• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tetrapartite entanglement measures of W-class in noninertial frames?

    2019-08-06 02:06:22AriadnaTorresArenasEdgaropeznigaAntonioSaldanaHerrera
    Chinese Physics B 2019年7期

    Ariadna J.Torres-Arenas, Edgar O.L′opez-Z′u?niga,2, J.Antonio Salda?na-Herrera,2,

    Qian Dong1, Guo-Hua Sun3, and Shi-Hai Dong1,?

    1Laboratorio de Informaci′on Cu′antica,CIDETEC,Instituto Polit′ecnico Nacional,UPALM,CDMX 07700,Mexico

    2Facultad de Ciencias F′?sico Matem′aticas,Universidad Aut′onoma de Nuevo Le′on,San Nicol′as de los Garza NL,66450,Mexico

    3Catedr′atica CONACyT,Centro de Investigaci′on en Computaci′on,Instituto Polit′ecnico Nacional,UPALM,CDMX 07738,Mexico

    Keywords: W-class,tetrapartite entanglement,Dirac field,noninertial frames,nonuniform acceleration

    1. Introduction

    Entanglement plays an important role in quantum information as a resource for quantum teleportation, communication,and cryptography.[1-3]Since relativity allows us to have a fundamental understanding of the theoretical model,it is relevant to study entanglement in a noninertial frame as a physical property of multipartite states.[4]

    Fuentes-Schuller and Mann first studied the entanglement of two qubits in noninertial frames and showed that the maximal bipartite entanglement decreases when one of two observers is accelerated. When the acceleration increases, the entanglement decreases until they reach infinite acceleration reducing the state to a separable one.[5]In the case of the tripartite state, examined by Hwang et al., it has been shown that just as the bipartite case,the entanglement degrades when one of the observers is accelerated, but the accelerated observer entanglement does not completely vanish, even when the observer is moving with an infinite acceleration. Also,they found the interesting result that entanglement is observer dependent.[6]

    Li et al. analyzed the entanglement of a tetrapartite GHZstate from one to four accelerated observers with a uniform acceleration a using π4-and Π4-tangles,which are the whole entanglement calculations.[7]It should be addressed that other relevant contributions have been made in tripartite entangled systems.[8-18]

    Rindler coordinates are used to describe the viewpoint of uniformly accelerated observers. There are two different sets of coordinates necessary to map field states in Minkowski space-time to Rindler coordinates, which define two disconnected regions in Rindler space-time.[19,20]

    In this work,we will investigate the tetrapartite entanglement of the Dirac fields when one observer is accelerated and when two observers are accelerated for the W-class of the 4-particle case. Let Alice,Bob,Charlie,and David share a fourmode W-class entangled state when they are initially not moving. First,we suppose that David moves with a uniform acceleration with respect to Alice, Bob, and Charlie. Second, we suppose that Charlie and David are moving with nonuniform acceleration. We compute the π4-tangle and the Π4-tangle as functions of David’s acceleration and Charlie’s and David’s accelerations, respectively. We show that, just as the bipartite and tripartite entanglement cases, the π-tangle decreases with the increasing acceleration, but unlike the bipartite entanglement case, when one observer reaches infinite acceleration, the entanglement does not completely vanish, but remains nonzero π4-tangle and Π4-tangle. This result implies the possibility of quantum information processing even when David reaches the Rindler horizon. Also, we are concerned with the study of von Neumann entropy to quantify this tetrapartite entangled system.

    The rest of this work is organized as follows. In Section 2, we give a description of the system and the considerations are made. We then discuss the tetrapartite entanglement of the W-class when one observer is accelerated. In Section 3, we discuss the tetrapartite entanglement of the W-class when two observers are accelerated. We make calculations on negativities and show whole entanglement measurements. We will study von Neumann entropy in section 4. Finally, some discussions and concluding remarks are given in Section 5.

    2. Tetrapartite entanglement when one observer is accelerated

    As shown by Verstraete et al., there are nine different ways to entangle 4 qubits.[21]The vast majority of papers on this subject focus on two main states:the Greenberger-Horne-Zeilinger(GHZ)state and the W-class state. The last one often gets less attention than the first one because its calculations frequently get much more complex. There have already been a lot of treatments on the matter of the contributions for one,two,three,and four acceleration qubits for an initial GHZ state.So our attention in this work will be for an initial W-class entangled state.

    The W-class entangled state we will be considering is composed of fermions, which in this case are 4 qubits with the names Alice, Bob, Charlie, and David, each of them living in a different Hilbert space. Now, we consider the case in which three of them, namely, Alice, Bob, and Charlie, are stationary while David moves with a uniform acceleration.

