• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions?

    2019-07-25 02:01:58WenGeWang王文閣
    Communications in Theoretical Physics 2019年7期
    關(guān)鍵詞:文閣

    Wen-Ge Wang (王文閣)

    Department of Modern Physics,University of Science and Technology of China,Hefei 230026,China

    Abstract We introduce a decimation scheme of constructing renormalized Hamiltonian flows,which is useful in the study of properties of energy eigenfunctions,such as localization,as well as in approximate calculation of eigenenergies.The method is based on a generalized Brillouin-Wigner perturbation theory.Each flow is specific for a given energy and,at each step of the flow,a finite subspace of the Hilbert space is decimated in order to obtain a renormalized Hamiltonian for the next step.Eigenenergies of the original Hamiltonian appear as unstable fixed points of renormalized flows.Numerical illustration of the method is given in the Wigner-band random-matrix model.

    Key words: generalized Brillouin-Wigner perturbation theory,Hamiltonian flow,eigenfunction structure,eigenvalue

    1 Introduction

    Properties of energy eigenvalues and eigenfunctions are of central importance in a variety of fields,from nuclei physics,atomic physics,to condensed matter physics,and so on.[1?12]In particular,they are of relevance to thermalization,[13?21]a topic which has attracted renewed interest in recent years.An important method of studying these properties is the renormalization group method.Various versions of this method have been developed.For example,in calculating energy eigenfunctions in the low energy region,wide use has been made of Wilson’s numerical renormalization group[22?23]and of the density-matrix renormalization group method.[24?25]

    Localization of wavefunctions is one of the most important phenomena discovered in the field of condensed matter physics[26?30]and in the field of quantum chaos.[31?32]A real-space renormalization-group method and its modified versions[33?38]have been found quite successful in the study of localization properties in one-dimensional systems with (effectively) finite range of coupling; while in the case of two and more than two-dimensional systems,they have been found successful only in some special cases such as the Fibonacci quasi-lattices (see,e.g.,Refs.[39–40]).Moreover,recently,the phenomenon of many-body location has attracted wide attention (see,e.g.,Refs.[41–44]).

    Different schemes of constructing renormalized Hamiltonian flows are usually suitable for different types of problems.No scheme has been found universally useful.Hence,it is always of interest to find new schemes of constructing renormalized Hamiltonian flows.

    In this paper we introduce a new method of constructing renormalized Hamiltonian flow,based on a generalized Brillouin-Wigner perturbation theory (GBWPT).[45?49]The GBWPT shows that an arbitrary eigenfunction of a Hamiltonian can be divided into two parts,a perturbative part and a non-perturbative part,with the perturbative part expanded in a convergent perturbation expansion in terms of the non-perturbative part.Making use of this result of the GBWPT,we show that a subspace of the Hilbert space,which is associated with a perturbative part of the eigenfunction,can be decimated.This decimation scheme produces a renormalized Hamiltonian and,following this procedure,a renormalized Hamiltonian flow can be constructed.

    We show that,for a renormalized Hamiltonian flow constructed by the method mentioned above,eigenenergies of the original Hamiltonian appear as(unstable)fixed points of a property of the flow.Furthermore,those eigenfunctions of the renormalized Hamiltonians in the flow,which share the same eigenenergy,have related components.These two properties of the renormalized Hamiltonian flow may be made use of in approximate calculation of eigenenergies and in the study of properties of the eigenfunctions of the original Hamiltonian,e.g.,their localization properties.These predictions are checked numerically in the Wigner-band random-matrix model.

    2 General Theory

    2.1 Generalized Brillouin-Wigner Perturbation Theory

    In this section,we discuss the basic contents of GBWPT.It is a direct generalization of the ordinary Brillouin-Wigner perturbation theory,which can be found in textbooks,e.g.,in Ref.[50].Consider a perturbed HamiltonianH=H0+V,whereH0is an unperturbed Hamiltonian andVis a generic perturbation.In the normalized eigenbasis ofH0,denoted by

    For an energy eigenstate|α〉,let us divide the setinto two subsets,denoted bySαand,respectively.This gives two projection operatorsPandQ,

    Here we useto indicate basis statesinSαandforCorrespondingly,the stateis divided into two parts,

    Multiplying both sides of Eq.(4) byQand noticing thatQH0=H0Q,one has

    where

    Substituting Eq.(5) into Eq.(3) and doing iteration,one finds thatcan be expanded in a convergent perturbation expansion,

    when the following condition is satisfied

    When the setSαincludes only one basis vector,the expansion in Eq.(7) gives the ordinary Brillouin-Wigner perturbation expansion.Since the exact eigenenergyEαappears in the expansion,the expansion can not be immediately employed in numerical computation.However,noticing thathas one component only in the basisand that the componentsCαkshould satisfy certain normalization condition,this problem can be overcome.For example,taking the normalization condition=1 for normalizedand multiplying Eq.(4) from left byone can write the exact energy asEα=E0i+Then,one can writeEαandin the form of two related iterative expansions.[50]

    In the case thatSαincludes more than one vectorsEq.(7) gives a generalization of the (ordinary) Brillouin-Wigner perturbation theory(GBWPT).In this case,since there are at least two componentsCαiin,merely making use of the normalization condition,one can not writeEαandin two related iterative expansions.Therefore,in the GBWPT,Eαandcan not be calculated in a way similar to that discussed above in the ordinary Brillouin-Winger perturbation theory.

