth rates of the (111) and (100)crystal faces.[27,28]In Fig.1(a),the crystal morphology of the diamond particles is icosahedron. In Fig. 1(b), two kinds of crystal morphologies appear when the particles grow at the pressure of 2.5 kPa. One is a truncated octahedron and the other is a decahedron. Figure 1(c)shows the particles growing at the pressure of 3.5 kPa, and the shape of the decahedrons slightly elongates. Figure 1(d) shows the diamond particles growing at the pressure of 4.5 kPa, and all particles are closing to sphere.

    Fig.1. FESEM images of diamond particles growing for 75 min under the growth pressures of (a) 1.5 kPa, (b) 2.5 kPa, (c) 3.5 kPa, and (d)4.5 kPa.

    Moreover, Raman and PL spectroscopy measurements were performed to test the phase composition and to demonstrate the existence of Ge-V color centers in the particles, respectively. Figure 2(a) is the Raman spectra collected in the range of 1000-1600 cm-1. The sharp peak at 1332 cm-1indicates high-quality diamond particles.[29]The other two peaks at 1350 cm-1and 1580 cm-1,named as D band and G band,respectively, are regarded as features of sp2carbon (usually graphite).[30,31]Moreover, as the growth pressure increases,the G peak gradually weakens and disappears, while the D peak appears and its content increases. The reason may be that the graphite clusters become larger as the growth pressure increases.

    Fig.2. (a)Raman spectra and(b)Ge-V PL spectra of diamond particles growing under the different growth pressures. The inset is the Si-V PL spectrum of the diamond particles grown for 75 min under the growth pressure of 1.5 kPa. Dependence of(c)the diamond peak position and FWHM and(d)the Ge-V position and FWHM on the growth pressure.

    Figure 2(b) shows the PL spectra of diamond particles.The Ge-V PL peak is located at 602.4 nm, and the Si-V PL peak is located at 738 nm (inset of Fig. 2(b)). It is observed that not only Ge-V color centers but also Si-V color centers exist in the diamond particles,because silicon wafers are used as the substrate to prepare diamond films in this instrument. The diamonds prepared from this chamber inevitably contain Si-V color centers. As the growth pressure increases,the size of the diamond particles decreases, so that the Raman signal-noise ratio decreases.

    Figure 2(c) shows the diamond peak position(1332 cm-1) and full width at half maximum (FWHM) by fitting the Raman spectra in Fig. 2(a). The diamond feature peaks all deviate from 1332 cm-1, which means that all the diamond particles are under stress. In addition, the diamond particles grown at 3.5 kPa have the least stress because the diamond feature peak is the closest to 1332 cm-1. It is observed that the FWHM of the diamond peak gradually increases along with the increasing growth pressure. This suggests that more impurities enter the diamond particles and the diamond structure is damaged as the pressure increases.[4]

    Figure 2(d) maps out the peak position and the FWHM of the Ge-V (602 nm) peak, and all these data are derived from the fitting of the PL spectra in Fig. 2(b). Figure 2(d)shows that Ge-V PL spectra slightly blue-shift to near 602 nm and have narrower inhomogeneous distribution as the growth pressure increases. The Ge-V ZPL we prepared is around 602.3 nm,closing to the standard Ge-V ZPL of 602 nm.[18,24]The FWHM of the GeV ZPL is around 4 nm,which is smaller than the reported values,[18,24]suggesting that our Ge-V center has more perfect structure.