    A generalization for N qubits of the W-class state has the form[22]

    where|N-1,1〉is the state involving N-1 zeros and a one.In this work,we take N=4 and use the subscripts A,B,C,and D to represent the fermions Alice,Bob,Charlie,and David,respectively. With this,the W-class entangled state(N=4)can be written as follows:

    As discussed above,the most suitable way to describe an entangled state in a noninertial frame is using the Rindler coordinates. By that,we need to make the transformation between the two coordinated systems. For the fermion field,we use the following transformation:[23]

    with cosri=(e-2πωic/ai+1)-1/2, aibeing the acceleration of the i-th accelerated observer and wiits corresponding frequency. One has ri∈[0,π/4]for ai∈[0,∞). The subscripts I and II in the kets represent the Rindler modes for regions I and II in the Rindler space-time diagram.

    Applying Eqs.(3)and(4)to our|W〉state,we obtain the following state:

    Usually, region II is considered to be the corresponding antiparticle region in the same frame.[24,25]When David moves with a uniform acceleration in Rindler region I,he is causally disconnected from region II.This means that he has no access to field modes in region II.Thus,the observer has to trace over this inaccessible region so that region II will not be considered.

    2.1. Negativity

    The main equation defined for negativity was made for a bipartite state. This allows us to measure the entanglement of a system and is defined as

    Equation (6) represents the general form to measure the negativity. We extend the formula to the four-qubits case,and obtain[7,26]

    which describe the entanglements 1-3 tangle and 1-2 tangle,respectively. When calculating the negativities Nκ(ξ?ζ)and Nκ(ξ?)in terms of the rightmost formula of Eq.(6),the matrices M are taken as)andrespectively.

    In order to begin negativity computations, we trace over the inaccessible Rindler modes in region II,and then we proceed to calculate the density matrix with the following forms:

    where and hereafter we use the substitutions sinrc→α,sinrd→β, cosrc→γ, and cosrd→δ. The corresponding density matrices with transposed qubits are given in Appendix A.

    We now proceed to calculate the negativities,which will help us to find all the entanglement measurements. We make use of Eq.(6)to calculate the 1-3 entanglement with the following form:

    As we can see in Eq. (10), the measurements when the observer is stationary, no matter whether it is Alice, Bob, or Charlie are equal to each other(Fig.1(a)). Due to their complicated expressions,we do not attempt to write them out explicitly. Fortunately, the expression for NDI(ABC)is simpler and can be obtained analytically.

    Now,we proceed to calculate the 1-1 tangle using Eq.(6)and obtain the corresponding density matrices by tracing over two of the four qubits in the system respectively for each case.Because of the symmetry among Alice,Bob,and Charlie,we have the 1-1 tangle expressed as a combination of pairs of the elements{A,B,C}

    On the other hand, due to symmetry, the 1-1 tangle between two sets i={A,B,C}and j={DI}is expressed as

    We can see that NABin Eq.(14)is a constant. While the observed decrement Nijin Eq.(15)is due to the rdparameter(Fig. 1(b)). It is worth noting that while the 1-1 tangle vanishes at infinite acceleration for the accelerated observer, it is not the case for the 1-3 tangle. On the other hand,it is found that NDI(ABC)decreases more quickly than NA(BCDI)with the increasing acceleration parameter rd, but they never arrive at zero even in the infinite acceleration limit.

    Fig. 1. (a) The 1-3 tangle of Alice NA(BCDI) and David NDI(ABC), respectively as a function of the acceleration parameter rd, (b) the 1-1 tangle NAB and Nij as a function of the acceleration parameter rd.

    2.2. The π-tangle entanglement measures

    Two important entanglement measurements are defined for tripartite states, which are the whole entanglement measurements π3and Π3. Both of them depend on the negativities and we can make a tetrapartite extension of the latter equations,yielding[26]

    Now,we are able to obtain the π4-tangle,which is given by taking the average of πκ,πξ,π?,and πζ[7]

    Also, we use another whole entanglement measure defined as[27]

    For the present case,one has

    from which we are able to calculate π4=()/4 and Π4=)1/4.

    For the case we are studying, we have==>W(wǎng)e plot) andresidual entanglements in Fig. 2 and πABCDI-tangle andwhole entanglements in Fig. 3. Similarly, we notice thatdecreases more quickly thanfor the same reason as that for negativitiesndMoreover,we also find that the algebraic average residualis slightly greater than the geometric average Π4. In particular, they are almost the same when rd<0.3.

    Fig.2.Residual entanglement of Alice πA(Bob and Charlie)and David πDI as a function of the acceleration parameter rd.

    Fig. 3. The π4-tangle and Π4 whole entanglement as functions of the acceleration parameter rd.

