• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions?

    2019-07-25 02:01:58WenGeWang王文閣
    Communications in Theoretical Physics 2019年7期
    關(guān)鍵詞:文閣

    Wen-Ge Wang (王文閣)

    Department of Modern Physics,University of Science and Technology of China,Hefei 230026,China

    Abstract We introduce a decimation scheme of constructing renormalized Hamiltonian flows,which is useful in the study of properties of energy eigenfunctions,such as localization,as well as in approximate calculation of eigenenergies.The method is based on a generalized Brillouin-Wigner perturbation theory.Each flow is specific for a given energy and,at each step of the flow,a finite subspace of the Hilbert space is decimated in order to obtain a renormalized Hamiltonian for the next step.Eigenenergies of the original Hamiltonian appear as unstable fixed points of renormalized flows.Numerical illustration of the method is given in the Wigner-band random-matrix model.

    Key words: generalized Brillouin-Wigner perturbation theory,Hamiltonian flow,eigenfunction structure,eigenvalue

    1 Introduction

    Properties of energy eigenvalues and eigenfunctions are of central importance in a variety of fields,from nuclei physics,atomic physics,to condensed matter physics,and so on.[1?12]In particular,they are of relevance to thermalization,[13?21]a topic which has attracted renewed interest in recent years.An important method of studying these properties is the renormalization group method.Various versions of this method have been developed.For example,in calculating energy eigenfunctions in the low energy region,wide use has been made of Wilson’s numerical renormalization group[22?23]and of the density-matrix renormalization group method.[24?25]

    Localization of wavefunctions is one of the most important phenomena discovered in the field of condensed matter physics[26?30]and in the field of quantum chaos.[31?32]A real-space renormalization-group method and its modified versions[33?38]have been found quite successful in the study of localization properties in one-dimensional systems with (effectively) finite range of coupling; while in the case of two and more than two-dimensional systems,they have been found successful only in some special cases such as the Fibonacci quasi-lattices (see,e.g.,Refs.[39–40]).Moreover,recently,the phenomenon of many-body location has attracted wide attention (see,e.g.,Refs.[41–44]).

    Different schemes of constructing renormalized Hamiltonian flows are usually suitable for different types of problems.No scheme has been found universally useful.Hence,it is always of interest to find new schemes of constructing renormalized Hamiltonian flows.

    In this paper we introduce a new method of constructing renormalized Hamiltonian flow,based on a generalized Brillouin-Wigner perturbation theory (GBWPT).[45?49]The GBWPT shows that an arbitrary eigenfunction of a Hamiltonian can be divided into two parts,a perturbative part and a non-perturbative part,with the perturbative part expanded in a convergent perturbation expansion in terms of the non-perturbative part.Making use of this result of the GBWPT,we show that a subspace of the Hilbert space,which is associated with a perturbative part of the eigenfunction,can be decimated.This decimation scheme produces a renormalized Hamiltonian and,following this procedure,a renormalized Hamiltonian flow can be constructed.

    We show that,for a renormalized Hamiltonian flow constructed by the method mentioned above,eigenenergies of the original Hamiltonian appear as(unstable)fixed points of a property of the flow.Furthermore,those eigenfunctions of the renormalized Hamiltonians in the flow,which share the same eigenenergy,have related components.These two properties of the renormalized Hamiltonian flow may be made use of in approximate calculation of eigenenergies and in the study of properties of the eigenfunctions of the original Hamiltonian,e.g.,their localization properties.These predictions are checked numerically in the Wigner-band random-matrix model.

    2 General Theory

    2.1 Generalized Brillouin-Wigner Perturbation Theory

    In this section,we discuss the basic contents of GBWPT.It is a direct generalization of the ordinary Brillouin-Wigner perturbation theory,which can be found in textbooks,e.g.,in Ref.[50].Consider a perturbed HamiltonianH=H0+V,whereH0is an unperturbed Hamiltonian andVis a generic perturbation.In the normalized eigenbasis ofH0,denoted by

    For an energy eigenstate|α〉,let us divide the setinto two subsets,denoted bySαand,respectively.This gives two projection operatorsPandQ,

    Here we useto indicate basis statesinSαandforCorrespondingly,the stateis divided into two parts,

    Multiplying both sides of Eq.(4) byQand noticing thatQH0=H0Q,one has

    where

    Substituting Eq.(5) into Eq.(3) and doing iteration,one finds thatcan be expanded in a convergent perturbation expansion,

    when the following condition is satisfied

    When the setSαincludes only one basis vector,the expansion in Eq.(7) gives the ordinary Brillouin-Wigner perturbation expansion.Since the exact eigenenergyEαappears in the expansion,the expansion can not be immediately employed in numerical computation.However,noticing thathas one component only in the basisand that the componentsCαkshould satisfy certain normalization condition,this problem can be overcome.For example,taking the normalization condition=1 for normalizedand multiplying Eq.(4) from left byone can write the exact energy asEα=E0i+Then,one can writeEαandin the form of two related iterative expansions.[50]

    In the case thatSαincludes more than one vectorsEq.(7) gives a generalization of the (ordinary) Brillouin-Wigner perturbation theory(GBWPT).In this case,since there are at least two componentsCαiin,merely making use of the normalization condition,one can not writeEαandin two related iterative expansions.Therefore,in the GBWPT,Eαandcan not be calculated in a way similar to that discussed above in the ordinary Brillouin-Winger perturbation theory.

