• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Possible nodeless s±-wave superconductivity in twisted bilayer graphene?

    2019-08-06 02:06:10ZheLiu劉哲YuLi李宇andYiFengYang楊義峰
    Chinese Physics B 2019年7期
    關(guān)鍵詞:劉哲

    Zhe Liu(劉哲), Yu Li(李宇),2, and Yi-Feng Yang(楊義峰),2,3,4,?

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan Lake Materials Laboratory,Dongguan 523808,China

    4Collaborative Innovation Center of Quantum Matter,Beijing 100190,China

    Keywords: twisted bilayer graphene,superconductivity

    The recent discovery of superconductivity in twisted bilayer graphene (TBLG) has attracted tremendous interest[1,2]in the condensed matter community. Depending on the twisted angle, TBLG can exhibit a large variety of exotic phenomena.[3-30]For a small twisted angle, as shown in Fig. 1(a), the lattice can form the so-called Moir′e superlattice[28-32]with strongly renormalized low-energy Dirac fermions.[20-28]At the so-called “magic angles”, their Fermi velocity can even be reduced to zero.[26-29]The superconducting phase in TBLG appears near the first magic angle (≈1.08°) on the hole-doping side (n <1), where the chemical potential is close to a van Hove singularity.The superconducting transition temperature is Tc≈1.7K with a renormalized electron bandwidth of about 10meV.[1]This was observed near a correlated insulating state at halffilling (n = 0.5). It is believed that the superconductivity might be mediated by the associated antiferromagnetic quantum critical fluctuations.[33-37]Many theoretical efforts[32-73]have been devoted to understanding the effective low-energy models,[37-48]the nature of the insulating state,[32,33,37-42,49-54]and the gap symmetry of the superconducting phases,[33,35-37,37,47,48,53-61]leading to the proposals of d+id-wave,[33-37,47,48,54-56]p+ip-wave,[47,52,57]nodal swave,[53,59]f-wave,[60]and even mixed gap symmetries.[58,61]The nature of the superconducting phases is a subject of heated debate.

    The properties of the superconducting TBLG remind us of some of the features of heavy fermion superconductors like CeCu2Si2.[74,75]In CeCu2Si2, superconductivity is also mediated by magnetic quantum critical fluctuations, with Tc≈0.6 K and a heavy electron band of the width of a few meV,similar to those of TBLG. For decades, superconductivity in CeCu2Si2has been believed to be a d-wave,[75-77]but recent refined experiments have revealed two nodeless gaps.[78,79]It was pointed out that such a gap structure may be the result of the strong interband quantum critical pairing interaction between coexisting electron and hole Fermi surfaces in CeCu2Si2.[80]Since the low-energy effective model of TBLG may also have two bands,[37,38]we explore here the possibility of multiple superconducting gaps and study the detailed gap structures taking into account both intra-and interband pairing interactions. For this purpose, we adopt the strong-coupling Eliashberg approach and consider the magnetic quantum critical fluctuations as the candidate pairing glues.[80-89]In comparison with the experiment, we find the most plausible gap symmetry to be a nodeless s±-wave in the observed range of superconductivity. Moreover, when projected into the valley basis, we obtain f-wave pairing in the valley-singlet component and interesting topological features in the valley-triplet component. Our work highlights the multi-gap nature of the superconductivity in TBLG and the key importance of interband quantum critical pairing interaction. This suggests that TBLG might belong to the same class of unconventional superconductivity as iron-pnictide, electron-doped cuprate, and some heavy fermion superconductors.

    Our low-energy effective model is constructed with one px-like and one py-like Wannier orbital on each site of the honeycomb Moir′e superlattice,[38,43]as schematically illustrated in Fig. 1(b). The resulting four-orbital model describes the four low-energy bands separated by two gaps of about 50meV from other bands.[16]At the first magic angle,the lattice constant is a ≈134 ?A.The mini-Brillouin zone of the superlattice is greatly reduced,as shown in Fig.1(c). Following Refs.[38]and[43],we adopt the following effective model:

    The first term gives the main feature of valley degenerate valence and conduction bands and can be expressed as

    where i,j denote the sites, μ is the chemical potential which is responsible for doping away from the Fermi level, and ci=(cix,ciy)T. In this term, only the hoppings between the same pxor pyorbitals are considered and tijtakes the value of t1,t2,t3,t4depending on the distance between the i and j sites.We consider hoppings up to the fourth nearest neighbor. The second term lifts the degeneracy of the K and K′valleys and can be written as