    3. Tetrapartite entanglement when two observers are accelerated

    In this case,similar to the above approach,we are about to study the tetrapartite entanglement measurements of the system. Computations become more complex due to the multiqubit state. We are working with the double Rindler transformations in the state,leading to a bigger dependence of the trigonometric functions. Now, we suppose that Charlie and David are the accelerated observers. Applying Eqs. (3) and(4)to our initial|W〉state,we obtain

    where rcand rdare the acceleration parameters for Charlie and David, respectively. Notations CI, CII, DI, and DIIrepresent that Charlie and David move with an acceleration in Rindler regions I and II.Just as in the previous calculations,we are not going to consider region II.

    3.1. Negativity

    We will,one more,use time Eq.(6)to determine the degree of entanglement for the 1-3 and 1-1 tangles.After tracing over the inaccessible Rindler modes CIIand DII,we obtain the density matrix

    where we have also used the same notations for α,β,γ,δ as above.

    For the 1-3 entanglement, we once again find that there exists some symmetry, i.e., NA(BCIDI)= NB(ACIDI). In the case of NCI(ABDI)and NDI(ABCI), it does not appear the same(Fig.4). It is seen that the negativities NCI(ABDI)and NDI(ABCI)are antisymmetric. This means that they can be obtained from each other via replacing rc?rd. It is also interesting to find that both of them increase with increasing rcbut decrease with increasing rd.

    Fig. 4. (a) Entanglement measure (1-3 tangle) from the viewpoint of Alice(Bob)as a function of acceleration parameters rc and rd,(b)Entanglement measure (1-3 tangle) from the viewpoint of Charlie and David as a function of acceleration parameters rc and rd.

    On the other hand, in the 1-1 tangle, we can observe in a more particular sense the entanglement between two particles, as we can see that the maximum entanglement is achieved when both particles are stationary, the lower entanglement is obtained when both accelerated particles are measured (Fig. 5). We rename the sets that based on symmetry,the 1-1 tangle can be expressed in combinations of pairs with the following sets κ ={A,B}and ξ ={C,D},

    The quantity NκDIcan be obtained easily by replacing rcin NκCIwith rd.Let us analyze Fig.5 in detail.It should be noted that NCIDIdecreases to zero when r=0.472473 and NACI=0 in the infinite acceleration limit r=π/4.

    Fig.5. Entanglement measure(1-1 tangle)as a function of rc=rd.

    3.2. The π-tangle entanglement measure

    Again, using the method required for a tetrapartite state,[26]we use Eqs. (16)-(27) to obtain the residual entanglement for the W-class state. For this case,we have a similar expressions to Eq.(22)except for notation C is replaced by CI.Thus,we have π4=(πA+πB+πCI+πDI)/4 and the geometric average(21)Π4=(πAπBπCIπDI)1/4.

    Since the obtained results are not easy to express in a short term,we shall only present their representative graph in Fig.6.We remark the antisymmetry between πCIand πDI, although πAand πBremain the same. As we know,it is very difficult to plot πCIand πDIas 3D graphics since the negativity NCIDIis equal to zero when r >0.472473. The graphics of πCIand πDIare plotted in two segmentation intervals of the variable r,i.e.,r ∈[0,0.472473]∪[0.472473,π/4]. We find that both πCIand πDIdecrease with the acceleration parameters rcand rd.

    Finally,we present in Fig.7 the π4-tangle and the whole entanglement calculated with Eqs.(20)and(21). It is interesting to find that the difference between the geometric average value π4and the geometric average value Π4is almost zero.This means that we can use any of them to describe this entangled system.

    Fig.6. (a)Residual entanglement(π-tangle)for Alice and Bob as well as their comparison with their 1-3 tangle. (b)Residual entanglement(π-tangle)for Charlie and David.

    Fig.7. (a)Whole entanglement(b)measures π4 and Π4 as functions of acceleration parameters rc.The π4 and Π4 as functions of the parameter rd are the same as above.

    4. The von Neumann entropy

    Another useful measurement for entanglement was inspired by von Neumann, establishing the analogous in quantum mechanics of the Shannon entropy for classical probability nowadays called von Neumann entropy.[28-30]It is defined as S=-Tr(ρ lnρ). Another definition is developed and provided by Bengtsson and ˙Zyczkowski[31]

    where λidenotes the i-th eigenvalue of the density matrix ρ.Using this definition, we are able to calculate the von Neumann entropy. Since for the case when only David is accelerated (Fig. 8), all eigenvalues except for two are zero, and for the case when Charlie and David are moving, all eigenvalues except for four are zero,we are able to obtain the explicit analytical expression for the von Neumann entropy in both cases,but for the case when two qubits are accelerated, the expression will be omitted due to long-polynomial nature. Nevertheless, we show the behavior of the entropy for this case in Fig.9

    We find that the von Neumann entropy for these two cases increases when the acceleration is increasing. That is to say,SDincreases with rd, but the von Neumann entropy SABCIDIincreases with both the acceleration parameters rcand rd.