    Several applications of the GBWPT have been found.The condition (8) determines the separation ofinto two parts,and.In systems with band structure of the Hamiltonian,usuallycorresponds to the main body of,whilecorresponds to the tail part ofwith small components.[45,48]It has been shown that the expansion in Eq.(7) is useful in deriving analytical expressions for the decaying behavior of the tails of[45,48]This separation ofhas also been found useful in approximate calculation of eigenstates in certain energy region.[47]Further numerical investigation reveals that this separation of energy eigenstates is useful in the study of phenomenon like dynamical localization[46,48]and in the study of the distribution of components of wave functions in quantum chaotic systems.[49]

    In this paper,we discuss a new application of the GBWPT,namely,a general scheme of constructing renormalized Hamiltonian flow.Before doing this,it is useful to give further discussion for the condition of separating an energy eigenstate into the two parts discussed above.A sufficient (unnecessary) condition for Eq.(8) to hold is

    In order to understand better the condition (9),we insert the expression of the projection operatorQgiven in Eq.(2) into Eq.(6) and get

    It is seen that only basis statesgive contribution to the denominator ofTα.Therefore,as long as the setis chosen such that allE0jofare far enough fromEα,Eq.(9) and hence Eq.(7) hold.This gives a convenient way of doing the separation of

    An advantage of using Eq.(9)is that one does not need to know the exact statein advance.Equation (9) is also useful when we treat a HamiltonianHwith a degenerate spectrum.As well known,degenerate spectrum ofHmay bring problem to the ordinary perturbation theory.However,in the GBWPT,Eq.(7)can still hold whenHhas a degenerate spectrum.In fact,since Eq.(9) does not contain any eigenstate,for eigenstates with the same eigenenergyEα,this equation gives the same separation of the basis states,i.e.,the setSα.For such a separation,Eq.(7) holds for all the eigenstates with the eigenenergyEα.In this case,Sαincludes more than one basis vectors.Different eigenstateswith the same eigenvalueEαhave different componentsCαiin,hence,have differentdetermined by Eq.(7).

    For the above reasons,in what follows,we use Eq.(9)to determine the separation ofinto the two partsand

    2.2 Renormalized Hamiltonian

    A renormalized Hamiltonian can be constructed for an eigenstateofH,by decimation of the statesinFor this purpose,making use of Eq.(7),we writeas

    where

    replacingCαjby the right hand side of Eq.(11),one has

    where

    This suggests that a renormalized Hamiltoniancan be introduced,

    which is an operator in the subspace spanned by states∈Sα.The most important relation betweenHandis that the stateis an eigenstate ofwith the eigenenergyEα,as shown in Eq.(14).Note that the elementsare functions ofEα.

    WhenHhas a degenerate spectrum,as discussed in the previous section,degenerate eigenstates with the same eigenenergyEαshare the same separationSα,hence,they have the same quantitiesAα(j →i′).As a result,degenerate eigenstatesare eigenstates of the same renormalized HamiltonianTherefore,the above scheme also works in the case of degenerate spectrum.

    The structure of non-zero off-diagonal elements ofHin the basisis usually different from that ofin.Indeed,Eqs.(12)and(15)show thatis typically nonzero when eitherHii′≠0 or there is a path of coupling fromtothrough statesin the set.Therefore,the number of basis stateswhich are coupled tobyis equal to or larger than that byH.

    We remark that the condition (8),which guarantees the expansion in Eq.(7),can not completely fix the setSα.Hence,one usually has much free space in choosingSαin constructing a renormalized Hamiltonian.

    2.3 Renormalized Hamiltonian Flow

    Repeating the procedure discussed in the previous section,withplaying the role ofH,one can obtain a new renormalized Hamiltonian from ?H.Following this,a renormalized Hamiltonian flow can be constructed,which is specific for the eigenstatewith eigenenergyEαof the original HamiltonianH.However,this method of constructing Hamiltonian flow has a drawback,namely,andEαare usually unknown.(The purpose of constructing a renormalized Hamiltonian flow is usually just to study properties ofandEα.) To avoid this drawback,in what follows we propose a more general method of constructing renormalized Hamiltonian flow,which is not specific for any eigensolution ofH.

    Let us denote byH(0)the original HamiltonianH,byEα(0)andits eigenenergies and eigenstates,respectively.For a set of basis states in the Hilbert space ofH(0),denoted by{|k(0)〉},H(0)is divided into two parts as in Eq.(1),The set of basis states is also divided into two partsS(0)and,with∈S(0)and∈; correspondingly,two projection operatorsP(0)andQ(0)can be introduced in the same way as in Eq.(1).The components ofare denoted by

    In considering the condition for a division of{|k(0)〉},let us write Eq.(9) in the following form,

    where

    HereEis a parameter with energy dimension,which is used in the construction of the renormalized Hamiltonian flow.Note that Eq.(17) gives Eq.(9) forE=Eα.

    Then,we can decimate the basis states inand,similar toin Eq.(16),introduce the first renormalized Hamiltonianin the flow,

    where

    Here

    ForE=Eα(0),similar to Eq.(14),we have

    hence,Eα(0)is an eigenenergy ofH(1)EwithE=Eα(0).IfEis not equal to any ofEα(0),it is usually not an eigenenergy of.Note thatis an operator in the Hilbert space spanned by(0).

    In the above procedure,with the superscript (0) replaced by Eq.(1),the second renormalized Hamiltonianin the flow can be constructed for the same parameterE.Then,with the superscript(1)replaced by Eq.(2),and so on,a renormalized Hamiltonian flowcan be constructed,withn=1,2,...

    IfE=Eα(0)for a Hamiltonian flow thus obtained,an equation similar to Eq.(22)holds with 0 replaced byn?1 and 1 byn.This implies the following important relation betweenandH(0),that is,an eigenstateofhas the following relation to|α(0)〉,

    whereis the same basis state asbut in the original labelling.This equation shows that some information in properties ofmay be obtained from properties of the corresponding eigenstateofIn the general case withEnot necessarily equal to any ofEα(0),let us denote byE(n)the closest eigenenergy oftoE.(Forn=0,takeH(0)).With increasingn,E(n)form a sequence with the flow,(E(0),E(1),E(2),...).IfE=Eα(0),Eq.(23) shows thatE(n)=Eα(0)for all values ofn; on the other hand,ifE≠Eα(0),E(n)are usually not equal toEα(0).Hence,Eα(0)are fixed points of the sequenceE(n),under the choice ofE=Eα(0).One may also consider the sequence of the deviation|Eα(n)?E|,for which zero is the fixed point corresponding to the choiceE=Eα(0).