    Germanium and silicon are introduced into the HFCVD growing particles through random atom movements,resulting in the great uncertainty of both the PL properties of Ge-V and Si-V in each particle. It is very difficult to evaluate the PL intensity and find its dependence on the growth parameters.Therefore,particle areas are selected to perform PL mapping,as shown in both Figs.3(a)and 3(b),which display the Ge-V(602 nm) mapping and the Si-V (738 nm) mapping, respectively. The numbers in Figs.3(a)and 3(b)represent the highest intensity of the color center. Figure 3(c)presents the ratio of the number of Ge-V centers within an intensity interval to the total number of Ge-V centers. The Ge-V mapping statistics of diamonds with growth pressure of 1.5 kPa and growth time of 75 min were collected. Then, for the accuracy of the data, we removed the data without Ge-V PL peak, 10% the highest Ge-V PL intensity data, and 10% the weakest Ge-V PL intensity data. The remaining data were used to make the frequency distribution histogram of Ge-V PL intensity. The statistics of other PL mappings have also been summarized in Fig. S1 of the supplementary material. Figure 3(d) is obtained by calculating the average PL intensity from the frequency distribution histogram of Fig. S1. Figure 3(d) shows that the Si-V average PL intensity is much higher than the Ge-V average PL intensity. The reason is that the covalent radius of germanium(122 pm)is larger than that of silicon(111 pm).Therefore, Si more easily forms Si-V color centers, leading to more Si-V color centers in diamond. The more Si-V color centers created brings out the higher Si-V emission. As the growth pressure increases,the Ge-V center average PL intensity increases accordingly,and the average PL intensity of Si-V increases to 32000 and then fluctuates around this value.Figure 2(c)shows that the FWHM of the diamond peak gradually increases along with the increasing growth pressure. We believe that the change of the PL intensity originates from the increase of the color center concentration in the particles.High growth pressure will cause more Ge and Si atoms to enter into the diamond particles to produce more color centers, which leads to strong PL strength and damaged crystal structure,increasing the FWHM of the diamond peak. However,when the growth pressure increases to 3.0 kPa and above, the Si-V intensity does not further increase, indicating that there exists the saturation of Si-V centers in diamond.

    Fig.3. (a)The Ge-V(602 nm)mapping and(b)the Si-V(738 nm)mapping of diamond particle growing under the different growth pressures. (c)The frequency distribution histogram of Ge-V PL intensity. (d)Dependence of the average PL intensities of the color centers on the growth pressure.

    Fig.4. FESEM images of the diamond particles grown for(a)45 min,(b)60 min,(c)75 min,(d)90 min,(e)105 min,and(f)120 min under the pressure of 2.5 kPa.

    Fig.5. (a)Raman spectra and(b)Ge-V PL spectra of the diamond particles grown for different times under 2.5 kPa. The inset is the Si-V PL spectrum of the diamond particles grown for 120 min under 2.5 kPa. Dependence of (c) the diamond peak position and FWHM and (d) the content of diamond on the growth time.

    Figure 4 shows the FESEM images of particles with the growth time of 30 min, 45 min, 60 min, 75 min, 90 min,105 min,and 120 min under 2.5 kPa.It is observed that all particle surfaces are smooth and clear. The particles all have two types of crystal morphologies. One is truncated octahedron and the other is decahedron. The octahedron contains cubeoctahedrons and cyclic twins of cube-octahedrons. The sizes of particles in Figs.4(a)-4(e)are 0.39μm,0.44μm,0.61μm,0.65 μm, and 0.94 μm, respectively. Figure 4(f) shows the sample with the growth time of 120 min, and it is difficult to determine the size because the particles contact with each other.

    Figure 5(a)shows the Raman spectra of different samples,indicating the main phase composition of diamond. When the growth time increases, the trans-polyacetylene(TPA),D,and G peak areas will gradually decrease and eventually disappear.The peak of 1332 cm-1gradually becomes the only Raman peak, suggesting that graphite gradually disappears and the diamond particles are close to single crystal diamond. This indicates that the diamond quality improves with increasing growth time. Figure 5(b) shows the PL spectra of diamond particles, in which the peaks at 602 nm and 738 nm (in the inset)are related to Ge-V and Si-V PL,respectively.

    Figure 5(c)shows the change of the diamond peak position and FWHM with the growth time obtained by fitting the spectra in Fig.5(a). The position of the diamond peak fluctuates in a small range,so the growth time has little effect on the stress. The difference of FWHM is small,and it can prove that the concentration of Ge-V centers is slightly different from that of Si-V centers. Figure 5(d)shows that the diamond content increases with growth time prolonging. The contents of diamond phase are calculated by the fitted peak area of the diamond peak and other non-diamond peaks in Fig. 5(a) according to the formula in reference.[34]It is observed that the diamond phase content increases with increasing growth time.