    Several applications of the GBWPT have been found.The condition (8) determines the separation ofinto two parts,and.In systems with band structure of the Hamiltonian,usuallycorresponds to the main body of,whilecorresponds to the tail part ofwith small components.[45,48]It has been shown that the expansion in Eq.(7) is useful in deriving analytical expressions for the decaying behavior of the tails of[45,48]This separation ofhas also been found useful in approximate calculation of eigenstates in certain energy region.[47]Further numerical investigation reveals that this separation of energy eigenstates is useful in the study of phenomenon like dynamical localization[46,48]and in the study of the distribution of components of wave functions in quantum chaotic systems.[49]

    In this paper,we discuss a new application of the GBWPT,namely,a general scheme of constructing renormalized Hamiltonian flow.Before doing this,it is useful to give further discussion for the condition of separating an energy eigenstate into the two parts discussed above.A sufficient (unnecessary) condition for Eq.(8) to hold is

    In order to understand better the condition (9),we insert the expression of the projection operatorQgiven in Eq.(2) into Eq.(6) and get

    It is seen that only basis statesgive contribution to the denominator ofTα.Therefore,as long as the setis chosen such that allE0jofare far enough fromEα,Eq.(9) and hence Eq.(7) hold.This gives a convenient way of doing the separation of

    An advantage of using Eq.(9)is that one does not need to know the exact statein advance.Equation (9) is also useful when we treat a HamiltonianHwith a degenerate spectrum.As well known,degenerate spectrum ofHmay bring problem to the ordinary perturbation theory.However,in the GBWPT,Eq.(7)can still hold whenHhas a degenerate spectrum.In fact,since Eq.(9) does not contain any eigenstate,for eigenstates with the same eigenenergyEα,this equation gives the same separation of the basis states,i.e.,the setSα.For such a separation,Eq.(7) holds for all the eigenstates with the eigenenergyEα.In this case,Sαincludes more than one basis vectors.Different eigenstateswith the same eigenvalueEαhave different componentsCαiin,hence,have differentdetermined by Eq.(7).

    For the above reasons,in what follows,we use Eq.(9)to determine the separation ofinto the two partsand

    2.2 Renormalized Hamiltonian

    A renormalized Hamiltonian can be constructed for an eigenstateofH,by decimation of the statesinFor this purpose,making use of Eq.(7),we writeas

    where

    replacingCαjby the right hand side of Eq.(11),one has

    where

    This suggests that a renormalized Hamiltoniancan be introduced,

    which is an operator in the subspace spanned by states∈Sα.The most important relation betweenHandis that the stateis an eigenstate ofwith the eigenenergyEα,as shown in Eq.(14).Note that the elementsare functions ofEα.

    WhenHhas a degenerate spectrum,as discussed in the previous section,degenerate eigenstates with the same eigenenergyEαshare the same separationSα,hence,they have the same quantitiesAα(j →i′).As a result,degenerate eigenstatesare eigenstates of the same renormalized HamiltonianTherefore,the above scheme also works in the case of degenerate spectrum.

    The structure of non-zero off-diagonal elements ofHin the basisis usually different from that ofin.Indeed,Eqs.(12)and(15)show thatis typically nonzero when eitherHii′≠0 or there is a path of coupling fromtothrough statesin the set.Therefore,the number of basis stateswhich are coupled tobyis equal to or larger than that byH.

    We remark that the condition (8),which guarantees the expansion in Eq.(7),can not completely fix the setSα.Hence,one usually has much free space in choosingSαin constructing a renormalized Hamiltonian.

    2.3 Renormalized Hamiltonian Flow

    Repeating the procedure discussed in the previous section,withplaying the role ofH,one can obtain a new renormalized Hamiltonian from ?H.Following this,a renormalized Hamiltonian flow can be constructed,which is specific for the eigenstatewith eigenenergyEαof the original HamiltonianH.However,this method of constructing Hamiltonian flow has a drawback,namely,andEαare usually unknown.(The purpose of constructing a renormalized Hamiltonian flow is usually just to study properties ofandEα.) To avoid this drawback,in what follows we propose a more general method of constructing renormalized Hamiltonian flow,which is not specific for any eigensolution ofH.

    Let us denote byH(0)the original HamiltonianH,byEα(0)andits eigenenergies and eigenstates,respectively.For a set of basis states in the Hilbert space ofH(0),denoted by{|k(0)〉},H(0)is divided into two parts as in Eq.(1),The set of basis states is also divided into two partsS(0)and,with∈S(0)and∈; correspondingly,two projection operatorsP(0)andQ(0)can be introduced in the same way as in Eq.(1).The components ofare denoted by

    In considering the condition for a division of{|k(0)〉},let us write Eq.(9) in the following form,

    where

    HereEis a parameter with energy dimension,which is used in the construction of the renormalized Hamiltonian flow.Note that Eq.(17) gives Eq.(9) forE=Eα.

    Then,we can decimate the basis states inand,similar toin Eq.(16),introduce the first renormalized Hamiltonianin the flow,

    where

    Here

    ForE=Eα(0),similar to Eq.(14),we have

    hence,Eα(0)is an eigenenergy ofH(1)EwithE=Eα(0).IfEis not equal to any ofEα(0),it is usually not an eigenenergy of.Note thatis an operator in the Hilbert space spanned by(0).

    In the above procedure,with the superscript (0) replaced by Eq.(1),the second renormalized Hamiltonianin the flow can be constructed for the same parameterE.Then,with the superscript(1)replaced by Eq.(2),and so on,a renormalized Hamiltonian flowcan be constructed,withn=1,2,...

    IfE=Eα(0)for a Hamiltonian flow thus obtained,an equation similar to Eq.(22)holds with 0 replaced byn?1 and 1 byn.This implies the following important relation betweenandH(0),that is,an eigenstateofhas the following relation to|α(0)〉,

    whereis the same basis state asbut in the original labelling.This equation shows that some information in properties ofmay be obtained from properties of the corresponding eigenstateofIn the general case withEnot necessarily equal to any ofEα(0),let us denote byE(n)the closest eigenenergy oftoE.(Forn=0,takeH(0)).With increasingn,E(n)form a sequence with the flow,(E(0),E(1),E(2),...).IfE=Eα(0),Eq.(23) shows thatE(n)=Eα(0)for all values ofn; on the other hand,ifE≠Eα(0),E(n)are usually not equal toEα(0).Hence,Eα(0)are fixed points of the sequenceE(n),under the choice ofE=Eα(0).One may also consider the sequence of the deviation|Eα(n)?E|,for which zero is the fixed point corresponding to the choiceE=Eα(0).