    2.4 An Efficient Method of Constructing Renormalized Hamiltonian Flow

    The condition(17)with 0 replaced bynmust be satisfied,in order to constructfromHE(n)by decimating basis statesin.For a given choice of,it is usually not easy to prove whether the condition is satisfied or not.In fact,for an arbitrarily chosen setand an arbitrary value ofE,the condition is usually not satisfied.Therefore,it would be useful,if a general method can be found for decimation of an arbitrarily chosen set.In what follows,we introduce such a method.For brevity,in the following part of this section,we omit the superscript“(n)”,i.e.,all quantities should have the superscript“(n)”,except for the parameterE.

    The technique is to first carry out a rotation in the subspace spanned by states∈,such thatHis diagonalized in the subspace.We assume that the number of states inis not large and it is not difficult to diagonalize numerically the sub-matrix of the HamiltonianHin this subspace.Let us denote bythe obtained eigenstates of the sub-matrix ofHin the subspace and byEjathe corresponding eigenenergies.

    Now take the set ofas a new subset.Correspondingly,the HamiltonianHis divided into two parts,H0andV,in the same way as discussed in previous sections.In particular,by definition,is an eigenstate of,

    Then,making use of the expression ofQin Eq.(2),we can writeTEin Eq.(18) as (with the superscript (0) replaced by (n) and then omitted)

    whenEis not equal to any ofEja.Equation (25) implies that (TE)2=0,since there is no coupling among,namely,=0.As a result,Eq.(17) holds with 0 replaced byn.When it happens thatEis equal to one ofEja,one may change a little the two original subsetsSofandofby exchanging a few states in them; this may change the values ofEjaand makeE≠Eja.

    Finally,by the method discussed in the previous section,the set of(equivalently,that of) can be decimated and a renormalized Hamiltonian can be obtained.In particular,AE(ja→i) has a quite simple expression,

    since (TE)2=0 for the choice of the set of.It is not difficult to see that the above schemes can work for a degenerate spectrum,as well.

    3 Some Applications

    In this section,we show that the method presented in this paper supplies a useful approach to properties of energy eigenvalues and eigenfunctions.

    3.1 Eigenenergies as Unstable Fixed Points

    As discussed in Subsec.2.3,the eigenenergiesEα(0)of the original HamiltonianH(0)are fixed points of the sequenceE(n),whereE(n)is the eigenenergy ofwhich is the closest toE.As a result of this property,the difference|E ?E(n)|as a function ofE(withnfixed)has local minima at the positionsE=Eα(0).Hence,the eigenenergiesEα(0)can be calculated by finding out the local minima.In fact,numerical evaluation of eigenenergies of large-scale Hamiltonian matrices is a very important topic in many fields in physics.Various methods have been developed in dealing with this problem (see,e.g.,Refs.[47,51–57]).The renormalization group method discussed above supplies an alternative approach to this important problem.

    To test the above predictions,we consider a banded random matrix model.Banded random matrix models have applications in several fields and are still under investigation (see,e.g.,Refs.[58–62]).Here we consider the so-called Wigner Band Random Matrix (WBRM) model,which was first introduced by Wigner more than 50 years ago for the description of complex quantum systems as nuclei.[63]It is still of interest (see,e.g.,Refs.[46,48,64–70]),since it is believed to provide an adequate description also for some other complex systems,e.g.,the Ce atom[71]and as well as dynamical conservative systems possessing chaotic classical limits.

    We consider the following form of the Hamiltonian matrix in the WBRM model,

    whereE0k=k(k=1,...,N),off-diagonal matrix elementsvkk′=vk′kare random numbers with Gaussian distribution forand are zero otherwise,andλis a running parameter for adjusting the perturbation strength.Herebis the band width of the Hamiltonian matrix andNis its dimension.

    The theory discussed above predicts that the pointsE=Eα(0)are fixed points for the propertyE(n)of the renormalized Hamiltonian flow.To check this numerically,we consider original HamiltoniansH(0)as given in Eq.(27),whose dimensions are not very large such that they can be diagonalized directly by using ordinary diagonalization methods.For eachH(0)thus obtained,we diagonalize it to obtain its eigenenergiesEα(0).Then,we takeE=Eα(0)and construct a (finite) renormalized Hamiltonian flowby making use of the method discussed in Subsec.2.4,with a number of arbitrarily chosen basis statesk(n)decimated at each step.Numerically,all the renormalized Hamiltonianshave been found sharing the same eigenenergyEα(0)and having related eigenfunctions,as predicted in Eq.(23).

    There are two types of fixed points: stable and unstable.We perform further numerical investigation to see whether the fixed pointsEα(0)are stable or unstable.For this,we take a value ofE,which deviates a little from an exact eigenvalueEα(0),say byδE=|E ?Eα(0)|.Variation of|E(n)?E|withncan show whether the fixed pointE=Eα(0)is stable or unstable.Our numerical simulations show that they are unstable.An example is given in Fig.1,which shows that the value of|E(n)?E|increases withn,indicating thatEα(0)is an unstable fixed point.In our numerical computation for this figure,at each step of the renormalization flow,we decimated 30 basis stateswith successive labellingk(n)and with the firstk(n)chosen arbitrarily.