    We also performed PL mappings of Ge-V (602 nm) and Si-V(738 nm)on the diamond particles,as shown in Figs.6(a)and 6(b). The numbers in Figs. 6(a) and 6(b) represent the highest intensity of the color center.The Ge-V mapping statistics of the diamonds with the growth pressure of 2.5 kPa and the growth time of 45 min are obtained by the same method as Fig.3(c)and the frequency distribution histogram of Ge-V PL intensity is made by analyzing the data,as shown in Fig.6(c).The statistics of other PL mappings are summarized in Fig.S2 of the supplementary material.

    Fig.6. (a)The Ge-V(602 nm)mapping and(b)the Si-V(738 nm)mapping of the diamond particles grown for different growth time. (c)The frequency distribution histogram of Ge-V PL intensity. (d)Dependence of the average PL intensity of color centers on the growth time.

    Figure 6(d)shows the arithmetic mean values,which are obtained by calculating the frequency distribution histogram of Fig.S2,suggesting the change of the average PL intensity.It is observed that Ge-V and Si-V PL intensities increase with prolonging growth time and the intensity of the Si-V center is much higher than that of the Ge-V center. As shown in Fig. 5(c), there is no large variation of FWHM with the increase of growth time, so the number of color centers entering the crystal is similar and the PL intensity should fluctuate slightly. This is different from the result obtained from the PL mapping of Fig. 6. There must be other factors that affect the PL. We believe the influencing factor is the phase component. Studies have shown that the G and D bands of sp2-bonded carbon and TPA will quench the Si-V PL.[32,33]Because their structures are D3d, the effect of phase composition on the Ge-V color center is similar to the Si-V color center. It indicates that prolonging the growth time not only increased the diamond content, but also reduced sp2-bonded carbon,leading to higher PL intensity.

    4. Conclusion

    In brief, the diamond particles with Ge-V centers on the Ge wafer are successfully fabricated by HFCVD. The crystal surfaces of the diamond particles become rough, and the crystal morphology changes from icosahedron to truncated octahedron and decahedron, finally becoming spherical as the growth pressure increases. Due to the presence of Si in the chamber,the diamond particles prepared from the chamber all have Si-V color centers. More Ge and Si atoms enter the diamond particles to form Ge-V and Si-V centers with the increase of growth pressure, so the diamond FWHM becomes larger and PL strength becomes stronger. Our Ge-V center has more perfect structure, because the ZPL is closer to 602 nm and the FWHM is smaller than the reported value. Prolonging the growth time, the change of the diamond peak FWHM is small, which shows that the concentration of Ge-V and Si-V centers nearly maintains a constant. Also,prolonging growth time increases the diamond content and reduces the content of sp2-bonded carbon and TPA,enhancing the Ge-V and Si-V PL intensities. Therefore,increasing the growth pressure and prolonging the growth time are all beneficial to enhance the Ge-V PL intensity.