    Fig.1. (a)Illustration of the Moir′e superlattice in TBLG with small twisted angle. (b)The honeycomb lattice for the tight-binding model used in this work. The px/y-like Wannier orbitals and the hopping parameters are labeled in the figure. In both(a)and(b),the regions enclosed by dashed lines represent a single super unit cell. (c)Illustration of the mini-Brillouin zone of TBLG.Kt and K′t (Kb and K′b)represent the two inequivalent valleys of the top(bottom)graphene layer. K and K′ represent the two inequivalent valleys of TBLG.Γ and M are the center and middle points of the K-K′line of the mini-Brillouin zone. (d)Effective low-energy band structures along the high symmetry lines in the mini-Brillouin zone. The dashed lines denote the Fermi energy for n=0.5(half-filling)and 1,where n is one fourth of the total occupation number. n <1 is at the hole-doping side. (e)Typical Fermi surfaces taken at n=0.5,where the two lower bands are half filled. Q1,Q2,and Q3 are the three nesting vectors used in our calculations.

    where the fifth neighbor hopping between the pxand pyorbitals is included. The last term including the nearest neighbor hopping t′1is

    where e‖

    ijand e⊥ijdenote the in-plane unit vectors in the directions parallel and perpendicular to the nearest-neighbor bond,respectively. This last term accounts for the hybridization between two valleys and generates a finite Dirac mass at K and K′points.[38]The parameters are chosen such that the bandwidth is of the order of 10meV and the doping level for halffilling of the two lower bands (n=0.5) is close to the van Hove singularity.Specifically,we adopt the values t1=2 meV,t2=0.3 meV,t3=0.05 meV,t4=0.15 meV,t5=0.12 meV,and t′1=0.1 meV. We have ignored the spin-orbit coupling(SOC) which is only ~1μeV in graphene and much smaller than the energy scale considered here.[90,91]Figure 1(d)plots the calculated band structures along high symmetry lines of the mini-Brillouin zone. The band structures at K suggest the coexistence of massless and massive Dirac fermions,consistent with both symmetry analysis[38]and quantum oscillation experiment.[1]The Fermi surfaces are nested near the van Hove singularity,as depicted in Fig.1(e)with the nesting wave vectors Q1=4π/3a(1,0), Q2=4π/3a(-1/2,3/2),and Q3= 4π/3a(-1/2,-3/2). A Lifshitz transition occurs when the chemical potential is tuned across the van Hove point.

    To study the pairing symmetry of superconductivity, we apply the strong-coupling Eliashberg theory and consider two separated Fermi surfaces. The interband (finite momentum) pairing is ignored due to the absence of Fermi surface overlap.[80]Near Tc, the linearized Eliashberg equations can be written as

    with

    where μ and ν are the band indices, ωnis the fermionic Matsubara frequency,Zμ(k,iωn)is the renormalization function, and φμ(k,iωn) is related to the gap function through φμ(k,iωn)=Zμ(k,iωn)Δμ(k,iωn). Vμν(k-k′,iωn-iωm)represents the intra- or interband scattering of the Cooper pairs. This is an eigenvalue equation and each of its eigen solutions corresponds to a candidate pairing channel. The superconducting symmetry is determined by the leading channel with the largest eigenvalue λ at Tc. For quantum critical superconductivity,the pairing interactions take the phenomenological form[80,81]

    where ξ is the correlation length, Q is the antiferromagnetic wave vector, and ωsfis the characteristic energy of the quantum critical fluctuations. The values of ξ and ωsfare chosen such that the effective magnetic Fermi energy,Γsf= ωsf(ξ/a)2= 4.3meV, is approximately equal to the bandwidth of the two lower bands. Vμν0 are free parameters to be determined experimentally. The resulting gap structures only depend on the relative strengths r11=V110/V220and r12=V120/V220, while their absolute values play no essential role.

    To solve the Eliashberg equations, we further approximate Δμ(k,iωn)=Δμ(k,iπTc)and Zμ(k,iωn)=Zμ(k,iπTc)and use 2048 Matsubara frequencies and 240×240 k-meshes in the mini-Brillouin zone. Typical solutions of the eigenvalue equations are plotted in Fig.2. The leading solution is a spinsinglet state with nodeless s±or doubly degenerate d-wave gap symmetry. This may be understood by recalling that the superlattice has a D3symmetry group with two one-dimensional and one two-dimensional irreducible representations. The s±-wave and degenerate d-wave solutions correspond to the A1:1,k2x+k2y,...and E:(kx, ky),(k2x-k2y, kxky)representations,respectively.A degenerate p-wave solution is also allowed in the E representation but never becomes dominant in the relevant parameter range. Figure 2(a)shows the four leading values of λ with varying r12at fixed r11=1.0. For small r12, the dwave solutions dominate,indicating that the intraband interaction favors d-wave superconductivity on both Fermi surfaces.Since dxyand dx2-y2are degenerate,the true gap function here is their linear combination,yielding a chiral d+id-wave pairing symmetry.[37,54]While for large r121.2,the leading solution is nodeless s±-wave, induced by a relatively strong interband interaction, as is in pnictide or some heavy fermion superconductors.[80,92,93]A nodal s-wave solution never wins out in the whole parameter range.Figure 2(b)plots the leading eigenvalues at fixed r12=1.1. With increasing r11, the dominant d and nodeless s±-wave solutions exhibit opposite tendencies,reflecting their different physical origins owing to the intra-and inter-band quantum critical pairing interactions,respectively. The momentum distributions of the two solutions are plotted in Figs. 2(c)-2(e). Although the dxyand dx2-y2components have nodes,the combined d+id solution is fully gapped. Therefore, both leading solutions are nodeless and may be hard to distinguish in the scanning tunneling experiment.