    Now we study variation of|E(n)?E|as a function ofE,withnfixed.The theory predicts that this quantity has local minima of zero at the values ofE=Eα(0).Our numerical simulations indeed reveal this phenomenon.As shown in Fig.2,the positions of the local minima with the value of zero indeed correspond to positions of the exact eigenenergiesEα(0),which are indicated by the vertical dotted lines.This shows that the eigenenergies of the original Hamiltonian can be evaluated by numerical calculation of the local minima of|E(n)?E|.

    Fig.1 Variation of |E(n) ?E| with n,for the param-eters N=1000,b=100,and λ=10,where E(n) is the eigenenergy of HE(n )which is the closest to E.The value of E has a little deviation from an arbitrarily chosen exact eigenenergy Eα(0) of the original Hamiltonian H(0).For the solid curve,δE=|E ?Eα(0)|=0.01.At each step of the flow,an arbitrarily chosen set of 30 basis states with successive labelling are decimated.The value of |E(n)?E| increases with n,implying that Eα(0) is an unstable fixed point.The circles represent |E(n)?E|/10 for δE=0.001.The agreement of the solid curve and the circles show that for these small values of δE,|E(n)?E|is in the linear region of δE.

    Fig.2 Variation of |E(n) ?E| (circles connected by dashed lines) with E for n=5,the parameters N=300,b=100,λ=10,and E=247 + 0.06m with m=1,2,...,100.At each step of the renormalized Hamiltonian flow,30 basis states are decimated.Within the energy region shown in this figure,the original Hamiltonian has three eigenenergies with positions indicated by the three vertical dotted lines.Approximate values of the eigenenergies can be get from extrapolation of the circles close to the local minima of |E(n)?E|.

    3.2 Localization of Eigenfunctions

    Based on Eq.(23),the theory here can also be used in the study of properties of energy eigenfunctions ofH(0),namely,the components ofin.For this,one should first know the eigenenergyEα(0),which may be obtained by the method discussed in the previous section or by some other method.Next,one can useE=Eα(0)to construct a finite renormalized Hamiltonian flow,untilwhose dimension is small enough for direct numerical diagonalization.Then,one can perform direct numerical diagonalization for this Hamiltonian and findwhich give the corresponding components ofinby the relation (23).In this way,some information about the wavefunctione.g.,its localization properties,may be obtained.In fact,if data for the construction ofofm=1,...,nhave been stored,it is even possible to obtain all the components

    We also employ the WBRM model discussed in the previous section to check the applicability of the method discussed above.Consider,e.g.,the parametersN=100,b=4,andλ=10.Hamiltonians with these parameters have localized eigenfunctions,e.g.,the one shown in Fig.3 by the solid curve.To check the validity of Eq.(23),we first diagonalizeH(0)directly and obtain its eigenenergiesEα(0)numerically.Then,we construct a(finite)renormalized Hamiltonian flowwithE=Eα(0),by making use of the method discussed in Subsec.2.4 with 10 basis states decimated at each step.Our numerical results indeed confirm the prediction of Eq.(23).An example is given in Fig.3 forn=5,which shows that the values ofagree well with the corresponding ones ofeven whenis as small as e?20.

    Fig.3 Values of the componentsfor n=0 and 5 in a renormalized Hamiltonian flow of .The original Hamiltonian is a realization of the Hamiltonian matrix in the WBRM model with parameters N=100,b=4,and λ=10.In the construction of the renormalized Hamiltonians,E=Eα(0) and 10 basis states are decimated at each step of the flow. and are eigenstates of H(0) and,respectively,with the same eigenenergy Eα(0).The two eigenfunctions agree well,as predicted in Eq.(23).

    3.3 A Discussion of Computation Time

    In this section,we give a brief discussion for the dependence of the computation time required by the method here on the dimensionNof the original Hamiltonian.This is to be compared with the corresponding dependence in ordinary direct diagonalization methods,in which the computation time usually scales asN3.

    When using the method here to calculate eigenenergies,as discussed in Subsec.3.1,one first needs to choose the energy region of interest and divide the region into consecutive segments,say,to (Ns?1) segments.Then,one can take theNsends of the segments as the parameterEand construct renormalized Hamiltonian flows.Suppose at each step totallymbasis states are decimated,withm ?N.This requires diagonalization of anm×mmatrix,which takes a time scaling asm3.After decimation of thembasis states,one obtains a new renormalized Hamiltonian and needs to calculate its new elements.(Some elements of the renormalized Hamiltonian may remain unchanged in the decimation process.) If there areM1new elements to be calculated and the time of calculating each new element scales asM2,then,calculation of the new elements needs a time scaling asM1M2.The values ofM1andM2depend on the structure of the original Hamiltonian.For example,for a 1-dimensional chain with nearest-neighbor coupling,it is possible for bothM1andM2to be quite small;on the other hand,for a full original Hamiltonian,(N2?m2) matrix elements are changed in the first step of the flow.

    Suppose one performsnsteps of the renormalization procedure and at last obtains a final renormalized Hamiltonian of dimension(N?nm).Diagonalization of the final Hamiltonian needs a time scaling as (N ?nm)3.Summarizing the above results,the total computation time scales asZ=Nsn(m3+M1M2)+Ns(N ?nm)3,where for simplicity in discussion,we assume thatM1M2can be taken as a constant.

    The method here is useful when a narrow energy region is of interest,because in this caseNsis not large.Usually,one may choose the value ofnsuch thatnmis close toN.This givesZ~NNs(m2+M1M2/m).Comparing it withN3for direct diagonalization method,we see that the method here is more efficient ifNs(m2+M1M2/m)?N2.In fact,the method here has another advantage,that is,it needs a relatively small memory for diagonalization.Specifically,it needs to diagonalize matrices with dimensionsmand (N ?nm),respectively,which can be small even for largeN.In contrast,a direct diagonalization method usually requires a memory scaling asN2,which is much larger thanm2and (N ?nm)2.