    猜你喜歡
    李曉航程
    Analytical solution to incident angle quasi-phase-matching engineering for second harmonic generation in a periodic-poled lithium niobate crystal
    殲-16挑戰(zhàn)更大航程
    海水里浮現(xiàn)的島嶼
    張?zhí)N馨、李曉、譚婷婷、黃家琪作品
    失能失智老年人長期照護服務之青島策略與啟示
    南北橋(2021年24期)2021-05-24 13:14:16
    西進執(zhí)教 一段人生的奇異航程
    海峽姐妹(2019年5期)2019-06-18 10:40:34
    飛越北極的航程
    向著新航程進發(fā)——遠望7號測控船首航記錄
    太空探索(2016年12期)2016-07-18 11:13:43
    Research on interaction design based on user experience
    西江文藝(2016年19期)2016-05-30 23:51:18
    人生航程 “漫”條“思”理
    航海(2016年2期)2016-05-19 03:57:11
    亚洲最大成人手机在线| 99热精品在线国产| 男女国产视频网站| 精品人妻视频免费看| 日韩在线高清观看一区二区三区| 国产单亲对白刺激| 美女cb高潮喷水在线观看| 天美传媒精品一区二区| 亚洲国产精品专区欧美| 亚洲美女视频黄频| 欧美又色又爽又黄视频| 国产免费福利视频在线观看| 伊人久久精品亚洲午夜| 直男gayav资源| av女优亚洲男人天堂| 亚洲国产欧美在线一区| 午夜a级毛片| 亚洲精品,欧美精品| 日韩av不卡免费在线播放| 看十八女毛片水多多多| 又爽又黄无遮挡网站| 亚洲国产最新在线播放| 亚洲成人精品中文字幕电影| 精品国内亚洲2022精品成人| 国产一区有黄有色的免费视频 | 99久久中文字幕三级久久日本| 高清日韩中文字幕在线| 国产精品日韩av在线免费观看| 国产高清有码在线观看视频| 欧美性猛交╳xxx乱大交人| 在线观看美女被高潮喷水网站| 久久久久久久久久黄片| 国产真实伦视频高清在线观看| 看十八女毛片水多多多| 亚洲,欧美,日韩| 大又大粗又爽又黄少妇毛片口| 亚洲四区av| 久久久久久国产a免费观看| 九草在线视频观看| 人人妻人人看人人澡| 国产精品一二三区在线看| 成人av在线播放网站| 午夜亚洲福利在线播放| 日韩欧美三级三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产69精品久久久久777片| 亚洲av一区综合| 天堂√8在线中文| 亚洲成人中文字幕在线播放| 国产老妇女一区| 国产成人精品久久久久久| 一区二区三区高清视频在线| 午夜福利在线观看免费完整高清在| 看十八女毛片水多多多| 天堂av国产一区二区熟女人妻| 伊人久久精品亚洲午夜| 我的老师免费观看完整版| 人妻夜夜爽99麻豆av| 日韩国内少妇激情av| 大又大粗又爽又黄少妇毛片口| 女的被弄到高潮叫床怎么办| 级片在线观看| 久久99热6这里只有精品| 禁无遮挡网站| 午夜福利在线观看吧| 国产黄色小视频在线观看| 日本五十路高清| 国产在线男女| 中文字幕免费在线视频6| 国产日韩欧美在线精品| 国产午夜精品一二区理论片| 色网站视频免费| 内射极品少妇av片p| 女人久久www免费人成看片 | 成人国产麻豆网| 国产精品无大码| 久久欧美精品欧美久久欧美| 国内少妇人妻偷人精品xxx网站| 成人毛片a级毛片在线播放| 久久这里有精品视频免费| 亚洲丝袜综合中文字幕| av线在线观看网站| 亚洲av不卡在线观看| 欧美xxxx性猛交bbbb| 久久精品夜色国产| 男插女下体视频免费在线播放| 久久午夜福利片| 激情 狠狠 欧美| 