    2.4 An Efficient Method of Constructing Renormalized Hamiltonian Flow

    The condition(17)with 0 replaced bynmust be satisfied,in order to constructfromHE(n)by decimating basis statesin.For a given choice of,it is usually not easy to prove whether the condition is satisfied or not.In fact,for an arbitrarily chosen setand an arbitrary value ofE,the condition is usually not satisfied.Therefore,it would be useful,if a general method can be found for decimation of an arbitrarily chosen set.In what follows,we introduce such a method.For brevity,in the following part of this section,we omit the superscript“(n)”,i.e.,all quantities should have the superscript“(n)”,except for the parameterE.

    The technique is to first carry out a rotation in the subspace spanned by states∈,such thatHis diagonalized in the subspace.We assume that the number of states inis not large and it is not difficult to diagonalize numerically the sub-matrix of the HamiltonianHin this subspace.Let us denote bythe obtained eigenstates of the sub-matrix ofHin the subspace and byEjathe corresponding eigenenergies.

    Now take the set ofas a new subset.Correspondingly,the HamiltonianHis divided into two parts,H0andV,in the same way as discussed in previous sections.In particular,by definition,is an eigenstate of,

    Then,making use of the expression ofQin Eq.(2),we can writeTEin Eq.(18) as (with the superscript (0) replaced by (n) and then omitted)

    whenEis not equal to any ofEja.Equation (25) implies that (TE)2=0,since there is no coupling among,namely,=0.As a result,Eq.(17) holds with 0 replaced byn.When it happens thatEis equal to one ofEja,one may change a little the two original subsetsSofandofby exchanging a few states in them; this may change the values ofEjaand makeE≠Eja.

    Finally,by the method discussed in the previous section,the set of(equivalently,that of) can be decimated and a renormalized Hamiltonian can be obtained.In particular,AE(ja→i) has a quite simple expression,

    since (TE)2=0 for the choice of the set of.It is not difficult to see that the above schemes can work for a degenerate spectrum,as well.

    3 Some Applications

    In this section,we show that the method presented in this paper supplies a useful approach to properties of energy eigenvalues and eigenfunctions.

    3.1 Eigenenergies as Unstable Fixed Points

    As discussed in Subsec.2.3,the eigenenergiesEα(0)of the original HamiltonianH(0)are fixed points of the sequenceE(n),whereE(n)is the eigenenergy ofwhich is the closest toE.As a result of this property,the difference|E ?E(n)|as a function ofE(withnfixed)has local minima at the positionsE=Eα(0).Hence,the eigenenergiesEα(0)can be calculated by finding out the local minima.In fact,numerical evaluation of eigenenergies of large-scale Hamiltonian matrices is a very important topic in many fields in physics.Various methods have been developed in dealing with this problem (see,e.g.,Refs.[47,51–57]).The renormalization group method discussed above supplies an alternative approach to this important problem.

    To test the above predictions,we consider a banded random matrix model.Banded random matrix models have applications in several fields and are still under investigation (see,e.g.,Refs.[58–62]).Here we consider the so-called Wigner Band Random Matrix (WBRM) model,which was first introduced by Wigner more than 50 years ago for the description of complex quantum systems as nuclei.[63]It is still of interest (see,e.g.,Refs.[46,48,64–70]),since it is believed to provide an adequate description also for some other complex systems,e.g.,the Ce atom[71]and as well as dynamical conservative systems possessing chaotic classical limits.

    We consider the following form of the Hamiltonian matrix in the WBRM model,

    whereE0k=k(k=1,...,N),off-diagonal matrix elementsvkk′=vk′kare random numbers with Gaussian distribution forand are zero otherwise,andλis a running parameter for adjusting the perturbation strength.Herebis the band width of the Hamiltonian matrix andNis its dimension.

    The theory discussed above predicts that the pointsE=Eα(0)are fixed points for the propertyE(n)of the renormalized Hamiltonian flow.To check this numerically,we consider original HamiltoniansH(0)as given in Eq.(27),whose dimensions are not very large such that they can be diagonalized directly by using ordinary diagonalization methods.For eachH(0)thus obtained,we diagonalize it to obtain its eigenenergiesEα(0).Then,we takeE=Eα(0)and construct a (finite) renormalized Hamiltonian flowby making use of the method discussed in Subsec.2.4,with a number of arbitrarily chosen basis statesk(n)decimated at each step.Numerically,all the renormalized Hamiltonianshave been found sharing the same eigenenergyEα(0)and having related eigenfunctions,as predicted in Eq.(23).

    There are two types of fixed points: stable and unstable.We perform further numerical investigation to see whether the fixed pointsEα(0)are stable or unstable.For this,we take a value ofE,which deviates a little from an exact eigenvalueEα(0),say byδE=|E ?Eα(0)|.Variation of|E(n)?E|withncan show whether the fixed pointE=Eα(0)is stable or unstable.Our numerical simulations show that they are unstable.An example is given in Fig.1,which shows that the value of|E(n)?E|increases withn,indicating thatEα(0)is an unstable fixed point.In our numerical computation for this figure,at each step of the renormalization flow,we decimated 30 basis stateswith successive labellingk(n)and with the firstk(n)chosen arbitrarily.