    4 Conclusions and Discussions

    In summary,based on the GBWPT,we propose a general method of constructing renormalized Hamiltonian flow with the energyEof interest as a parameter.Eigenenergies of the original Hamiltonian appear as (unstable) fixed points of some property of the renormalized Hamiltonian flow.WhenEis chosen as an eigenenergy of the original Hamiltonian,all the renormalized Hamiltonians in the same flow share the same eigenenergy asE,with the corresponding eigenfunctions possessing related components.we introduce a useful technique,by which an arbitrary set of basis states in the Hilbert space can be decimated in the construction of a renormalized Hamiltonian.We also discuss potential applications of the method in numerical evaluation of eigenenergies as well as in the study of localization of eigenfunctions,and illustrate them numerically in the WBRM model.In particular,by considering the scaling behavior of computation time,we find some situations in which the method here may be more efficient than the ordinary numerical diagonalization methods.

    As is known,localization in the WBRM model can be related to localization in another band-random-matrix model,by making use of a renormalization technique based on the GBWPT.[48]The method discussed in this paper can be used to improve the method in Ref.[48],specifically,by partial diagonalization of the Hamiltonian in the subspace spanned by states in,without rotation in the subspace spanned by states inSα.

    Finally,we give some remarks on the relation of the method discussed in this paper to some other methods of constructing renormalized Hamiltonians.The realspace renormalization-group method used in Refs.[33-34]for the one-dimensional tight-binding model with nearestneighbor-hopping,is in fact a special case of the method here,with the setincluding only one basis stateat each step of decimation.Its modified versions for 1D or quasi-1D systems,e.g.,those in Refs.[36–38],have some technical difference from the method here.A merit of the theory here is that it supplies a general approach to the construction of renormalized Hamiltonian flow,not restricted to some special types of models.