国国产精品蜜臀av免费| 亚洲综合色惰| 免费观看a级毛片全部| 久久精品人妻少妇| 中文亚洲av片在线观看爽| 欧美+日韩+精品| 赤兔流量卡办理| 国产成人精品一,二区| 国产在视频线在精品| 亚洲美女搞黄在线观看| 超碰97精品在线观看| 久久久久网色| 建设人人有责人人尽责人人享有的 | 国产精品久久久久久精品电影| 国产乱人视频| 成人三级黄色视频| 国产成年人精品一区二区| 国产一区亚洲一区在线观看| 国产黄色小视频在线观看| 成人av在线播放网站| 日韩 亚洲 欧美在线| av卡一久久| 69人妻影院| 国产精品爽爽va在线观看网站| 精品久久久久久成人av| 久久精品国产亚洲网站| 国产精品精品国产色婷婷| 亚洲在线自拍视频| 午夜亚洲福利在线播放| 非洲黑人性xxxx精品又粗又长| 在线播放国产精品三级| 精品国内亚洲2022精品成人| 天堂√8在线中文| 老司机影院成人| 美女国产视频在线观看| 99久久中文字幕三级久久日本| 亚洲国产高清在线一区二区三| 秋霞在线观看毛片| 在线免费观看的www视频| 综合色av麻豆| 我要搜黄色片| 岛国在线免费视频观看| 亚洲精品影视一区二区三区av| 午夜精品国产一区二区电影 | 视频中文字幕在线观看| 日韩人妻高清精品专区| 成年女人看的毛片在线观看| 日本黄大片高清| 夜夜看夜夜爽夜夜摸| 男人舔奶头视频| 日本猛色少妇xxxxx猛交久久| 狠狠狠狠99中文字幕| 亚洲国产精品成人综合色| 亚洲成人久久爱视频| 国产亚洲一区二区精品| 国产成人a∨麻豆精品| 床上黄色一级片| 欧美激情在线99| 国产免费视频播放在线视频 | 日本猛色少妇xxxxx猛交久久| 午夜精品一区二区三区免费看| 国产亚洲一区二区精品| 干丝袜人妻中文字幕| 干丝袜人妻中文字幕| 国产色爽女视频免费观看| av在线亚洲专区| 少妇高潮的动态图| 午夜福利在线观看免费完整高清在| 亚洲精品乱久久久久久| 麻豆av噜噜一区二区三区| 国产午夜精品一二区理论片| 男女下面进入的视频免费午夜| 国产精品久久久久久av不卡| 亚洲精品一区蜜桃| 国产乱人视频| 一区二区三区免费毛片| 天堂av国产一区二区熟女人妻| 国产精品福利在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 直男gayav资源| 亚洲电影在线观看av| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 高清午夜精品一区二区三区| 国产精品三级大全| 18禁动态无遮挡网站| 精品少妇黑人巨大在线播放 | 国产单亲对白刺激| 精品熟女少妇av免费看| 欧美一区二区亚洲| 一级爰片在线观看| 91aial.com中文字幕在线观看| 国产黄片视频在线免费观看| 免费观看精品视频网站| www日本黄色视频网| 最后的刺客免费高清国语| 国产欧美日韩精品一区二区| 黄片wwwwww| 中文字幕熟女人妻在线| 99久久无色码亚洲精品果冻| 国产精品三级大全| 欧美高清成人免费视频www| 国产精品一区二区三区四区免费观看| 成年版毛片免费区| 国产高潮美女av| 免费不卡的大黄色大毛片视频在线观看 | 插阴视频在线观看视频| 美女高潮的动态| 午夜视频国产福利| 亚洲av男天堂| 婷婷色av中文字幕| 午夜福利网站1000一区二区三区| 99久久无色码亚洲精品果冻| 日韩在线高清观看一区二区三区| 亚洲精品色激情综合| 能在线免费观看的黄片| 国产精品.