    Now we study variation of|E(n)?E|as a function ofE,withnfixed.The theory predicts that this quantity has local minima of zero at the values ofE=Eα(0).Our numerical simulations indeed reveal this phenomenon.As shown in Fig.2,the positions of the local minima with the value of zero indeed correspond to positions of the exact eigenenergiesEα(0),which are indicated by the vertical dotted lines.This shows that the eigenenergies of the original Hamiltonian can be evaluated by numerical calculation of the local minima of|E(n)?E|.

    Fig.1 Variation of |E(n) ?E| with n,for the param-eters N=1000,b=100,and λ=10,where E(n) is the eigenenergy of HE(n )which is the closest to E.The value of E has a little deviation from an arbitrarily chosen exact eigenenergy Eα(0) of the original Hamiltonian H(0).For the solid curve,δE=|E ?Eα(0)|=0.01.At each step of the flow,an arbitrarily chosen set of 30 basis states with successive labelling are decimated.The value of |E(n)?E| increases with n,implying that Eα(0) is an unstable fixed point.The circles represent |E(n)?E|/10 for δE=0.001.The agreement of the solid curve and the circles show that for these small values of δE,|E(n)?E|is in the linear region of δE.

    Fig.2 Variation of |E(n) ?E| (circles connected by dashed lines) with E for n=5,the parameters N=300,b=100,λ=10,and E=247 + 0.06m with m=1,2,...,100.At each step of the renormalized Hamiltonian flow,30 basis states are decimated.Within the energy region shown in this figure,the original Hamiltonian has three eigenenergies with positions indicated by the three vertical dotted lines.Approximate values of the eigenenergies can be get from extrapolation of the circles close to the local minima of |E(n)?E|.

    3.2 Localization of Eigenfunctions

    Based on Eq.(23),the theory here can also be used in the study of properties of energy eigenfunctions ofH(0),namely,the components ofin.For this,one should first know the eigenenergyEα(0),which may be obtained by the method discussed in the previous section or by some other method.Next,one can useE=Eα(0)to construct a finite renormalized Hamiltonian flow,untilwhose dimension is small enough for direct numerical diagonalization.Then,one can perform direct numerical diagonalization for this Hamiltonian and findwhich give the corresponding components ofinby the relation (23).In this way,some information about the wavefunctione.g.,its localization properties,may be obtained.In fact,if data for the construction ofofm=1,...,nhave been stored,it is even possible to obtain all the components

    We also employ the WBRM model discussed in the previous section to check the applicability of the method discussed above.Consider,e.g.,the parametersN=100,b=4,andλ=10.Hamiltonians with these parameters have localized eigenfunctions,e.g.,the one shown in Fig.3 by the solid curve.To check the validity of Eq.(23),we first diagonalizeH(0)directly and obtain its eigenenergiesEα(0)numerically.Then,we construct a(finite)renormalized Hamiltonian flowwithE=Eα(0),by making use of the method discussed in Subsec.2.4 with 10 basis states decimated at each step.Our numerical results indeed confirm the prediction of Eq.(23).An example is given in Fig.3 forn=5,which shows that the values ofagree well with the corresponding ones ofeven whenis as small as e?20.

    Fig.3 Values of the componentsfor n=0 and 5 in a renormalized Hamiltonian flow of .The original Hamiltonian is a realization of the Hamiltonian matrix in the WBRM model with parameters N=100,b=4,and λ=10.In the construction of the renormalized Hamiltonians,E=Eα(0) and 10 basis states are decimated at each step of the flow. and are eigenstates of H(0) and,respectively,with the same eigenenergy Eα(0).The two eigenfunctions agree well,as predicted in Eq.(23).

    3.3 A Discussion of Computation Time

    In this section,we give a brief discussion for the dependence of the computation time required by the method here on the dimensionNof the original Hamiltonian.This is to be compared with the corresponding dependence in ordinary direct diagonalization methods,in which the computation time usually scales asN3.

    When using the method here to calculate eigenenergies,as discussed in Subsec.3.1,one first needs to choose the energy region of interest and divide the region into consecutive segments,say,to (Ns?1) segments.Then,one can take theNsends of the segments as the parameterEand construct renormalized Hamiltonian flows.Suppose at each step totallymbasis states are decimated,withm ?N.This requires diagonalization of anm×mmatrix,which takes a time scaling asm3.After decimation of thembasis states,one obtains a new renormalized Hamiltonian and needs to calculate its new elements.(Some elements of the renormalized Hamiltonian may remain unchanged in the decimation process.) If there areM1new elements to be calculated and the time of calculating each new element scales asM2,then,calculation of the new elements needs a time scaling asM1M2.The values ofM1andM2depend on the structure of the original Hamiltonian.For example,for a 1-dimensional chain with nearest-neighbor coupling,it is possible for bothM1andM2to be quite small;on the other hand,for a full original Hamiltonian,(N2?m2) matrix elements are changed in the first step of the flow.

    Suppose one performsnsteps of the renormalization procedure and at last obtains a final renormalized Hamiltonian of dimension(N?nm).Diagonalization of the final Hamiltonian needs a time scaling as (N ?nm)3.Summarizing the above results,the total computation time scales asZ=Nsn(m3+M1M2)+Ns(N ?nm)3,where for simplicity in discussion,we assume thatM1M2can be taken as a constant.

    The method here is useful when a narrow energy region is of interest,because in this caseNsis not large.Usually,one may choose the value ofnsuch thatnmis close toN.This givesZ~NNs(m2+M1M2/m).Comparing it withN3for direct diagonalization method,we see that the method here is more efficient ifNs(m2+M1M2/m)?N2.In fact,the method here has another advantage,that is,it needs a relatively small memory for diagonalization.Specifically,it needs to diagonalize matrices with dimensionsmand (N ?nm),respectively,which can be small even for largeN.In contrast,a direct diagonalization method usually requires a memory scaling asN2,which is much larger thanm2and (N ?nm)2.