    猜你喜歡
    文閣
    難忘雷鋒的關(guān)愛(ài)
    婦女(2023年2期)2023-03-27 10:41:57
    男旦“頭牌”胡文閣的雙面人生
    梅葆玖送衣
    做人與處世(2022年3期)2022-05-26 00:18:36
    梅葆玖送衣
    窩棚、紙信、500元錢(qián):京漂導(dǎo)演有顆天真的心
    Similar Early Growth of Out-of-time-ordered Correlators in Quantum Chaotic and Integrable Ising Chains?
    Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton?
    高文閣:堅(jiān)韌不拔揮灑筆墨苦研多年運(yùn)筆勁健
    僑園(2019年4期)2019-04-28 23:50:54
    胡文閣:男旦的憂傷
    北廣人物(2018年40期)2018-11-14 09:00:02
    胡文閣男旦的憂傷
    日韩欧美三级三区| 国产又黄又爽又无遮挡在线| 波多野结衣巨乳人妻| 欧美日韩综合久久久久久| 精华霜和精华液先用哪个| 国产av不卡久久| 性色avwww在线观看| 亚洲av不卡在线观看| 国产成人午夜福利电影在线观看| 中文天堂在线官网| 国产一区二区在线av高清观看| 少妇猛男粗大的猛烈进出视频 | 人人妻人人澡人人爽人人夜夜 | 性插视频无遮挡在线免费观看| 久久国内精品自在自线图片| 好男人视频免费观看在线| 国产精品久久视频播放| 99久久精品国产国产毛片| 亚洲va在线va天堂va国产| 欧美色视频一区免费| 久久精品久久久久久久性| 欧美xxxx性猛交bbbb| 国产黄色视频一区二区在线观看 | 小说图片视频综合网站| 美女脱内裤让男人舔精品视频| 不卡视频在线观看欧美| 黄色配什么色好看| 成人亚洲欧美一区二区av| 亚洲经典国产精华液单| 亚洲av二区三区四区| 免费av不卡在线播放| 亚洲中文字幕一区二区三区有码在线看| 成人毛片a级毛片在线播放| 久久久亚洲精品成人影院| ponron亚洲| 国产一级毛片七仙女欲春2| 夜夜看夜夜爽夜夜摸| 午夜福利在线观看免费完整高清在| 插逼视频在线观看| 国产免费福利视频在线观看| 成人毛片a级毛片在线播放| 欧美日韩在线观看h| 搡女人真爽免费视频火全软件| 亚洲av男天堂| 日本猛色少妇xxxxx猛交久久| a级毛片免费高清观看在线播放| 久久精品影院6| 欧美性猛交黑人性爽| 日本猛色少妇xxxxx猛交久久| 国产亚洲最大av| 日本免费a在线| 毛片一级片免费看久久久久| 午夜福利在线观看吧| 插阴视频在线观看视频| 日韩高清综合在线| 99在线视频只有这里精品首页| 一区二区三区乱码不卡18| 六月丁香七月| 亚洲最大成人手机在线| 亚洲欧美日韩高清专用| 超碰97精品在线观看| 国产精华一区二区三区| 91精品伊人久久大香线蕉| 97热精品久久久久久| 69av精品久久久久久| 成人午夜高清在线视频| 国产精品精品国产色婷婷| 久久久成人免费电影| 五月伊人婷婷丁香| 日产精品乱码卡一卡2卡三| 少妇被粗大猛烈的视频| 久久亚洲精品不卡| 免费av毛片视频| 免费不卡的大黄色大毛片视频在线观看 | 哪个播放器可以免费观看大片| 日本免费一区二区三区高清不卡| 精品人妻偷拍中文字幕| 国产极品精品免费视频能看的| 美女脱内裤让男人舔精品视频| 国产极品精品免费视频能看的| 亚洲激情五月婷婷啪啪| 中文字幕av成人在线电影| 日本免费一区二区三区高清不卡| 亚洲精品乱码久久久久久按摩| 国产av在哪里看| 国产三级在线视频| 黄片无遮挡物在线观看| 美女大奶头视频| 26uuu在线亚洲综合色| 我的女老师完整版在线观看| 亚州av有码| 综合色av麻豆| 成人漫画全彩无遮挡| 日本猛色少妇xxxxx猛交久久| 亚洲内射少妇av| 乱人视频在线观看| 欧美zozozo另类| 丝袜美腿在线中文| 国产在视频线精品| 免费观看的影片在线观看| 国内精品宾馆在线| 免费黄色在线免费观看| 91精品国产九色| 国产91av在线免费观看| 国产乱人偷精品视频| 免费人成在线观看视频色| 国产伦理片在线播放av一区| 国产av码专区亚洲av| 中文字幕av成人在线电影| av播播在线观看一区| 热99在线观看视频| 国产精品一区二区三区四区久久| 美女xxoo啪啪120秒动态图| 毛片一级片免费看久久久久| 国产片特级美女逼逼视频| 99热全是精品| 国产乱人偷精品视频| 国产午夜精品一二区理论片| 国产精品一区二区三区四区免费观看| 寂寞人妻少妇视频99o| 国产亚洲5aaaaa淫片| 午夜a级毛片| 亚洲自偷自拍三级| 男女国产视频网站| 久久99热这里只频精品6学生 | 国产久久久一区二区三区| 国产色婷婷99| 成人高潮视频无遮挡免费网站| 国产高清不卡午夜福利| 2022亚洲国产成人精品| 亚洲18禁久久av| 18禁在线无遮挡免费观看视频| 建设人人有责人人尽责人人享有的 | 免费电影在线观看免费观看| 成人特级av手机在线观看| 亚洲av熟女| 一本一本综合久久| 中文字幕精品亚洲无线码一区| 免费看av在线观看网站| 乱码一卡2卡4卡精品| 国产精品野战在线观看| 三级经典国产精品| 日韩av不卡免费在线播放| 日韩欧美精品v在线| 久久久久久久久大av| 又粗又硬又长又爽又黄的视频| 听说在线观看完整版免费高清| videossex国产| 国产精品久久久久久精品电影小说 | 97热精品久久久久久| 国产中年淑女户外野战色| 晚上一个人看的免费电影| 免费人成在线观看视频色| 国产探花极品一区二区| 身体一侧抽搐| 亚洲成人中文字幕在线播放| 免费不卡的大黄色大毛片视频在线观看 | av在线亚洲专区| 日韩,欧美,国产一区二区三区 | 18禁在线无遮挡免费观看视频| 久久国内精品自在自线图片| 午夜激情欧美在线| 欧美高清性xxxxhd video| 国产精品电影一区二区三区| 国产成人精品一,二区| 一级爰片在线观看| 嘟嘟电影网在线观看| 午夜久久久久精精品| 国产激情偷乱视频一区二区| 欧美最新免费一区二区三区| 在线观看av片永久免费下载| 日韩欧美精品v在线| 看非洲黑人一级黄片| 在线观看一区二区三区| 久久久久久国产a免费观看| 精品免费久久久久久久清纯| 2021少妇久久久久久久久久久| 国产视频内射| 老师上课跳d突然被开到最大视频| 人人妻人人看人人澡| 你懂的网址亚洲精品在线观看 | 51国产日韩欧美| 一级av片app| 欧美变态另类bdsm刘玥| h日本视频在线播放| 91午夜精品亚洲一区二区三区| 国产精品一及| 嫩草影院精品99| 插阴视频在线观看视频| 99热这里只有是精品在线观看| 最近最新中文字幕大全电影3| 免费一级毛片在线播放高清视频| h日本视频在线播放| 久久99精品国语久久久| 亚洲国产精品专区欧美| 亚洲最大成人av| 午夜精品在线福利| 中文字幕制服av| a级一级毛片免费在线观看| 国产熟女欧美一区二区| 免费播放大片免费观看视频在线观看 | 国产成年人精品一区二区| 国产黄片视频在线免费观看| 久久精品夜色国产| 日本一本二区三区精品| 黄色配什么色好看| 天天躁夜夜躁狠狠久久av| 草草在线视频免费看| 免费大片18禁| 能在线免费观看的黄片| 色尼玛亚洲综合影院| av在线亚洲专区| 成人毛片a级毛片在线播放| www.