    Fig.8. The von Neumann entropy as David’s acceleration parameter rd increases.

    Fig.9.The von Neumann entropy as a function of Charlie’s and David’s acceleration parameters rc and rd.

    5. Discussion and conclusion

    In conclusion, it is found that the negativity and whole entanglement computations of the 4-particle W-class state decrease the entanglement when we measure in a noninertial frame. As we can see,the entanglement measures that depend on the acceleration parameters will decrease with increasing accelerations. In contrast, the entanglement measures that do not depend on the acceleration parameter will remain a constant in the acceleration limit. It is worth noting that no matter which qubit is selected from computations,we can choose any qubit or any pair of qubits from the system and switch it from inertial to noninertial,without expecting different results in any case. For the case of the 1-1 tangle, the entanglement begins to disappear for the case of one accelerated qubit. We can see that when we measure the bipartite negativity, (NAB)never can reach infinite accelerations. The lost of entanglement is due to the 4 total partial traces that we are preforming yielding to a ripping off information. The NCIDIdisappears for r >0.472473. This result is contrary to the cases reported for tripartite systems in which the entanglement has never been reduced to zero. For the case of the 1-3 tangle, when we are studying the one accelerated observer case,it is shown that the entanglement measure from the point of view of the noninertial qubit decreases faster than that when the other stationary qubits perform the measure. Furthermore,when we study the second case, we can see that the negativity for the stationary qubits behaves the same over all the accelerations, but when the negativities are measured for the accelerated ones,we can see their entanglement is different.It is remarkable to say that,for this measure, the entanglement never reaches zero. The whole entanglement measurements π4and Π4do not change their initial entanglement,no matter if we are studying the first or the second case,the arithmetic mean is greater than the geometric mean. Our results also suggest that,due to the growth of von Neumann entropy, our system becomes more disordered as we vary the acceleration parameter. Special cases were treated for the two noninertial case when rc=rb,having a bigger entropy than the fist case.Before ending this work,we give a useful remark about the tetrapartite entanglement measurements for the W-class state. In noninertial frames,we will predict the difficulty of studying these entanglement measures when three fermions,say Bob,Charlie,and David,are moving with nonuniform accelerations rb, rc, and rd. This is because it is impossible to illustrate them in graphics with three variables.Similarly,it will become more difficult to study the case when all particles are moving with nonuniform accelerations.

    Appendix A: Density matrices for one accelerated observer

    The explicit expressions of the density matrices with the partial transposed qubit when one observer, say David, is accelerated are as follows:

    Appendix B:Density matrices for two accelerated observers

    Now, we show the explicit expressions of the density matrices with the partial transposed qubit when two observers, say Charlie and David are accelerated as follows:

    国产日韩一区二区三区精品不卡| 国产午夜精品一二区理论片| 国产av精品麻豆| 亚洲人成电影观看| 又粗又硬又长又爽又黄的视频| 日日摸夜夜添夜夜爱| 色婷婷久久久亚洲欧美| 国产亚洲精品第一综合不卡| 看十八女毛片水多多多| 亚洲天堂av无毛| 夫妻午夜视频| 五月天丁香电影| av线在线观看网站| 十八禁网站网址无遮挡| 亚洲精品日韩在线中文字幕| 欧美少妇被猛烈插入视频| 日韩,欧美,国产一区二区三区| 高清黄色对白视频在线免费看| 日韩中字成人| 国精品久久久久久国模美| 韩国av在线不卡| 国产色婷婷99| 午夜福利网站1000一区二区三区| 只有这里有精品99| 亚洲精品,欧美精品| 黑人猛操日本美女一级片| 久久综合国产亚洲精品| 国产成人aa在线观看| 日本91视频免费播放| 精品少妇黑人巨大在线播放| 中文欧美无线码| 国产亚洲欧美精品永久| 不卡av一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 精品酒店卫生间| 久久精品亚洲av国产电影网| 国产日韩一区二区三区精品不卡| 激情视频va一区二区三区| 一区二区日韩欧美中文字幕| 最近最新中文字幕大全免费视频 | 欧美激情极品国产一区二区三区| 中文欧美无线码| 欧美精品av麻豆av| 日韩中文字幕欧美一区二区 | 在线观看人妻少妇| 免费女性裸体啪啪无遮挡网站| 亚洲国产av影院在线观看| 久久久久久久精品精品| 久久久久久久大尺度免费视频| 久久亚洲国产成人精品v| 成人毛片a级毛片在线播放| 日韩中字成人| 国产一区二区在线观看av| 色哟哟·www| 国产亚洲最大av| 日韩成人av中文字幕在线观看| 亚洲四区av| 99久久人妻综合| av有码第一页| 极品人妻少妇av视频| 日本爱情动作片www.在线观看| 日韩中文字幕欧美一区二区 | 天天影视国产精品| 伊人亚洲综合成人网| 中文字幕色久视频| 777久久人妻少妇嫩草av网站| 巨乳人妻的诱惑在线观看| 欧美激情高清一区二区三区 | 国语对白做爰xxxⅹ性视频网站| 国产深夜福利视频在线观看| 叶爱在线成人免费视频播放| 一本—道久久a久久精品蜜桃钙片| 久久午夜福利片| 伊人久久大香线蕉亚洲五| 在线天堂中文资源库| 成人毛片a级毛片在线播放| 久久99一区二区三区| av网站免费在线观看视频| 亚洲av中文av极速乱| 亚洲精品,欧美精品| 91aial.com中文字幕在线观看| 国产精品一国产av| 国产一区二区在线观看av| 亚洲成国产人片在线观看| 国产精品免费大片| 黑人猛操日本美女一级片| www.熟女人妻精品国产| 黄片播放在线免费| 国产1区2区3区精品| 亚洲婷婷狠狠爱综合网| 精品卡一卡二卡四卡免费| 一本久久精品| 青春草国产在线视频| 欧美在线黄色| 男女啪啪激烈高潮av片| 男女国产视频网站| 丰满饥渴人妻一区二区三| 欧美变态另类bdsm刘玥| 日本av免费视频播放| 99久久综合免费| 青青草视频在线视频观看| 少妇人妻精品综合一区二区| 久久婷婷青草| 国产精品偷伦视频观看了| 国产日韩一区二区三区精品不卡| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 欧美日韩一级在线毛片| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线| 看免费成人av毛片| 久久久久久伊人网av| 性色avwww在线观看| 极品少妇高潮喷水抽搐| 欧美精品人与动牲交sv欧美| 成人18禁高潮啪啪吃奶动态图| 久久人人爽人人片av| 久久毛片免费看一区二区三区| 亚洲欧美精品自产自拍| 男人操女人黄网站| 精品人妻偷拍中文字幕| 99久久综合免费| 黄网站色视频无遮挡免费观看| 国产日韩欧美在线精品| 国产高清不卡午夜福利| 婷婷色麻豆天堂久久| 久久这里只有精品19| 久久人人爽av亚洲精品天堂| 国产麻豆69| 国产免费一区二区三区四区乱码| 亚洲精品在线美女| 国产av一区二区精品久久| 叶爱在线成人免费视频播放| 最新中文字幕久久久久| 久久精品久久精品一区二区三区| 热99国产精品久久久久久7| 如何舔出高潮| 另类亚洲欧美激情| 欧美日韩综合久久久久久| 亚洲av国产av综合av卡| 亚洲av男天堂| 免费观看性生交大片5| 一级a爱视频在线免费观看| 在线观看人妻少妇| 性高湖久久久久久久久免费观看| 最新的欧美精品一区二区| 国产精品亚洲av一区麻豆 | 亚洲av.av天堂| 观看美女的网站| 欧美日韩av久久| 极品少妇高潮喷水抽搐| av有码第一页| 99香蕉大伊视频| 国产精品一区二区在线不卡| 欧美人与性动交α欧美软件| 18禁观看日本| 亚洲,欧美精品.