    4 Conclusions and Discussions

    In summary,based on the GBWPT,we propose a general method of constructing renormalized Hamiltonian flow with the energyEof interest as a parameter.Eigenenergies of the original Hamiltonian appear as (unstable) fixed points of some property of the renormalized Hamiltonian flow.WhenEis chosen as an eigenenergy of the original Hamiltonian,all the renormalized Hamiltonians in the same flow share the same eigenenergy asE,with the corresponding eigenfunctions possessing related components.we introduce a useful technique,by which an arbitrary set of basis states in the Hilbert space can be decimated in the construction of a renormalized Hamiltonian.We also discuss potential applications of the method in numerical evaluation of eigenenergies as well as in the study of localization of eigenfunctions,and illustrate them numerically in the WBRM model.In particular,by considering the scaling behavior of computation time,we find some situations in which the method here may be more efficient than the ordinary numerical diagonalization methods.

    As is known,localization in the WBRM model can be related to localization in another band-random-matrix model,by making use of a renormalization technique based on the GBWPT.[48]The method discussed in this paper can be used to improve the method in Ref.[48],specifically,by partial diagonalization of the Hamiltonian in the subspace spanned by states in,without rotation in the subspace spanned by states inSα.

    Finally,we give some remarks on the relation of the method discussed in this paper to some other methods of constructing renormalized Hamiltonians.The realspace renormalization-group method used in Refs.[33-34]for the one-dimensional tight-binding model with nearestneighbor-hopping,is in fact a special case of the method here,with the setincluding only one basis stateat each step of decimation.Its modified versions for 1D or quasi-1D systems,e.g.,those in Refs.[36–38],have some technical difference from the method here.A merit of the theory here is that it supplies a general approach to the construction of renormalized Hamiltonian flow,not restricted to some special types of models.