久久久| 亚洲国产精品专区欧美| 久久久久性生活片| 亚洲电影在线观看av| 欧美一区二区亚洲| 美女被艹到高潮喷水动态| 日本午夜av视频| 国产视频首页在线观看| 一区二区三区四区激情视频| 狂野欧美激情性xxxx在线观看| 九九久久精品国产亚洲av麻豆| 欧美一区二区国产精品久久精品| 99国产精品一区二区蜜桃av| 欧美丝袜亚洲另类| 国产成人a区在线观看| 久久精品人妻少妇| 最后的刺客免费高清国语| 久久亚洲国产成人精品v| 美女国产视频在线观看| 色视频www国产| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧美人成| 亚洲在线自拍视频| 亚洲伊人久久精品综合 | 少妇的逼水好多| 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| 91久久精品电影网| 插阴视频在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区在线av高清观看| 亚洲av电影不卡..在线观看| 人妻夜夜爽99麻豆av| 欧美性感艳星| 91精品国产九色| 白带黄色成豆腐渣| 免费观看的影片在线观看| 在现免费观看毛片| 午夜久久久久精精品| 熟妇人妻久久中文字幕3abv| 在线播放国产精品三级| 成年av动漫网址| 国产淫语在线视频| 久久久欧美国产精品| a级一级毛片免费在线观看| 男的添女的下面高潮视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99久国产av精品| ponron亚洲| 欧美成人a在线观看| 国产在线男女| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 国产乱人视频| 亚洲欧美中文字幕日韩二区| 最近中文字幕2019免费版| 乱人视频在线观看| a级一级毛片免费在线观看| 七月丁香在线播放| 久久草成人影院| 日韩av在线免费看完整版不卡| 能在线免费看毛片的网站| 伦精品一区二区三区| 长腿黑丝高跟| 亚洲美女搞黄在线观看| 欧美bdsm另类| 热99re8久久精品国产| 久久精品熟女亚洲av麻豆精品 | 五月伊人婷婷丁香| 色综合亚洲欧美另类图片| 免费搜索国产男女视频| 亚洲国产精品久久男人天堂| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 精品无人区乱码1区二区| 九九在线视频观看精品| 91久久精品国产一区二区成人| 成人午夜精彩视频在线观看| 亚洲国产欧洲综合997久久,| 成年av动漫网址| 村上凉子中文字幕在线| 久久人人爽人人片av| 免费观看在线日韩| 国模一区二区三区四区视频| 国产精品一区二区在线观看99 | 天天躁日日操中文字幕| 久久久久免费精品人妻一区二区| 一级毛片电影观看 | 亚洲怡红院男人天堂| 久久久国产成人精品二区| 在线观看av片永久免费下载| 毛片女人毛片| 精品国产露脸久久av麻豆 | 亚洲av免费高清在线观看| 成年版毛片免费区| 卡戴珊不雅视频在线播放| 伦精品一区二区三区| 色综合站精品国产| 国产伦精品一区二区三区四那| 国产成人免费观看mmmm| 国产乱人偷精品视频| 91av网一区二区| 久久精品夜色国产| 两个人的视频大全免费| 精品一区二区三区视频在线| 国产精品一区二区性色av| 插阴视频在线观看视频| 熟女电影av网| 一边摸一边抽搐一进一小说| 国产精品一区二区在线观看99 | 久久久色成人| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成色77777| a级毛片免费高清观看在线播放| a级毛色黄片| av在线老鸭窝| 久久久精品大字幕| 永久免费av网站大全| 听说在线观看完整版免费高清| 国产单亲对白刺激| 欧美三级亚洲精品| 久久久久久久久久黄片| 国产乱来视频区| 免费看光身美女| 亚洲av.av天堂| 国产真实乱freesex| 国产伦一二天堂av在线观看| 搡女人真爽免费视频火全软件| 一级毛片我不卡| 日韩一区二区视频免费看| 少妇丰满av| 91久久精品国产一区二区成人| 欧美激情国产日韩精品一区| 日本爱情动作片www.