| 欧美精品一区二区大全| 最近最新中文字幕免费大全7| 亚洲精品国产色婷婷电影| 国产成人免费无遮挡视频| 少妇 在线观看| 亚洲国产看品久久| 人体艺术视频欧美日本| 人人妻人人澡人人看| 9色porny在线观看| 亚洲欧美日韩另类电影网站| 欧美97在线视频| 国产高清不卡午夜福利| 少妇被粗大猛烈的视频| 青春草亚洲视频在线观看| a 毛片基地| 美女午夜性视频免费| 欧美最新免费一区二区三区| 日本色播在线视频| 在线观看国产h片| 国产老妇伦熟女老妇高清| 国产免费又黄又爽又色| 永久网站在线| 可以免费在线观看a视频的电影网站 | 高清av免费在线| 在线观看www视频免费| 欧美最新免费一区二区三区| 欧美精品av麻豆av| tube8黄色片| 亚洲精品日韩在线中文字幕| 午夜福利视频精品| 999久久久国产精品视频| 国产亚洲一区二区精品| 精品一区二区三卡| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲 | 欧美成人精品欧美一级黄| 晚上一个人看的免费电影| 晚上一个人看的免费电影| 国产精品久久久久久精品古装| 狠狠精品人妻久久久久久综合| 久久人人爽人人片av| 亚洲精品一区蜜桃| 国产日韩欧美在线精品| 在线天堂中文资源库| 亚洲天堂av无毛| 我的亚洲天堂| 男人舔女人的私密视频| 国产一区二区激情短视频 | 国产成人a∨麻豆精品| 国产成人欧美| 捣出白浆h1v1| 精品国产一区二区久久| 一二三四在线观看免费中文在| 久久精品国产a三级三级三级| 欧美老熟妇乱子伦牲交| 亚洲精品aⅴ在线观看| 下体分泌物呈黄色| 丝袜喷水一区| 99国产综合亚洲精品| 久久ye,这里只有精品| 国产一级毛片在线| 欧美+日韩+精品| 免费看不卡的av| 国产精品蜜桃在线观看| 女人高潮潮喷娇喘18禁视频| 国产又色又爽无遮挡免| 大陆偷拍与自拍| 丝袜美腿诱惑在线| 日本vs欧美在线观看视频| 精品一区在线观看国产| 王馨瑶露胸无遮挡在线观看| 一二三四在线观看免费中文在| 男女午夜视频在线观看| 久久久精品免费免费高清| 国产精品一区二区在线观看99| 电影成人av| 在线观看免费日韩欧美大片| 日本av免费视频播放| 大码成人一级视频| 大片免费播放器 马上看| 曰老女人黄片| 午夜精品国产一区二区电影| 新久久久久国产一级毛片| 99精国产麻豆久久婷婷| 亚洲av国产av综合av卡| 日本色播在线视频| 久久久久国产一级毛片高清牌| 亚洲情色 制服丝袜| 亚洲 欧美一区二区三区| 美女国产高潮福利片在线看| 成人二区视频| 十八禁高潮呻吟视频| 91精品三级在线观看| 免费久久久久久久精品成人欧美视频| 亚洲成人一二三区av| 精品酒店卫生间| 欧美精品av麻豆av| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 各种免费的搞黄视频| 99久久精品国产国产毛片| 在线观看免费视频网站a站| 久久鲁丝午夜福利片| 国产成人精品久久久久久| 成人毛片a级毛片在线播放| av福利片在线| 欧美中文综合在线视频| 国产成人精品婷婷| 亚洲综合精品二区| 久久久精品区二区三区| 欧美日本中文国产一区发布| 亚洲经典国产精华液单| 女人精品久久久久毛片| av国产精品久久久久影院| 久久国内精品自在自线图片| 国产日韩欧美视频二区| av在线老鸭窝| 亚洲av电影在线进入| 又粗又硬又长又爽又黄的视频| 嫩草影院入口| 建设人人有责人人尽责人人享有的| 国产爽快片一区二区三区| 国产精品麻豆人妻色哟哟久久| 午夜福利一区二区在线看| 久久av网站| 国产男女超爽视频在线观看| 汤姆久久久久久久影院中文字幕| av片东京热男人的天堂| 人人妻人人添人人爽欧美一区卜| 水蜜桃什么品种好| 少妇被粗大的猛进出69影院| 一级毛片黄色毛片免费观看视频| 汤姆久久久久久久影院中文字幕| √禁漫天堂资源中文www| 国产精品久久久久久精品电影小说| 老汉色∧v一级毛片| 国产色婷婷99| 久久久久久久久久人人人人人人| 国产 一区精品| 欧美日韩一级在线毛片| 亚洲在久久综合| 99国产综合亚洲精品| 男女啪啪激烈高潮av片| 一区二区av电影网| 啦啦啦中文免费视频观看日本| 色婷婷久久久亚洲欧美| 久久久久久人妻| 赤兔流量卡办理| 日韩,欧美,国产一区二区三区| 久久鲁丝午夜福利片| 午夜福利在线观看免费完整高清在| 欧美日韩成人在线一区二区| 