    猜你喜歡
    文閣
    難忘雷鋒的關(guān)愛(ài)
    婦女(2023年2期)2023-03-27 10:41:57
    男旦“頭牌”胡文閣的雙面人生
    梅葆玖送衣
    做人與處世(2022年3期)2022-05-26 00:18:36
    梅葆玖送衣
    窩棚、紙信、500元錢(qián):京漂導(dǎo)演有顆天真的心
    Similar Early Growth of Out-of-time-ordered Correlators in Quantum Chaotic and Integrable Ising Chains?
    Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton?
    高文閣:堅(jiān)韌不拔揮灑筆墨苦研多年運(yùn)筆勁健
    僑園(2019年4期)2019-04-28 23:50:54
    胡文閣:男旦的憂傷
    北廣人物(2018年40期)2018-11-14 09:00:02
    胡文閣男旦的憂傷
    在线视频色国产色| 97碰自拍视频| 亚洲乱码一区二区免费版| 18禁黄网站禁片免费观看直播| 欧洲精品卡2卡3卡4卡5卡区| 亚洲乱码一区二区免费版| www.自偷自拍.com| 老熟妇乱子伦视频在线观看| 搞女人的毛片| 日韩国内少妇激情av| 老司机在亚洲福利影院| 欧美激情久久久久久爽电影| 欧美日本视频| 婷婷亚洲欧美| 小说图片视频综合网站| 亚洲国产欧美网| 亚洲国产日韩欧美精品在线观看 | 丰满的人妻完整版| 精品一区二区三区视频在线观看免费| 亚洲男人的天堂狠狠| 国产日本99.免费观看| 成熟少妇高潮喷水视频| 久久久久久亚洲精品国产蜜桃av| 久久久久性生活片| √禁漫天堂资源中文www| 正在播放国产对白刺激| 99热这里只有是精品50| 欧洲精品卡2卡3卡4卡5卡区| 中文字幕高清在线视频| 久久精品亚洲精品国产色婷小说| 精品久久久久久久久久免费视频| 在线国产一区二区在线| 国语自产精品视频在线第100页| 亚洲 欧美一区二区三区| 国内精品一区二区在线观看| 久久久久久人人人人人| 一级a爱片免费观看的视频| 神马国产精品三级电影在线观看 | 少妇的丰满在线观看| 久久久精品大字幕| 国产片内射在线| 精品国产乱子伦一区二区三区| 亚洲av电影不卡..在线观看| 婷婷丁香在线五月| 欧美精品亚洲一区二区| 久久久久国产一级毛片高清牌| 免费人成视频x8x8入口观看| 亚洲一码二码三码区别大吗| 中国美女看黄片| 制服诱惑二区| 好男人在线观看高清免费视频| 日本撒尿小便嘘嘘汇集6| 欧美极品一区二区三区四区| 久久国产精品人妻蜜桃| 色尼玛亚洲综合影院| 欧美成人免费av一区二区三区| 欧美黄色淫秽网站| 老鸭窝网址在线观看| 国产熟女午夜一区二区三区| www国产在线视频色| 非洲黑人性xxxx精品又粗又长| 免费在线观看黄色视频的| 成年女人毛片免费观看观看9| 人成视频在线观看免费观看| 中文在线观看免费www的网站 | 国产精品一区二区免费欧美| av福利片在线| 婷婷精品国产亚洲av在线| 国产高清激情床上av| 国产精品自产拍在线观看55亚洲| 美女午夜性视频免费| 一本一本综合久久| 久久久久久国产a免费观看| 国产主播在线观看一区二区| 51午夜福利影视在线观看| 国产成人aa在线观看| 成人18禁高潮啪啪吃奶动态图| 中文字幕人妻丝袜一区二区| 久久精品国产亚洲av高清一级| 久9热在线精品视频| 在线播放国产精品三级| 国产精品99久久99久久久不卡| 日韩欧美国产一区二区入口| 国产一区二区在线av高清观看| 色播亚洲综合网| 又爽又黄无遮挡网站| 欧美乱码精品一区二区三区| 美女大奶头视频| 一个人免费在线观看电影 | 国产激情久久老熟女| 在线十欧美十亚洲十日本专区| 此物有八面人人有两片| 亚洲人成77777在线视频| 欧美日韩福利视频一区二区| 9191精品国产免费久久| 午夜福利18| 亚洲性夜色夜夜综合| 国产成人一区二区三区免费视频网站| 高潮久久久久久久久久久不卡| 国产黄片美女视频| 久久精品国产清高在天天线| 最近在线观看免费完整版| 精品国产乱子伦一区二区三区| 女同久久另类99精品国产91| 长腿黑丝高跟| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 亚洲国产精品999在线| 久久人妻福利社区极品人妻图片| 国产单亲对白刺激| 亚洲一区中文字幕在线| 久久精品国产亚洲av香蕉五月| 精品免费久久久久久久清纯| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 日本精品一区二区三区蜜桃| 国产成人aa在线观看| 午夜精品一区二区三区免费看| 中文字幕av在线有码专区| 亚洲av成人精品一区久久| 久久中文字幕人妻熟女| 视频区欧美日本亚洲| 欧美成狂野欧美在线观看| 欧美成狂野欧美在线观看| 欧美成人免费av一区二区三区| 欧美黄色淫秽网站| 黄色a级毛片大全视频| 国产成人精品久久二区二区免费| 人妻夜夜爽99麻豆av| 久久精品91蜜桃| 国内少妇人妻偷人精品xxx网站 | 中文亚洲av片在线观看爽| 国产精品,欧美在线| 黄片大片在线免费观看| 丁香六月欧美| 精品人妻1区二区| 国产精品av久久久久免费| 少妇的丰满在线观看| 在线十欧美十亚洲十日本专区| 国产在线观看jvid| 免费看十八禁软件| 窝窝影院91人妻| 好男人电影高清在线观看| 亚洲狠狠婷婷综合久久图片| 国产精品久久电影中文字幕| 我的老师免费观看完整版| av有码第一页| 欧美一级毛片孕妇| 久热爱精品视频在线9| 免费av毛片视频| 国产精华一区二区三区| 看片在线看免费视频| 亚洲真实伦在线观看| 国产亚洲精品久久久久5区| 精品午夜福利视频在线观看一区| 免费在线观看视频国产中文字幕亚洲| 国产不卡一卡二| 最近最新免费中文字幕在线| 怎么达到女性高潮| 午夜福利18| 人成视频在线观看免费观看| 午夜久久久久精精品| 国产一区二区三区视频了| 国产精品九九99| 国内精品久久久久久久电影| 国产精品1区2区在线观看.