在线观看| 免费av观看视频| 男女国产视频网站| 亚洲国产日韩欧美精品在线观看| 中文字幕熟女人妻在线| 国产伦在线观看视频一区| 欧美一区二区国产精品久久精品| 午夜免费男女啪啪视频观看| 国产av不卡久久| 中文在线观看免费www的网站| 久久精品夜夜夜夜夜久久蜜豆| 国产精品久久久久久久久免| 日本五十路高清| 毛片女人毛片| 亚洲欧美日韩东京热| 亚洲精品久久久久久婷婷小说 | 国产精品人妻久久久久久| 国内少妇人妻偷人精品xxx网站| 综合色丁香网| 久久久a久久爽久久v久久| 免费看a级黄色片| 亚洲综合精品二区| 日韩成人伦理影院| 我的女老师完整版在线观看| 久久草成人影院| 亚洲成人精品中文字幕电影| 干丝袜人妻中文字幕| 日本与韩国留学比较| 51国产日韩欧美| 成人毛片60女人毛片免费| 精品一区二区三区视频在线| 亚洲精品乱码久久久久久按摩| 国内精品宾馆在线| 久久久久久九九精品二区国产| 老司机影院成人| 1000部很黄的大片| 国产片特级美女逼逼视频| 一边摸一边抽搐一进一小说| 中文亚洲av片在线观看爽| 一区二区三区免费毛片| 亚洲第一区二区三区不卡| 午夜免费激情av| 小说图片视频综合网站| 午夜精品在线福利| 午夜福利网站1000一区二区三区| 51国产日韩欧美| 久久欧美精品欧美久久欧美| 久久精品久久久久久久性| 亚洲成人精品中文字幕电影| 亚洲av电影不卡..在线观看| 亚洲欧洲国产日韩| 真实男女啪啪啪动态图| 亚洲熟妇中文字幕五十中出| 欧美变态另类bdsm刘玥| 乱人视频在线观看| 亚洲国产精品合色在线| av卡一久久| 人人妻人人澡人人爽人人夜夜 | 国产片特级美女逼逼视频| 一区二区三区高清视频在线| 久久精品国产亚洲网站| 日本午夜av视频| 亚洲久久久久久中文字幕| 免费播放大片免费观看视频在线观看 | 国产亚洲精品av在线| 一级毛片电影观看 | 麻豆国产97在线/欧美| 精品久久久久久久人妻蜜臀av| 国产亚洲最大av| kizo精华| av在线播放精品| 看免费成人av毛片| 好男人视频免费观看在线| 99久久九九国产精品国产免费| 91久久精品国产一区二区成人| 国产精品1区2区在线观看.| 一本久久精品| 纵有疾风起免费观看全集完整版 | 精品久久久久久成人av| 丰满人妻一区二区三区视频av| 国产色爽女视频免费观看| 又粗又硬又长又爽又黄的视频| av专区在线播放| 嫩草影院精品99| 亚洲,欧美,日韩| 搡老妇女老女人老熟妇| 免费av不卡在线播放| 男人的好看免费观看在线视频| 麻豆久久精品国产亚洲av| 简卡轻食公司| 欧美日韩在线观看h| 一卡2卡三卡四卡精品乱码亚洲| 久久精品夜夜夜夜夜久久蜜豆| 乱码一卡2卡4卡精品| 天堂√8在线中文| 午夜免费男女啪啪视频观看| or卡值多少钱| 成人欧美大片| 国产成人精品婷婷| 91aial.com中文字幕在线观看| 六月丁香七月| 精品久久久久久久末码| 97超视频在线观看视频| 色视频www国产| 网址你懂的国产日韩在线| av免费在线看不卡| 成人亚洲精品av一区二区| 2021天堂中文幕一二区在线观| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 一区二区三区乱码不卡18| 亚洲一级一片aⅴ在线观看| 久久久a久久爽久久v久久| 精品久久久久久久久av| 欧美激情国产日韩精品一区| 97热精品久久久久久| 免费观看在线日韩| 久久久久性生活片| 搡女人真爽免费视频火全软件| 国产精品麻豆人妻色哟哟久久 | 亚洲高清免费不卡视频| 夜夜看夜夜爽夜夜摸| 精品人妻熟女av久视频| 亚洲成人精品中文字幕电影| 天堂影院成人在线观看| 久久久久久国产a免费观看| 久久亚洲国产成人精品v| 99国产精品一区二区蜜桃av| 国产一级毛片七仙女欲春2| 久久人人爽人人片av| 看非洲黑人一级黄片| 丝袜喷水一区| 一级毛片电影观看 | 青春草亚洲视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国语对白做爰xxxⅹ性视频网站| ponron亚洲| 亚洲精品456在线播放app| 99热网站在线观看| 国产欧美日韩精品一区二区| 