2018国产大陆天天弄谢| 亚洲成人手机| 午夜激情av网站| 三上悠亚av全集在线观看| 日本91视频免费播放| av有码第一页| 欧美人与性动交α欧美精品济南到 | 国产片特级美女逼逼视频| 久久影院123| 高清不卡的av网站| 秋霞在线观看毛片| 久久久久精品人妻al黑| 亚洲激情五月婷婷啪啪| 这个男人来自地球电影免费观看 | 亚洲成色77777| 亚洲熟女精品中文字幕| 国产成人免费观看mmmm| 2021少妇久久久久久久久久久| 久久久久久人人人人人| 90打野战视频偷拍视频| 欧美亚洲 丝袜 人妻 在线| 中国三级夫妇交换| 日韩免费高清中文字幕av| 国产日韩欧美视频二区| 日韩一区二区视频免费看| 色网站视频免费| 亚洲一区二区三区欧美精品| 久久97久久精品| 午夜精品国产一区二区电影| 秋霞伦理黄片| 男的添女的下面高潮视频| 精品一区在线观看国产| 久久久a久久爽久久v久久| 99热国产这里只有精品6| 中文字幕精品免费在线观看视频| 国产又色又爽无遮挡免| 日韩一卡2卡3卡4卡2021年| 水蜜桃什么品种好| 国产精品av久久久久免费| 国产男女内射视频| 久久精品aⅴ一区二区三区四区 | 成人影院久久| 日本91视频免费播放| 免费人妻精品一区二区三区视频| 亚洲欧美精品综合一区二区三区 | 伦精品一区二区三区| 人妻一区二区av| 日韩一卡2卡3卡4卡2021年| 少妇 在线观看| 久久国产精品大桥未久av| 日本猛色少妇xxxxx猛交久久| 男人舔女人的私密视频| 亚洲国产精品一区二区三区在线| 人妻少妇偷人精品九色| 免费大片黄手机在线观看| 中文字幕人妻丝袜制服| 18禁裸乳无遮挡动漫免费视频| 三级国产精品片| 丝袜人妻中文字幕| 老司机亚洲免费影院| 亚洲久久久国产精品| 久久久久久伊人网av| 久久精品国产亚洲av天美| 久久久亚洲精品成人影院| 国产av国产精品国产| 亚洲三级黄色毛片| 男女高潮啪啪啪动态图| 久久久国产欧美日韩av| 午夜av观看不卡| 不卡av一区二区三区| 亚洲成人av在线免费| 日韩三级伦理在线观看| 欧美日韩精品网址| 丝袜在线中文字幕| 国产人伦9x9x在线观看 | 极品人妻少妇av视频| 欧美精品一区二区免费开放| 久久久精品94久久精品| av国产久精品久网站免费入址| 99久久人妻综合| 国产在线免费精品| 日韩精品有码人妻一区| 毛片一级片免费看久久久久| 国产精品国产三级国产专区5o| 久久久久久久亚洲中文字幕| 国产探花极品一区二区| 国产精品国产av在线观看| 欧美xxⅹ黑人| 国产麻豆69| 91精品伊人久久大香线蕉| 丝瓜视频免费看黄片| 国产精品.久久久| 日本vs欧美在线观看视频| 久久 成人 亚洲| 国产一级毛片在线| 午夜免费观看性视频| 亚洲一区二区三区欧美精品| 多毛熟女@视频| 亚洲四区av| 在线观看一区二区三区激情| 日本欧美视频一区| 国产黄色免费在线视频| 国产精品女同一区二区软件| 九九爱精品视频在线观看| 高清黄色对白视频在线免费看| 国产老妇伦熟女老妇高清| 亚洲中文av在线| 国产视频首页在线观看| 丁香六月天网| 免费不卡的大黄色大毛片视频在线观看| 国产日韩欧美视频二区| 午夜福利网站1000一区二区三区| 精品国产国语对白av| 夫妻性生交免费视频一级片| 久久热在线av| 成人午夜精彩视频在线观看| 可以免费在线观看a视频的电影网站 | 97在线人人人人妻| 免费不卡的大黄色大毛片视频在线观看| 国产一级毛片在线| 亚洲激情五月婷婷啪啪| 美国免费a级毛片| 国产av码专区亚洲av| 中文字幕av电影在线播放| 国产成人午夜福利电影在线观看| av又黄又爽大尺度在线免费看| 在线观看一区二区三区激情| 久久久精品国产亚洲av高清涩受| 久久久久久人人人人人| 亚洲av.av天堂| 国产精品蜜桃在线观看| 午夜日本视频在线| 亚洲精品日本国产第一区| 亚洲一区二区三区欧美精品| 老司机影院成人| 国产成人精品在线电影| 春色校园在线视频观看| 亚洲成人av在线免费| 黄色怎么调成土黄色| 伦理电影大哥的女人| 9色porny在线观看| h视频一区二区三区| 中文字幕最新亚洲高清| 在线观看免费视频网站a站| 亚洲精品乱久久久久久| 韩国高清视频一区二区三区| 最新中文字幕久久久久| 肉色欧美久久久久久久蜜桃| 啦啦啦中文免费视频观看日本| 一区二区日韩欧美中文字幕| 各种免费的搞黄视频| 成年人免费黄色播放视频| 中文字幕人妻熟女乱码| 久久精品国产综合久久久| 国产有黄有色有爽视频| 性色avwww在线观看| 亚洲欧美成人精品一区二区| xxx大片免费视频| 赤兔流量卡办理| 