| 99热只有精品国产| x7x7x7水蜜桃| 国语自产精品视频在线第100页| 日韩欧美一区二区三区在线观看| 久久九九热精品免费| 脱女人内裤的视频| 人人妻人人澡欧美一区二区| 久久亚洲真实| 麻豆一二三区av精品| 午夜影院日韩av| 人成视频在线观看免费观看| 国产精品电影一区二区三区| www日本黄色视频网| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| 日韩成人在线观看一区二区三区| 久久精品成人免费网站| 波多野结衣巨乳人妻| 久久国产乱子伦精品免费另类| 51午夜福利影视在线观看| 国产久久久一区二区三区| 一区二区三区激情视频| 舔av片在线| 欧美另类亚洲清纯唯美| 国产精品久久久久久久电影 | 日本 av在线| 午夜免费激情av| 欧美最黄视频在线播放免费| 午夜福利欧美成人| 精品欧美国产一区二区三| 一区二区三区国产精品乱码| 国产蜜桃级精品一区二区三区| 桃红色精品国产亚洲av| 黑人操中国人逼视频| 五月伊人婷婷丁香| 久久久国产成人免费| 久久久久免费精品人妻一区二区| 久久99热这里只有精品18| 最近在线观看免费完整版| 麻豆国产97在线/欧美 | 国产乱人伦免费视频| 岛国视频午夜一区免费看| 午夜激情福利司机影院| 又黄又爽又免费观看的视频| 日本精品一区二区三区蜜桃| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 俄罗斯特黄特色一大片| 一本精品99久久精品77| 免费看a级黄色片| 啪啪无遮挡十八禁网站| 中文字幕高清在线视频| 国产蜜桃级精品一区二区三区| 香蕉国产在线看| 9191精品国产免费久久| 久久中文看片网| 很黄的视频免费| 成年版毛片免费区| 欧美日韩中文字幕国产精品一区二区三区| 亚洲人成电影免费在线| 夜夜躁狠狠躁天天躁| 黄色丝袜av网址大全| 欧美日韩一级在线毛片| 中文在线观看免费www的网站 | 在线永久观看黄色视频| 亚洲七黄色美女视频| √禁漫天堂资源中文www| 12—13女人毛片做爰片一| 国产精品爽爽va在线观看网站| 国产成人欧美在线观看| 老汉色∧v一级毛片| av在线天堂中文字幕| 国产高清videossex| 天天躁夜夜躁狠狠躁躁| 亚洲黑人精品在线| 精品国内亚洲2022精品成人| 两个人免费观看高清视频| 一级作爱视频免费观看| 欧美绝顶高潮抽搐喷水| www.999成人在线观看| 精品久久蜜臀av无| 少妇粗大呻吟视频| 久久精品91无色码中文字幕| 亚洲专区字幕在线| 99热只有精品国产| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成人免费电影在线观看| av在线天堂中文字幕| 亚洲天堂国产精品一区在线| 一级a爱片免费观看的视频| 午夜精品在线福利| 欧美性长视频在线观看| 亚洲国产欧美人成| 中文在线观看免费www的网站 | 色av中文字幕| 日韩欧美国产一区二区入口| tocl精华| 麻豆成人av在线观看| 亚洲熟妇熟女久久| 成人18禁在线播放| 人人妻人人澡欧美一区二区| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 日韩av在线大香蕉| 成人欧美大片| 1024香蕉在线观看| 老司机福利观看| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说| 日韩精品中文字幕看吧| 极品教师在线免费播放| 亚洲精品av麻豆狂野| 色噜噜av男人的天堂激情| 操出白浆在线播放| 精品国产亚洲在线| 亚洲精品中文字幕一二三四区| 黑人欧美特级aaaaaa片| 日韩 欧美 亚洲 中文字幕| av福利片在线| 三级男女做爰猛烈吃奶摸视频| 久久久久久久午夜电影| 国产精品一区二区免费欧美| 国产免费av片在线观看野外av| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 国产亚洲欧美在线一区二区| 精品第一国产精品| 久久精品夜夜夜夜夜久久蜜豆 | av福利片在线观看| 叶爱在线成人免费视频播放| 国产1区2区3区精品| 精品国产美女av久久久久小说| 国产成人aa在线观看| 精品不卡国产一区二区三区| 久久久久久久精品吃奶| 国产午夜精品论理片| 国产精品一区二区三区四区久久| 欧美另类亚洲清纯唯美| 欧美又色又爽又黄视频| 成年人黄色毛片网站| 色老头精品视频在线观看| 91成年电影在线观看| 日韩欧美国产在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 国产一级毛片七仙女欲春2| 国产成人精品久久二区二区91| 精品一区二区三区av网在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 久久久久久免费高清国产稀缺| 我要搜黄色片| 黄色毛片三级朝国网站| 亚洲,欧美精品.| 亚洲av电影不卡..在线观看| 美女大奶头视频| 无人区码免费观看不卡| 午夜视频精品福利| 真人一进一出gif抽搐免费| 欧美日韩精品网址| 最近最新中文字幕大全免费视频| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 欧美3d第一页| 精品人妻1区二区| 国产欧美日韩一区二区精品| 夜夜看夜夜爽夜夜摸| 久久久久久久精品吃奶| 不卡av一区二区三区| 国产精品九九99| 男女那种视频在线观看| 国产高清激情床上av| 国产单亲对白刺激| 久久人人精品亚洲av| 好男人在线观看高清免费视频| 婷婷亚洲欧美| 成人午夜高清在线视频| 一本综合久久免费| 成在线人永久免费视频| 亚洲av成人一区二区三| 欧美日韩中文字幕国产精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| ponron亚洲| 国产亚洲av嫩草精品影院| 国产精品1区2区在线观看.| 一夜夜www| 9191精品国产免费久久| 午夜福利免费观看在线| 久久 成人 亚洲| 免费在线观看完整版高清| 精品久久久久久成人av| 巨乳人妻的诱惑在线观看| 99久久精品国产亚洲精品| 午夜福利高清视频| 亚洲人成电影免费在线| 夜夜看夜夜爽夜夜摸| 久久中文字幕一级| 欧美另类亚洲清纯唯美| 日韩中文字幕欧美一区二区| 一夜夜www| 波多野结衣巨乳人妻| 久久精品综合一区二区三区| x7x7x7水蜜桃| 在线a可以看的网站| 亚洲人成77777在线视频| 观看免费一级毛片| 国产精品影院久久| 午夜免费激情av| 女人爽到高潮嗷嗷叫在线视频| 丁香欧美五月| www.www免费av| 日韩欧美国产在线观看| 又粗又爽又猛毛片免费看| 欧美性猛交╳xxx乱大交人| 精品日产1卡2卡| 国产午夜福利久久久久久| 琪琪午夜伦伦电影理论片6080| 成人av在线播放网站| 国产亚洲精品一区二区www| 国产一区二区在线观看日韩 | 超碰成人久久| 亚洲,欧美精品.