    Fig.2. Evolution of the eigenvalues λ of four leading solutions with(a)r12 for fixed r11=1.0 and(b)r11 for fixed r12=1.1. (c)-(e)The gap distributions on the Fermi surfaces for a typical nodeless s±-wave solution and the degenerate dx2-y2 and dxy-wave solutions,respectively. We take as an example the results at n=0.5.

    Fig. 3. Variation of the gap functions in the valley space with the azimuthal angle φ, showing (a) the valley-singlet component d0, (b) the valley-triplet component d3, (c) ΔKK = -d1+id2, and (d) ΔK′K′ =d1+id2 for a typical nodeless s±-wave solution of the band basis. The upper and lower panels of(c)and(d)plot the magnitude and argument of the two intravalley components,respectively.

    While these solutions look simple, they contain certain topological features in the valley space. This may be analyzed considering Δηη′(k)=∑μaημ(k)aη′μ(-k)Δμ(k),under a unitary transformation from band(μ)to valley(η)bases,cησ(k) = ∑μaημ(k)cμσ(k), where aημ(k) are coefficients of the transformation, cησ(k) and cμσ(k) are the electron annihilation operators in valley and band spaces. The resulting gap function can be quite generally decomposed into the valley-singlet and triplet components through Δηη′(k)=∑j[dj(k)τjiτ2]ηη′,where τjare the unit matrix for j=0 and the Pauli matrices for j=1,2,3. The magnitudes of d0and d=(d1,d2,d3)represent the relative importance of the valleysinglet and triplet contributions. Figure 3 plots the distribution of dj(k)on the Fermi surfaces for a typical solution of nodeless s±-wave as a function of the azimuthal angle φ. For spinsinglet pairing, the valley-singlet(triplet)requires odd(even)gap symmetry in the momentum space due to the Pauli principle. As shown in Fig. 3(a), d0indeed is an odd function in the momentum space. In particular,it has the same sign on both Fermi surfaces at the same azimuthal angle but the overall φ-dependence exhibits an f-wave manner. Thus the nodeless s±-wave solution in the band basis contains a valley-singlet fwave component. The angle dependence of the valley-triplet component is analyzed in Figs. 3(b)-3(d). Quite unexpectedly, while d3(k) is real and varies only slightly with momentum on both Fermi surfaces, d1(k) and d2(k) that correspond to intravalley pairing exhibit unusual topological characters. To see this, we introduce the gap functions on each valley individually, ΔKK=-d1+id2and ΔK′K′ =d1+id2,and plot the angle dependence of their amplitudes and phases in Figs. 3(c) and 3(d). A phase change of 4π or -4π is revealed as φ varies from 0 to 2π, which is a characteristic feature of topological superconductor with time reversal symmetry.[94]We thus conclude that the valley-triplet component has d±id-wave symmetry in the momentum space.We should note that the existence of ΔKKand ΔK′K′ is associated with the presumption of valley hybridization in our model Hamiltonian.[38]The relative importance of different valley components may be tuned by experimental manipulation of the valley degree of freedom.[95,96]Absent valley hybridization,the gap function becomes topologically trivial. A similar analysis may be applied to the d+id-wave solution in the band basis(not shown),where the d3and d1+id2components exhibit the phase change of-4π and-8π,respectively,implying its topological nature as chiral superconductivity.[94]

    Our results are summarized in Fig.4(a)on a generic phase diagram with r11and r12as tuning parameters. There are two regions governed by the nodeless s±-wave for large r12and the d+id-wave for small r12. The overall phase boundary is only slightly shifted for different doping levels as shown in Fig. 4(b). Although an exact estimate of the relative importance of the intra- and inter-band quantum critical pairing interactions is not possible at this stage,some preliminary argument might still be made by considering∝(Q),where(Q)is the static spin susceptibility at the ordering wave vector Q and may be estimated under the first order approximation using the Lindhard function

    where fFDis the Fermi-Dirac distribution function and εμkis the dispersion of the μ-th band. Taking n = 0.5 once again as an example, we plot in Fig. 4(c) the real part of χ(q)=∑μνχμν(q)as a function of q. As expected,Reχ(q)reaches maximum when q approaches the nesting wave vectors (Q1, Q2, Q3) at the corners of the mini-Brillouin zone.The corresponding r11and r12can also be estimated and plotted in Fig. 4(d) for generic n. A direct comparison with the phase diagram in Fig. 4(b) gives the lower shaded area RC(0.4 n 0.6)in which the nodeless s±-wave solution dominates. Experimentally,superconductivity was observed in the upper shaded area labeled as RE. Their overlap implies that nodeless s±-wave is the most plausible gap symmetry for the superconducting TBLG near half-filling on the hole-doping side.