久久久国产一区二区| 精品一品国产午夜福利视频| 少妇的丰满在线观看| 少妇被粗大的猛进出69影院| 高清av免费在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久综合国产亚洲精品| 18禁国产床啪视频网站| 亚洲情色 制服丝袜| 久久亚洲国产成人精品v| 在线观看美女被高潮喷水网站| 国产午夜精品一二区理论片| 国精品久久久久久国模美| 99re6热这里在线精品视频| 久久精品国产综合久久久| 成人免费观看视频高清| a级毛片黄视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女xxoo啪啪120秒动态图| 高清视频免费观看一区二区| 成人漫画全彩无遮挡| 国产av一区二区精品久久| 天美传媒精品一区二区| 国产探花极品一区二区| 精品第一国产精品| 波野结衣二区三区在线| 久久午夜福利片| 久久女婷五月综合色啪小说| 五月天丁香电影| 成年美女黄网站色视频大全免费| 99久久精品国产国产毛片| 日韩av在线免费看完整版不卡| 国产 精品1| 亚洲第一青青草原| 天天躁日日躁夜夜躁夜夜| 国产高清不卡午夜福利| 亚洲国产欧美网| 国产精品 国内视频| 不卡av一区二区三区| 欧美人与善性xxx| 国产在视频线精品| 日本-黄色视频高清免费观看| 国产免费一区二区三区四区乱码| a级毛片在线看网站| 97人妻天天添夜夜摸| 肉色欧美久久久久久久蜜桃| 日韩一区二区三区影片| 免费人妻精品一区二区三区视频| 天堂俺去俺来也www色官网| 少妇人妻久久综合中文| 国产在线一区二区三区精| 成人黄色视频免费在线看| 亚洲国产毛片av蜜桃av| 久久99蜜桃精品久久| 黄色怎么调成土黄色| 亚洲视频免费观看视频| 国产男女内射视频| 精品酒店卫生间| 黄色怎么调成土黄色| 午夜福利一区二区在线看| 日日爽夜夜爽网站| 亚洲,欧美精品.| av天堂久久9| 最近中文字幕2019免费版| 日日爽夜夜爽网站| 成人午夜精彩视频在线观看| 色哟哟·www| 伊人久久国产一区二区| 纯流量卡能插随身wifi吗| 免费高清在线观看视频在线观看| 午夜91福利影院| 18禁国产床啪视频网站| 老女人水多毛片| 成人国产麻豆网| 男人爽女人下面视频在线观看| 亚洲精品美女久久av网站| 天堂8中文在线网| 巨乳人妻的诱惑在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲三区欧美一区| 免费观看av网站的网址| 免费在线观看视频国产中文字幕亚洲 | 亚洲婷婷狠狠爱综合网| 欧美精品高潮呻吟av久久| 国产97色在线日韩免费| 欧美亚洲日本最大视频资源| 国产精品av久久久久免费| 一本久久精品| 亚洲成av片中文字幕在线观看 | 在线免费观看不下载黄p国产| 美女大奶头黄色视频| 亚洲成人手机| 欧美精品人与动牲交sv欧美| 9热在线视频观看99| 欧美精品人与动牲交sv欧美| 精品99又大又爽又粗少妇毛片| 免费在线观看黄色视频的| 免费黄网站久久成人精品| 欧美中文综合在线视频| 国产精品久久久久久精品电影小说| av网站免费在线观看视频| 在线 av 中文字幕| 一区在线观看完整版| 免费黄网站久久成人精品| 精品国产乱码久久久久久小说| 乱人伦中国视频| 一本—道久久a久久精品蜜桃钙片| 国产亚洲av片在线观看秒播厂| 极品人妻少妇av视频| 少妇被粗大的猛进出69影院| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀 | 亚洲第一青青草原| 成人18禁高潮啪啪吃奶动态图| 人妻一区二区av| 久久热在线av| 久久99一区二区三区| 777久久人妻少妇嫩草av网站| 边亲边吃奶的免费视频| 伊人久久大香线蕉亚洲五| 少妇人妻久久综合中文| 日本91视频免费播放| 久久精品久久精品一区二区三区| 亚洲中文av在线| 久久午夜福利片| 91aial.com中文字幕在线观看| 成年av动漫网址| 日韩中字成人| 蜜桃在线观看..| 国产高清国产精品国产三级| 天堂中文最新版在线下载| 国产黄色视频一区二区在线观看| 男女边摸边吃奶| 久久久a久久爽久久v久久| av网站在线播放免费| 久久久久久久亚洲中文字幕| 最近中文字幕高清免费大全6| 亚洲国产日韩一区二区| 精品卡一卡二卡四卡免费| freevideosex欧美| 热re99久久精品国产66热6| 永久网站在线| 日韩一区二区三区影片| 国产精品偷伦视频观看了| 欧美在线黄色| 青春草亚洲视频在线观看| 国产探花极品一区二区|