| 亚洲人与动物交配视频| 亚洲av片天天在线观看| 男女床上黄色一级片免费看| 啦啦啦观看免费观看视频高清| 一进一出好大好爽视频| 最近最新中文字幕大全电影3| av国产免费在线观看| 免费看日本二区| 亚洲乱码一区二区免费版| 亚洲欧美激情综合另类| 国产野战对白在线观看| 欧美黄色淫秽网站| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类 | 亚洲无线在线观看| 亚洲av成人一区二区三| 久久中文字幕一级| 国产伦一二天堂av在线观看| 国产伦人伦偷精品视频| 搡老熟女国产l中国老女人| 久久久精品欧美日韩精品| 色综合婷婷激情| 久久久久久大精品| 国产亚洲精品综合一区在线观看 | 亚洲欧美日韩东京热| 搡老妇女老女人老熟妇| 亚洲va日本ⅴa欧美va伊人久久| 嫩草影院精品99| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 久久午夜亚洲精品久久| 一进一出抽搐gif免费好疼| 欧美人与性动交α欧美精品济南到| 小说图片视频综合网站| 国产成人影院久久av| 中文亚洲av片在线观看爽| 国内毛片毛片毛片毛片毛片| 色综合婷婷激情| 久久久精品欧美日韩精品| 亚洲国产日韩欧美精品在线观看 | 国产成年人精品一区二区| 久久人妻av系列| 国产成年人精品一区二区| 黄色a级毛片大全视频| 波多野结衣高清作品| 精品国内亚洲2022精品成人| 九色成人免费人妻av| 成人欧美大片| 国产精品自产拍在线观看55亚洲| 亚洲成av人片在线播放无| 91成年电影在线观看| 亚洲成av人片在线播放无| 丝袜美腿诱惑在线| 在线十欧美十亚洲十日本专区| 日本免费a在线| 99国产精品一区二区三区| 亚洲七黄色美女视频| 亚洲一区中文字幕在线| 中国美女看黄片| 熟女电影av网| 久久午夜亚洲精品久久| 又粗又爽又猛毛片免费看| 很黄的视频免费| 久久久国产欧美日韩av| 亚洲avbb在线观看| 国产精品久久久久久精品电影| 亚洲国产中文字幕在线视频| 午夜免费观看网址| 啦啦啦观看免费观看视频高清| www.999成人在线观看| 成人欧美大片| 俄罗斯特黄特色一大片| 欧美激情久久久久久爽电影| 国模一区二区三区四区视频 | 精品国产美女av久久久久小说| 久久伊人香网站| 亚洲成人国产一区在线观看| 欧美最黄视频在线播放免费| 嫩草影院精品99| 老司机深夜福利视频在线观看| 国产伦人伦偷精品视频| 国产乱人伦免费视频| 18美女黄网站色大片免费观看| 日本成人三级电影网站| 亚洲欧美日韩高清专用| 此物有八面人人有两片| 欧美一级毛片孕妇| 免费av毛片视频| 精品国产乱子伦一区二区三区| 十八禁网站免费在线| 男男h啪啪无遮挡| 精品国产乱码久久久久久男人| 国产成+人综合+亚洲专区| 51午夜福利影视在线观看| 白带黄色成豆腐渣| 成人手机av| 一区二区三区高清视频在线| 亚洲欧美激情综合另类| 99re在线观看精品视频| 精品第一国产精品| 色综合站精品国产| 日本熟妇午夜| 丝袜人妻中文字幕| 老熟妇仑乱视频hdxx| av片东京热男人的天堂| 国内揄拍国产精品人妻在线| 国产精品一区二区免费欧美| a级毛片a级免费在线| 亚洲va日本ⅴa欧美va伊人久久| 国产成人精品久久二区二区91| 免费无遮挡裸体视频| 禁无遮挡网站| 好男人电影高清在线观看| 久久精品国产99精品国产亚洲性色| 亚洲国产精品sss在线观看| 日本三级黄在线观看| 亚洲男人天堂网一区| 一级毛片精品| 亚洲av第一区精品v没综合| 亚洲专区国产一区二区| 最近在线观看免费完整版| 亚洲真实伦在线观看| 美女扒开内裤让男人捅视频| 国产高清视频在线观看网站| 国产熟女xx| 国产精品久久久久久人妻精品电影| 久久国产精品影院| 成人av在线播放网站| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 久久中文看片网| 精品久久久久久久人妻蜜臀av| 精品久久久久久久毛片微露脸| 韩国av一区二区三区四区| 夜夜爽天天搞| 我的老师免费观看完整版| 桃色一区二区三区在线观看| 99久久精品热视频| 日日摸夜夜添夜夜添小说| 91av网站免费观看| 国产亚洲av高清不卡| 日韩有码中文字幕| 成人三级黄色视频| xxx96com| 国产精品av久久久久免费| 欧美精品亚洲一区二区| 精品熟女少妇八av免费久了| 精华霜和精华液先用哪个| 久久国产精品人妻蜜桃| 天天添夜夜摸| 三级男女做爰猛烈吃奶摸视频| 亚洲欧美日韩高清专用| 久久国产乱子伦精品免费另类| 精品久久久久久成人av| 51午夜福利影视在线观看| 国产精品一区二区精品视频观看| 午夜精品在线福利| 亚洲乱码一区二区免费版| www.熟女人妻精品国产| 久久久久久国产a免费观看| 757午夜福利合集在线观看| 给我免费播放毛片高清在线观看| 97碰自拍视频| svipshipincom国产片| 哪里可以看免费的av片| 日本熟妇午夜| tocl精华| 丁香欧美五月| 亚洲欧美日韩高清在线视频| 叶爱在线成人免费视频播放| 久久香蕉精品热| 免费在线观看亚洲国产| 国产av一区二区精品久久| 日日夜夜操网爽| 久久精品国产亚洲av高清一级| 国产精品亚洲一级av第二区| 国产熟女午夜一区二区三区| 国产成人系列免费观看| 国产成人av激情在线播放| 我要搜黄色片| 亚洲电影在线观看av| 最新在线观看一区二区三区| 精品国产美女av久久久久小说| 国产精品电影一区二区三区| 亚洲av熟女| 国产一级毛片七仙女欲春2| 性欧美人与动物交配| 国产精品免费一区二区三区在线| 丁香六月欧美| 亚洲国产精品成人综合色| 黄色 视频免费看| www国产在线视频色| 日本精品一区二区三区蜜桃| 两性午夜刺激爽爽歪歪视频在线观看 | 操出白浆在线播放| 色噜噜av男人的天堂激情| 亚洲 欧美一区二区三区| 大型av网站在线播放| 久久久久久九九精品二区国产 | 欧美黄色片欧美黄色片| 欧美日韩国产亚洲二区| 91国产中文字幕| 美女大奶头视频| 怎么达到女性高潮| 两个人视频免费观看高清| 欧美三级亚洲精品| 少妇的丰满在线观看| 免费高清视频大片| 成人国产综合亚洲| 国产成人aa在线观看| 久久精品国产亚洲av香蕉五月| 日日夜夜操网爽| 老鸭窝网址在线观看| 成人国产一区最新在线观看| 久久久久精品国产欧美久久久| 欧美一区二区国产精品久久精品 | 亚洲九九香蕉| 精品国产超薄肉色丝袜足j| 久久精品国产99精品国产亚洲性色| 美女黄网站色视频| 亚洲专区字幕在线| 真人一进一出gif抽搐免费| 午夜福利欧美成人| 看片在线看免费视频| 中国美女看黄片| 午夜影院日韩av| 午夜精品一区二区三区免费看|