    Fig. 4. (a) A typical theoretical phase diagram taken with n=0.5. The color is calibrated by the difference between the eigenvalues of the nodeless s± and d+id-wave solutions. The solid line marks the boundary of the two phases. (b)Variation of the phase boundary for different doping levels,showing only slight change with n. (c)The total spin susceptibility χ(q)evaluated from the Lindhard function,showing maxima at nesting wave vectors. (d) Variation of the estimated r11 and r12 as a function of the doping level. The shaded area RC denotes the range where the nodeless s±-wave becomes dominant,while the shaded area RE marks the region of superconductivity observed in experiment. The insulating phase(not indicated)is a very narrow region near half-filling within RE.

    Our prediction of the nodeless s±-wave pairing symmetry is deduced from an effective low-energy four-band model with quantum critical pairing interactions and two coexisting Fermi surfaces due to valley hybridization. In previous studies,[33-37,47,48,54-56]a d+id-wave solution was often obtained without considering the presence of strong interband interaction. Absent valley hybridization,p+ip[47,52,57]or nodal s-wave solutions[53,59]have also been proposed depending on the topology of the Fermi surfaces. On the other hand, a more sophisticated analysis using the functional renormalization group (fRG) was shown to yield an f-wave solution.[60]Actually,this latter work might be consistent with the valleysinglet component in our nodeless s±-wave solution, as valley hybridization was neglected in the fRG calculations. Further experiments are needed to examine these various possibilities. However, we should note that both the nodeless s±and d+id-waves are nodeless in the momentum space. Therefore,it might be difficult to distinguish them with the usual scanning tunneling or photoemission spectroscopies. In this respect,phase sensitive measurements using Josephson devices for example[97]have recently been applied to the investigation of 2D topological superconductivity,[98]and Kerr rotation experiments may also be used to detect time reversal symmetry breaking in d+id or p+ip-pairings.[99]

    To summarize,we explore possible gap symmetry of the superconductivity observed recently in TBLG based on a fourorbital model using the strong-coupling Eliashberg equations with a quantum critical form of the intra-and interband pairing interactions. We find a leading nodeless s±-wave solution for strong interband interaction and a dominant d+id-wave solution originating primarily from the intraband pairing interaction. Both exhibit interesting topological characters in the valley basis. A direct comparison between our theoretical and experimental parameter ranges suggests that the nodeless s±-wave is the most plausible candidate for the pairing symmetry in superconducting TBLG,different from previous theoretical proposals. The quantum critical nature of the pairing interaction has often been ignored in previous theories. Our work suggests a possible unified description for superconductivity in TBLG and some other correlated superconductors.