色视频.com| 国产黄片视频在线免费观看| 99热全是精品| 中文字幕av在线有码专区| 日本黄色视频三级网站网址| 午夜a级毛片| 69av精品久久久久久| 亚洲av电影不卡..在线观看| 91狼人影院| 日韩精品青青久久久久久| 麻豆国产97在线/欧美| 老司机影院成人| 中文在线观看免费www的网站| 人妻制服诱惑在线中文字幕| 欧美日本亚洲视频在线播放| 乱人视频在线观看| 国产乱来视频区| 日韩成人伦理影院| 精品人妻偷拍中文字幕| 变态另类丝袜制服| 国产精品美女特级片免费视频播放器| 秋霞伦理黄片| 国产高潮美女av| 国产国拍精品亚洲av在线观看| 久久久色成人| 久久久精品大字幕| 永久网站在线| 国产精品一区二区三区四区久久| 丰满少妇做爰视频| 真实男女啪啪啪动态图| 国产精品一区二区性色av| 亚洲国产欧美在线一区| 国内精品宾馆在线| 午夜精品一区二区三区免费看| 最近中文字幕2019免费版| 99久久精品热视频| 成人无遮挡网站| 精品久久久久久久久久久久久| 全区人妻精品视频| 久久久久久伊人网av| 99久久精品国产国产毛片| 亚洲人成网站高清观看| 国产女主播在线喷水免费视频网站 | 国产免费福利视频在线观看| 国产一区亚洲一区在线观看| 午夜精品在线福利| 99热精品在线国产| 亚洲精品自拍成人| a级毛片免费高清观看在线播放| 在线免费观看不下载黄p国产| 亚洲无线观看免费| 欧美日韩在线观看h| 91久久精品国产一区二区成人| 一卡2卡三卡四卡精品乱码亚洲| 黄色配什么色好看| 成人国产麻豆网| 天天躁日日操中文字幕| 亚洲精品一区蜜桃| 亚洲中文字幕日韩| 亚洲国产欧洲综合997久久,| 午夜精品在线福利| 免费人成在线观看视频色| 又粗又爽又猛毛片免费看| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲精品久久久com| 欧美成人午夜免费资源| 波野结衣二区三区在线| 99热6这里只有精品| 如何舔出高潮| 看十八女毛片水多多多| 九九久久精品国产亚洲av麻豆| 色播亚洲综合网| 日韩欧美国产在线观看| 亚洲av日韩在线播放| 国产一区二区亚洲精品在线观看| 国产亚洲一区二区精品| 少妇熟女aⅴ在线视频| 日韩制服骚丝袜av| 亚洲va在线va天堂va国产| 日韩视频在线欧美| 亚洲精品亚洲一区二区| 直男gayav资源| 18+在线观看网站| 亚洲自拍偷在线| 一级二级三级毛片免费看| 亚洲av电影不卡..在线观看| 亚洲成人av在线免费| 欧美精品国产亚洲| 水蜜桃什么品种好| 91精品一卡2卡3卡4卡| 少妇人妻一区二区三区视频| 久久韩国三级中文字幕| videos熟女内射| 国产极品精品免费视频能看的| 日本猛色少妇xxxxx猛交久久| 少妇人妻精品综合一区二区| 伦精品一区二区三区| 少妇丰满av| 一区二区三区乱码不卡18| 亚洲在线自拍视频| 日韩人妻高清精品专区| 舔av片在线| 一级av片app| av福利片在线观看| 一边亲一边摸免费视频| 少妇熟女欧美另类| av在线亚洲专区| 婷婷色综合大香蕉| 免费搜索国产男女视频| av在线老鸭窝| 午夜福利网站1000一区二区三区| 久久精品综合一区二区三区| 欧美3d第一页| 国产精品一区二区在线观看99 | 国产成人精品久久久久久| 丰满乱子伦码专区| 干丝袜人妻中文字幕| 欧美不卡视频在线免费观看| av免费在线看不卡| 国产精品熟女久久久久浪| 少妇的逼水好多| 最新中文字幕久久久久| 国产亚洲精品久久久com| kizo精华| 久久精品夜夜夜夜夜久久蜜豆| 国模一区二区三区四区视频| 国产免费又黄又爽又色| 亚洲精品日韩在线中文字幕| 美女xxoo啪啪120秒动态图| 亚洲国产精品久久男人天堂| 久久久久久久久久久免费av| 黑人高潮一二区| 能在线免费观看的黄片| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 1024手机看黄色片| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 久久国内精品自在自线图片| 麻豆一二三区av精品| 3wmmmm亚洲av在线观看| 好男人视频免费观看在线| 日韩视频在线欧美| 中文欧美无线码| 亚洲精品国产av成人精品| 国产高清三级在线| 亚洲精品日韩在线中文字幕| 美女内射精品一级片tv| 秋霞伦理黄片| 日本色播在线视频| 最近手机中文字幕大全| 91精品一卡2卡3卡4卡| 国产不卡一卡二| 99在线视频只有这里精品首页| 高清视频免费观看一区二区 | 99热网站在线观看| 麻豆成人午夜福利视频| 不卡视频在线观看欧美| 丰满人妻一区二区三区视频av| 三级毛片av免费| 黄色配什么色好看| 中文精品一卡2卡3卡4更新| 又爽又黄无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 国产成人福利小说| 一卡2卡三卡四卡精品乱码亚洲| 边亲边吃奶的免费视频| 亚洲av熟女| 免费一级毛片在线播放高清视频| 91av网一区二区| 亚洲国产色片| 国产免费男女视频| 中文精品一卡2卡3卡4更新| 99热6这里只有精品| 夫妻性生交免费视频一级片| 国产高清国产精品国产三级 | 亚洲欧美日韩东京热| 久久人人爽人人爽人人片va| 一级av片app| 日本-黄色视频高清免费观看| 青青草视频在线视频观看| 久久久精品大字幕| av免费观看日本| av女优亚洲男人天堂| 搞女人的毛片| 中文精品一卡2卡3卡4更新| 精品久久久久久成人av| 成年女人看的毛片在线观看| 91在线精品国自产拍蜜月| 国产高清三级在线| 日韩欧美精品v在线| 