狠狠狠狠99中文字幕| 国产精品久久久久久久电影| 久久久久性生活片| 精品一区二区免费观看| 精品久久久久久久人妻蜜臀av| 成人漫画全彩无遮挡| 高清视频免费观看一区二区 | 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av二区三区四区| av在线天堂中文字幕| a级一级毛片免费在线观看| 婷婷六月久久综合丁香| 中文字幕免费在线视频6| 九九久久精品国产亚洲av麻豆| 啦啦啦观看免费观看视频高清| 免费看美女性在线毛片视频| 熟女电影av网| 99热这里只有是精品在线观看| 国产一区二区在线观看日韩| 久久久久久久亚洲中文字幕| 久久综合国产亚洲精品| 一级黄色大片毛片| 日韩 亚洲 欧美在线| 久久国产乱子免费精品| 国产日韩欧美在线精品| 视频中文字幕在线观看| 夜夜看夜夜爽夜夜摸| 日韩一区二区三区影片| 久久久久久久久大av| 国产精品电影一区二区三区| 亚洲av熟女| 永久网站在线| 国产精品久久久久久久久免| 亚洲国产欧美在线一区| 免费看光身美女| 99久国产av精品国产电影| 中文欧美无线码| 国产 一区 欧美 日韩| 欧美性猛交黑人性爽| 黄色配什么色好看| 国产精品久久久久久精品电影小说 | 男女视频在线观看网站免费| 免费看光身美女| 91久久精品国产一区二区三区| 精品免费久久久久久久清纯| 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 精品人妻一区二区三区麻豆| 草草在线视频免费看| 高清毛片免费看| 日本wwww免费看| 久久精品国产亚洲av天美| 免费播放大片免费观看视频在线观看 | 一级黄片播放器| 最新中文字幕久久久久| 麻豆一二三区av精品| 六月丁香七月| 午夜福利在线在线| 99久久成人亚洲精品观看| 久久久精品94久久精品| 国产精品一区二区三区四区免费观看| 精品人妻熟女av久视频| 九九久久精品国产亚洲av麻豆| 久久久久久久久中文| 成人无遮挡网站| 又粗又爽又猛毛片免费看| 成年av动漫网址| 欧美一区二区国产精品久久精品| 黄色日韩在线| 国产视频内射| 高清日韩中文字幕在线| 欧美变态另类bdsm刘玥| 最后的刺客免费高清国语| 国产三级在线视频| 亚洲国产精品成人久久小说| 少妇人妻一区二区三区视频| 一级爰片在线观看| 一区二区三区四区激情视频| 国产爱豆传媒在线观看| 久久精品国产鲁丝片午夜精品| 中文字幕熟女人妻在线| 久久精品91蜜桃| 极品教师在线视频| 国产av不卡久久| 久久久久久久久久久免费av| 国产淫片久久久久久久久| 免费播放大片免费观看视频在线观看 | 国内精品美女久久久久久| 如何舔出高潮| 久久久久久久午夜电影| 亚洲成人av在线免费| 麻豆av噜噜一区二区三区| 国产精品一区二区三区四区久久| 精品酒店卫生间| 精品无人区乱码1区二区| 美女黄网站色视频| 日韩一区二区视频免费看| 深爱激情五月婷婷| 久久精品国产亚洲av天美| 永久网站在线| 能在线免费观看的黄片| 黄片无遮挡物在线观看| 日本三级黄在线观看| 国产成人免费观看mmmm| 亚洲三级黄色毛片| 成人漫画全彩无遮挡| 亚洲色图av天堂| 午夜免费激情av| 精品人妻偷拍中文字幕| 欧美3d第一页| 七月丁香在线播放| 久久久久久久久中文| 久久韩国三级中文字幕| 精品一区二区三区人妻视频| 日本黄色片子视频| 国产不卡一卡二| 级片在线观看| 亚洲av成人av| 亚洲欧美成人精品一区二区| 深爱激情五月婷婷| 国产黄片美女视频| 国产精品熟女久久久久浪| 亚洲真实伦在线观看| 亚洲不卡免费看| 亚洲av成人av| av在线亚洲专区| 成人无遮挡网站| 日本免费一区二区三区高清不卡| 国产69精品久久久久777片| 热99在线观看视频| 丝袜喷水一区| 中文字幕熟女人妻在线| 国产精品一区二区三区四区免费观看| 亚洲综合精品二区| 日韩欧美 国产精品| 欧美xxxx性猛交bbbb| av免费观看日本|