    猜你喜歡
    劉哲
    下雪與染發(fā)
    滇池(2024年3期)2024-03-08 22:21:20
    A band-pass frequency selective surface with polarization rotation
    雙參寧心膠囊對2型糖尿病大鼠冠狀動脈微循環(huán)的影響
    中鐵十二局川藏鐵路指揮部綜合管理部部長劉哲:在青藏高原燃起“青馬”微光
    中華兒女(2022年2期)2022-04-13 12:41:54
    騎車別任性
    騎車別任性
    愛你(2019年42期)2019-11-16 05:17:54
    劉哲:讓尺八古音重回故里
    小演奏家(2019年4期)2019-04-27 01:46:04
    喝一杯
    把你的未來打包給我
    伴侶(2015年7期)2015-07-16 05:32:56
    讓欣慰的眼淚再流一會兒
    少妇裸体淫交视频免费看高清 | 精品国内亚洲2022精品成人| 可以在线观看的亚洲视频| 久久亚洲真实| 一区在线观看完整版| 欧美丝袜亚洲另类 | 国产精品日韩av在线免费观看 | 美国免费a级毛片| 一边摸一边抽搐一进一出视频| 动漫黄色视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 妹子高潮喷水视频| 国产一区在线观看成人免费| 久久婷婷人人爽人人干人人爱 | 最近最新中文字幕大全电影3 | 亚洲成a人片在线一区二区| 亚洲av第一区精品v没综合| 国产熟女xx| 夜夜躁狠狠躁天天躁| bbb黄色大片| 免费看十八禁软件| 久久久久久久久久久久大奶| 日本 av在线| 精品高清国产在线一区| av天堂久久9| 国产亚洲欧美98| 日本一区二区免费在线视频| 午夜免费激情av| 国产成人精品无人区| 色综合站精品国产| 国产免费av片在线观看野外av| 国产在线观看jvid| 91成人精品电影| 一区二区三区高清视频在线| 纯流量卡能插随身wifi吗| 色在线成人网| 亚洲中文av在线| 亚洲五月天丁香| 午夜老司机福利片| 国产成人av激情在线播放| 岛国在线观看网站| 女人被躁到高潮嗷嗷叫费观| 日本 av在线| 国产精品精品国产色婷婷| 国产精品久久久久久人妻精品电影| 女警被强在线播放| 老司机福利观看| 日韩大尺度精品在线看网址 | 亚洲国产精品sss在线观看| 波多野结衣高清无吗| 一二三四社区在线视频社区8| 免费少妇av软件| 欧美激情久久久久久爽电影 | 亚洲国产高清在线一区二区三 | 俄罗斯特黄特色一大片| 村上凉子中文字幕在线| 久久亚洲精品不卡| 黄片播放在线免费| 国产成人av教育| 给我免费播放毛片高清在线观看| 国产伦人伦偷精品视频| 免费高清在线观看日韩| av有码第一页| 国产一区二区三区在线臀色熟女| 成人免费观看视频高清| 国产精品日韩av在线免费观看 | 69精品国产乱码久久久| 午夜精品久久久久久毛片777| 亚洲成av人片免费观看| 一区在线观看完整版| 极品人妻少妇av视频| 国内精品久久久久精免费| 在线十欧美十亚洲十日本专区| 99久久久亚洲精品蜜臀av| 欧美在线黄色| 成人免费观看视频高清| 可以在线观看的亚洲视频| 国产高清videossex| 在线十欧美十亚洲十日本专区| 成人国产一区最新在线观看| 国产一卡二卡三卡精品| а√天堂www在线а√下载| 可以在线观看的亚洲视频| 国产高清videossex| 国产成+人综合+亚洲专区| 丝袜在线中文字幕| 精品人妻1区二区| 国产欧美日韩一区二区三| 黄色视频,在线免费观看| tocl精华| 欧美国产日韩亚洲一区| 一边摸一边抽搐一进一出视频| 国产精品影院久久| 中文字幕人成人乱码亚洲影| 99国产综合亚洲精品| 精品熟女少妇八av免费久了| 亚洲天堂国产精品一区在线| 日韩精品中文字幕看吧| 午夜福利18| 免费高清在线观看日韩| 麻豆国产av国片精品| 国产av一区在线观看免费| 9色porny在线观看| 精品欧美一区二区三区在线| 国产精品一区二区三区四区久久 | 黄片小视频在线播放| 日本欧美视频一区| 亚洲少妇的诱惑av| 欧美在线黄色| 一a级毛片在线观看| 亚洲专区中文字幕在线| 麻豆国产av国片精品| 两个人视频免费观看高清| 成年人黄色毛片网站| 久久草成人影院| 久久人人爽av亚洲精品天堂| 精品卡一卡二卡四卡免费| 欧美激情久久久久久爽电影 | 一进一出抽搐gif免费好疼| 99re在线观看精品视频| 大陆偷拍与自拍| 一本久久中文字幕| 91麻豆av在线| 最近最新中文字幕大全电影3 | 精品无人区乱码1区二区| 欧洲精品卡2卡3卡4卡5卡区| 夜夜躁狠狠躁天天躁| 精品国产国语对白av| 亚洲专区国产一区二区| 老熟妇仑乱视频hdxx| 日韩精品青青久久久久久| 国产高清激情床上av| 