大香蕉97超碰在线| 免费看光身美女| 高清av免费在线| 内地一区二区视频在线| 午夜日本视频在线| 午夜免费激情av| av在线亚洲专区| 亚洲av福利一区| 国产精品久久电影中文字幕| 国产乱人视频| 97热精品久久久久久| 久久久久久久久久成人| 色哟哟·www| 18禁动态无遮挡网站| 最近中文字幕2019免费版| 国产黄色小视频在线观看| 午夜精品一区二区三区免费看| av国产免费在线观看| 国产麻豆成人av免费视频| 亚洲成人av在线免费| 免费看美女性在线毛片视频| 国产成人a区在线观看| 国产一区二区在线观看日韩| 国内精品宾馆在线| 欧美激情久久久久久爽电影| 亚洲国产欧美在线一区| 亚洲av不卡在线观看| 日韩av在线免费看完整版不卡| 欧美成人一区二区免费高清观看| 亚洲国产日韩欧美精品在线观看| 在线免费观看的www视频| 精品99又大又爽又粗少妇毛片| 午夜福利在线在线| 99久国产av精品国产电影| h日本视频在线播放| 听说在线观看完整版免费高清| 黄色一级大片看看| h日本视频在线播放| 偷拍熟女少妇极品色| 联通29元200g的流量卡| 草草在线视频免费看| 免费黄色在线免费观看| 寂寞人妻少妇视频99o| 亚洲精品影视一区二区三区av| 小蜜桃在线观看免费完整版高清| 亚洲精品色激情综合| 亚洲人成网站在线播| 亚洲欧美日韩无卡精品| 在线免费观看不下载黄p国产| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩东京热| 深爱激情五月婷婷| 国产精品野战在线观看| 亚洲精品乱久久久久久| 国产91av在线免费观看| 国产一区二区三区av在线| 国产人妻一区二区三区在| 你懂的网址亚洲精品在线观看 | 欧美+日韩+精品| 少妇的逼好多水| 日本一本二区三区精品| 国产成人91sexporn| 欧美成人精品欧美一级黄| 亚洲真实伦在线观看| 亚洲成人久久爱视频| 免费观看在线日韩| 亚洲aⅴ乱码一区二区在线播放| 特级一级黄色大片| 欧美一区二区国产精品久久精品| 久久人妻av系列| 国产不卡一卡二| 男人狂女人下面高潮的视频| 亚洲av中文av极速乱| 成人性生交大片免费视频hd| 亚洲第一区二区三区不卡| 六月丁香七月| 女人久久www免费人成看片 | 亚洲欧美日韩东京热| 我要搜黄色片| 中国美白少妇内射xxxbb| 综合色av麻豆| a级一级毛片免费在线观看| 精品久久久久久久久av| 啦啦啦观看免费观看视频高清| 国产精品国产三级国产av玫瑰| videos熟女内射| 国产私拍福利视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲成人精品中文字幕电影| 国产精品国产三级国产专区5o | 久久精品夜色国产| 国产爱豆传媒在线观看| 中文乱码字字幕精品一区二区三区 | 国产色爽女视频免费观看| 九九久久精品国产亚洲av麻豆| 午夜精品国产一区二区电影 | 三级国产精品片| 久久久午夜欧美精品| 一级黄片播放器| 亚洲精品日韩在线中文字幕| 国产黄色视频一区二区在线观看 | 水蜜桃什么品种好| 成人毛片60女人毛片免费| 日韩亚洲欧美综合| 日本黄大片高清| 1024手机看黄色片| 国产成人精品久久久久久| 国产精品熟女久久久久浪| 国内精品美女久久久久久| 亚洲欧美日韩高清专用| 国内精品美女久久久久久| 在现免费观看毛片| 国产高潮美女av| 精品欧美国产一区二区三| 两个人的视频大全免费| 亚洲av免费高清在线观看| 国产午夜福利久久久久久| 亚洲精品国产av成人精品| 人体艺术视频欧美日本| 国语对白做爰xxxⅹ性视频网站| 美女脱内裤让男人舔精品视频| 亚洲国产最新在线播放| 高清午夜精品一区二区三区| 欧美成人一区二区免费高清观看| 99视频精品全部免费 在线| 午夜免费激情av| 日本黄色视频三级网站网址| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 禁无遮挡网站| 国产极品精品免费视频能看的| 久久久色成人| 我的老师免费观看完整版| 国内精品宾馆在线| 精品一区二区三区人妻视频| 麻豆成人午夜福利视频| 中文天堂在线官网| 精品无人区乱码1区二区| 久久久午夜欧美精品| 99热这里只有是精品在线观看| 91aial.com中文字幕在线观看| 欧美成人精品欧美一级黄| 欧美日韩在线观看h| 日韩 亚洲 欧美在线| 日本免费在线观看一区| 禁无遮挡网站| 国产一级毛片七仙女欲春2| 精品欧美国产一区二区三| 日韩欧美 国产精品| 99在线视频只有这里精品首页| 99久久九九国产精品国产免费| 日韩成人av中文字幕在线观看| 国产伦理片在线播放av一区| 青春草亚洲视频在线观看| 免费av观看视频| 舔av片在线| 中文资源天堂在线| 最近视频中文字幕2019在线8| 中文字幕av在线有码专区| 亚洲欧洲日产国产| 99热精品在线国产| 99在线人妻在线中文字幕| 国产精品电影一区二区三区| 国产高清视频在线观看网站| 欧美97在线视频| 亚洲国产欧美在线一区| 久久久久久久亚洲中文字幕| 日日撸夜夜添| 国产 一区 欧美 日韩| 97超视频在线观看视频| 免费观看精品视频网站| 欧美精品国产亚洲| 免费人成在线观看视频色| 美女xxoo啪啪120秒动态图| 欧美激情国产日韩精品一区| 日日干狠狠操夜夜爽| 欧美最新免费一区二区三区| 国产高清视频在线观看网站| 亚洲丝袜综合中文字幕| 国产精品精品国产色婷婷| 国产精品乱码一区二三区的特点| 久久韩国三级中文字幕| 精品国产一区二区三区久久久樱花 | 欧美日韩在线观看h| 中文字幕免费在线视频6| 国产精品av视频在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 国产高清视频在线观看网站| 人人妻人人看人人澡| 69人妻影院| 欧美最新免费一区二区三区| 大香蕉97超碰在线| 中文字幕av成人在线电影| 男人狂女人下面高潮的视频| 亚洲怡红院男人天堂| 大又大粗又爽又黄少妇毛片口| 欧美一区二区国产精品久久精品| 熟妇人妻久久中文字幕3abv| 99久久无色码亚洲精品果冻| 亚洲第一区二区三区不卡| 欧美xxxx性猛交bbbb| 日本五十路高清| 午夜精品国产一区二区电影 | 午夜福利视频1000在线观看| 永久免费av网站大全| 国产真实乱freesex| 2022亚洲国产成人精品| 亚洲av电影不卡..在线观看| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区四那|