亚洲av成人av| 两个人视频免费观看高清| 国产成人av教育| av天堂久久9| 欧美日韩精品网址| 午夜精品国产一区二区电影| 色综合亚洲欧美另类图片| 久久久精品欧美日韩精品| 久久九九热精品免费| 自拍欧美九色日韩亚洲蝌蚪91| 日本三级黄在线观看| 韩国av一区二区三区四区| 黑人巨大精品欧美一区二区mp4| 成人av一区二区三区在线看| 免费在线观看完整版高清| 日韩av在线大香蕉| 99精品久久久久人妻精品| 午夜福利成人在线免费观看| 99国产精品99久久久久| 国产亚洲精品久久久久久毛片| 村上凉子中文字幕在线| 国产三级黄色录像| 丝袜人妻中文字幕| 中文字幕色久视频| 国产人伦9x9x在线观看| 丁香六月欧美| 色婷婷久久久亚洲欧美| 精品国产亚洲在线| 我的亚洲天堂| 看黄色毛片网站| 欧美精品亚洲一区二区| 国产精品二区激情视频| 日本一区二区免费在线视频| 精品日产1卡2卡| 国产激情欧美一区二区| 久久久久久久久中文| 高潮久久久久久久久久久不卡| 一级毛片精品| 免费在线观看日本一区| 国产伦一二天堂av在线观看| 黑人操中国人逼视频| 香蕉久久夜色| 亚洲一区二区三区不卡视频| 国产视频一区二区在线看| 91在线观看av| 精品国产国语对白av| 成人欧美大片| 欧美黄色淫秽网站| 精品熟女少妇八av免费久了| 亚洲国产精品久久男人天堂| 91av网站免费观看| 欧美av亚洲av综合av国产av| 在线观看免费视频日本深夜| 免费少妇av软件| 国产成人精品在线电影| 久久久久国内视频| 久久九九热精品免费| 亚洲免费av在线视频| 午夜久久久久精精品| 亚洲国产欧美网| 成人特级黄色片久久久久久久| 亚洲av成人不卡在线观看播放网| 男女下面进入的视频免费午夜 | 在线国产一区二区在线| 一级a爱视频在线免费观看| 久久久久久人人人人人| 国产一区二区激情短视频| 久久香蕉激情| 91九色精品人成在线观看| 色在线成人网| 色精品久久人妻99蜜桃| 久久国产亚洲av麻豆专区| 亚洲精品在线观看二区| 国内毛片毛片毛片毛片毛片| 色综合欧美亚洲国产小说| 免费一级毛片在线播放高清视频 | 国产精品99久久99久久久不卡| 老熟妇乱子伦视频在线观看| 日本黄色视频三级网站网址| 久久久国产欧美日韩av| 99在线人妻在线中文字幕| videosex国产| 一个人观看的视频www高清免费观看 | 精品久久久久久久毛片微露脸| 欧美黑人精品巨大| 欧美激情极品国产一区二区三区| 精品久久久久久久毛片微露脸| 国产高清有码在线观看视频 | 老司机深夜福利视频在线观看| 啦啦啦观看免费观看视频高清 | av网站免费在线观看视频| 日本撒尿小便嘘嘘汇集6| 校园春色视频在线观看| 久久精品国产综合久久久| 国产99白浆流出| 国产91精品成人一区二区三区| 亚洲av熟女| 嫁个100分男人电影在线观看| 夜夜夜夜夜久久久久| 久久国产精品人妻蜜桃| 欧美绝顶高潮抽搐喷水| 亚洲一区二区三区不卡视频| 欧美亚洲日本最大视频资源| 国产xxxxx性猛交| 少妇被粗大的猛进出69影院| 久久久久久国产a免费观看| 一区在线观看完整版| 亚洲av片天天在线观看| 一二三四在线观看免费中文在| avwww免费| 桃红色精品国产亚洲av| 色播在线永久视频| 精品久久久久久,| 男女下面插进去视频免费观看| 国产精品 欧美亚洲| 999久久久精品免费观看国产| 99热只有精品国产| 日韩av在线大香蕉| 色综合欧美亚洲国产小说| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 51午夜福利影视在线观看| 亚洲中文av在线| 亚洲精品久久国产高清桃花| 欧美成人性av电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产亚洲精品久久久久久毛片| 一个人免费在线观看的高清视频| 欧美一级毛片孕妇| 亚洲成人免费电影在线观看| 日韩三级视频一区二区三区| 又大又爽又粗| 国产aⅴ精品一区二区三区波| 国产一级毛片七仙女欲春2 | 国产高清激情床上av| 亚洲国产精品成人综合色| 两个人看的免费小视频| 激情视频va一区二区三区| 国产精品一区二区三区四区久久 | 69av精品久久久久久| 国产激情久久老熟女| 亚洲欧美日韩另类电影网站| 欧美黑人欧美精品刺激| 在线观看免费午夜福利视频| 免费观看精品视频网站| 国产av在哪里看| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 少妇粗大呻吟视频| 欧美日韩亚洲综合一区二区三区_| 九色国产91popny在线| 国产不卡一卡二| 国产成人一区二区三区免费视频网站| 黄色 视频免费看| 老鸭窝网址在线观看| 国产亚洲精品综合一区在线观看 | 一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久国产高清桃花| 美女国产高潮福利片在线看| 少妇裸体淫交视频免费看高清 | aaaaa片日本免费| 久久婷婷成人综合色麻豆| 国产精品久久视频播放| 欧美国产精品va在线观看不卡| 国产一区二区激情短视频| 久久热在线av| 18禁国产床啪视频网站| 国产人伦9x9x在线观看| 他把我摸到了高潮在线观看| 免费久久久久久久精品成人欧美视频| 一级a爱片免费观看的视频| 国产成人av教育| 不卡一级毛片| 国产av精品麻豆| 国产国语露脸激情在线看| 男人的好看免费观看在线视频 | 免费人成视频x8x8入口观看| 中文字幕最新亚洲高清| 少妇粗大呻吟视频| 久久久久久久精品吃奶| 成人18禁高潮啪啪吃奶动态图| 91字幕亚洲| 久久久水蜜桃国产精品网| 18禁国产床啪视频网站| 18禁裸乳无遮挡免费网站照片 | 免费女性裸体啪啪无遮挡网站| 级片在线观看| 欧美日韩精品网址| av有码第一页| 国产成人欧美在线观看| 黄色成人免费大全| 亚洲一区二区三区色噜噜| 12—13女人毛片做爰片一| 日本免费a在线| 午夜久久久久精精品| ponron亚洲| 两个人视频免费观看高清| 50天的宝宝边吃奶边哭怎么回事| 日韩精品免费视频一区二区三区| 女警被强在线播放| 激情在线观看视频在线高清| 亚洲性夜色夜夜综合| 我的亚洲天堂| 亚洲 国产 在线| 一级片免费观看大全| 真人做人爱边吃奶动态| 午夜福利一区二区在线看| 国产熟女午夜一区二区三区| 我的亚洲天堂| 亚洲精品中文字幕在线视频| 国产精品自产拍在线观看55亚洲| 国产成人啪精品午夜网站| 每晚都被弄得嗷嗷叫到高潮| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 99久久久亚洲精品蜜臀av| 午夜亚洲福利在线播放| 精品第一国产精品| 人人妻人人澡欧美一区二区 | 成人欧美大片| 久久狼人影院| 黄色片一级片一级黄色片| 欧美日韩瑟瑟在线播放| 88av欧美| 欧美一级毛片孕妇| 国产成人欧美| 男女下面插进去视频免费观看| 中文字幕最新亚洲高清| 色哟哟哟哟哟哟| 精品久久久久久久毛片微露脸| 91大片在线观看| 国产三级在线视频| 最近最新中文字幕大全免费视频| 伦理电影免费视频| 亚洲 欧美 日韩 在线 免费| 久久中文字幕一级| 九色国产91popny在线| 91成人精品电影| 91国产中文字幕| 9191精品国产免费久久| 久久天堂一区二区三区四区| 日本撒尿小便嘘嘘汇集6| 亚洲熟女毛片儿| 性色av乱码一区二区三区2| 夜夜躁狠狠躁天天躁| 啦啦啦免费观看视频1| 99香蕉大伊视频| 又黄又爽又免费观看的视频| 黄色视频不卡| 午夜久久久在线观看| 亚洲 国产 在线| 国产成人精品无人区| 99国产精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 一本大道久久a久久精品| 国产亚洲精品久久久久5区| 99国产精品一区二区三区| 亚洲精品中文字幕一二三四区| 老司机深夜福利视频在线观看| 精品免费久久久久久久清纯| 色老头精品视频在线观看| 97人妻天天添夜夜摸| 久久天躁狠狠躁夜夜2o2o| 精品福利观看| 一本久久中文字幕| 亚洲成人久久性| 女警被强在线播放| 午夜影院日韩av| 成年女人毛片免费观看观看9| 97人妻精品一区二区三区麻豆 | 久久久久精品国产欧美久久久| 婷婷六月久久综合丁香| 欧美久久黑人一区二区| 久久精品影院6| 丁香六月欧美| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲精品国产色婷小说| 欧美激情高清一区二区三区| www日本在线高清视频| 国产精品久久久久久人妻精品电影| 国语自产精品视频在线第100页| 亚洲黑人精品在线| 亚洲国产高清在线一区二区三 | 欧美激情高清一区二区三区| 人妻久久中文字幕网| 午夜福利成人在线免费观看| 午夜福利高清视频| 天天添夜夜摸| 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 国产激情欧美一区二区| 黄片小视频在线播放| 国产亚洲欧美精品永久| 91字幕亚洲| 黄片大片在线免费观看| 在线观看66精品国产| 人成视频在线观看免费观看| 国产精品乱码一区二三区的特点 | 亚洲欧美日韩高清在线视频| 亚洲,欧美精品.| 午夜福利成人在线免费观看| 午夜福利18| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 男女下面插进去视频免费观看| 日日夜夜操网爽| 久久精品国产亚洲av香蕉五月| 99久久综合精品五月天人人| 国产精品免费视频内射| 亚洲精品国产精品久久久不卡| 在线av久久热| 好男人电影高清在线观看| 日韩大码丰满熟妇| 色婷婷久久久亚洲欧美| 90打野战视频偷拍视频| 黄片播放在线免费| 此物有八面人人有两片| 青草久久国产| 午夜久久久久精精品| 日日摸夜夜添夜夜添小说| 久久国产乱子伦精品免费另类| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久国产精品人妻aⅴ院| or卡值多少钱| 亚洲精品av麻豆狂野| 亚洲男人天堂网一区| 日本在线视频免费播放| 亚洲国产看品久久| 国产亚洲欧美98| 久久人人97超碰香蕉20202| 久久午夜亚洲精品久久| 亚洲五月色婷婷综合| 大型av网站在线播放| 超碰成人久久| 国产av精品麻豆| 亚洲午夜理论影院| videosex国产| 国产成人免费无遮挡视频| 欧美日本中文国产一区发布| 国产片内射在线| 久久久久久人人人人人| 成人国产一区最新在线观看| 老鸭窝网址在线观看| 亚洲精品av麻豆狂野| 国产精品,欧美在线| 亚洲avbb在线观看| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| 亚洲电影在线观看av| 日韩大码丰满熟妇| 九色亚洲精品在线播放| 欧美在线一区亚洲| 亚洲自偷自拍图片 自拍| 国产亚洲精品久久久久5区| 久久精品国产综合久久久| 淫秽高清视频在线观看| 国产1区2区3区精品| 日韩三级视频一区二区三区| 精品国产乱子伦一区二区三区| 午夜福利,免费看| 亚洲欧洲精品一区二区精品久久久| 日韩欧美一区视频在线观看| 色av中文字幕| 搡老岳熟女国产| 久久久久国产一级毛片高清牌| 美女免费视频网站| 久久精品国产99精品国产亚洲性色 | 高潮久久久久久久久久久不卡| 90打野战视频偷拍视频| 欧美日韩精品网址| av福利片在线| 国产不卡一卡二| 高潮久久久久久久久久久不卡| 国内毛片毛片毛片毛片毛片| 亚洲熟女毛片儿| aaaaa片日本免费| 久久精品国产亚洲av香蕉五月| 亚洲 欧美一区二区三区| 一夜夜www| 欧美成人午夜精品| 操美女的视频在线观看| 亚洲视频免费观看视频| 色播在线永久视频| 免费看十八禁软件| 亚洲精品在线观看二区| 亚洲精品国产色婷婷电影| 欧美日韩中文字幕国产精品一区二区三区 | 午夜免费成人在线视频| √禁漫天堂资源中文www| 一二三四社区在线视频社区8| 搞女人的毛片| 如日韩欧美国产精品一区二区三区| 午夜福利18| 久久热在线av| 国内毛片毛片毛片毛片毛片| 亚洲国产高清在线一区二区三 | 伦理电影免费视频| 一个人免费在线观看的高清视频| 老熟妇乱子伦视频在线观看| 免费在线观看黄色视频的| 99re在线观看精品视频| 日日夜夜操网爽| 亚洲aⅴ乱码一区二区在线播放 | 亚洲 欧美 日韩 在线 免费| 欧美黄色淫秽网站| 99精品欧美一区二区三区四区| 久久精品国产综合久久久| 丝袜人妻中文字幕| 国产三级在线视频| 久久人人爽av亚洲精品天堂| 精品免费久久久久久久清纯| 悠悠久久av| 欧美日韩亚洲国产一区二区在线观看| 十八禁网站免费在线| www日本在线高清视频| 久久香蕉激情| 国产高清激情床上av| 波多野结衣巨乳人妻| 亚洲国产欧美一区二区综合| 男人舔女人的私密视频| 丰满人妻熟妇乱又伦精品不卡| 久久久久久大精品| 女同久久另类99精品国产91| 性少妇av在线| 午夜免费观看网址| 咕卡用的链子| 日韩大码丰满熟妇| 日韩成人在线观看一区二区三区| 怎么达到女性高潮| cao死你这个sao货| 日韩精品青青久久久久久| 国产av一区在线观看免费| 国产成人精品久久二区二区91| 一区二区三区高清视频在线| 午夜成年电影在线免费观看| 久久久国产精品麻豆| 国产亚洲av高清不卡| 性欧美人与动物交配| 亚洲久久久国产精品| 99国产精品一区二区三区| 69精品国产乱码久久久| 亚洲国产精品999在线| 精品国内亚洲2022精品成人| 色播亚洲综合网| 日本免费一区二区三区高清不卡 | 亚洲av成人av| 成年版毛片免费区| 亚洲人成伊人成综合网2020| 国产精品免费一区二区三区在线| 美国免费a级毛片| 波多野结衣一区麻豆| 国产精品香港三级国产av潘金莲| 热re99久久国产66热| 黄片大片在线免费观看| 啦啦啦免费观看视频1| 成人精品一区二区免费| 丝袜人妻中文字幕| 97人妻精品一区二区三区麻豆 | 日韩精品中文字幕看吧| 久久久国产成人免费| 精品国产一区二区三区四区第35| 日日爽夜夜爽网站| 亚洲五月天丁香| 成人国产一区最新在线观看| 国产日韩一区二区三区精品不卡| 狠狠狠狠99中文字幕| 嫩草影视91久久| 9色porny在线观看| а√天堂www在线а√下载| 91字幕亚洲| 两个人看的免费小视频| 亚洲aⅴ乱码一区二区在线播放 | 丝袜在线中文字幕| 精品久久久久久成人av| av在线天堂中文字幕| 99久久久亚洲精品蜜臀av| 国产片内射在线| 亚洲七黄色美女视频| 国产精品久久久久久亚洲av鲁大| 亚洲在线自拍视频| av超薄肉色丝袜交足视频|