• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable Range Interactions and Multi-Roton Excitations for Bosons in a Bose-Fermi Mixture with Optical Lattices?

    2019-07-25 02:02:12ChaoFeng馮超andYuChen陳宇
    Communications in Theoretical Physics 2019年7期
    關(guān)鍵詞:陳宇

    Chao Feng (馮超) and Yu Chen (陳宇)

    1Institute for Advanced Study,Tsinghua University,Beijing 100084,China

    2Department of Physics,Capital Normal University,Beijing 100048,China

    Abstract In this article,we discuss a method to control the long-range interactions between bosons in a threedimensional Bose-Fermi mixture with the help of optical lattices on fermions.We find the range and the peaked momentum of the fermion-mediated interactions can be tuned by the optical lattice depth and the fermion density.If the fermion density is close to half-filling,roton excitations can be generated with weak Bose-Fermi interactions.Further,if the fermions are not exact at half-filling,multi-roton structure may emerge,implying competing density orders.Therefore,tuning the lattice depth and the fermion density in a Bose-Fermi mixture serves as an effective way to control the interaction range and resonant momentum between bosons.

    Key words: Bose-Fermi mixture,multi-roton,tunable range interaction

    1 Introduction

    In ultracold atom experiments,short-range interactions between atoms can be controlled by all kinds of techniques,such as Feshbach resonances[1]and optical lattices.[2]In contrast,tunable long-range interactions are more difficult to access.Nevertheless,searching methods to control long-range interactions between atoms is growing vigorously these years.[3?16]The main reason is that many new phenomena emerge through competitions between the short-range interactions and the long-range interactions.For example,long-range interactions in Bose-Einstein condensates can lead to roton-like excitations in the single-particle excitation spectrum,[11]which serves as a percusor of crystallization phase.

    There are several possible ways to introduce longrange interactions in quantum gases.One method is through dipole-dipole interactions.[3?7]This method is intrinsically dependent on the atoms,thus it is hard to be tuned.Another method is through interactions between a cavity field and atoms.[9?11]Recently,there are a lot of progresses in both single mode[11]and multimode cavities.[17?18]However,the mode is always chosen by the cavity field rather than spontaneously.Beyond these two approaches,there is a third way to realize long-range interactions between atoms,which lends the help from quantum gas mixtures.[19?28]Following these realizations of long-range interactions,roton-like excitations are found and supersolid phase are presented.[11,19,29?36]

    In recent years,there are a lot of new experimental progresses[23?27]in the field of Bose-Fermi mixtures.Importantly,a Bose-Fermi superfluid mixture is realized[25]and fermion-induced Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction[37]is observed.[27]These new advances drive us to study how to control the induced interactions in a Bose-Fermi mixture.When fermions are put into a lattice,the induced interaction by fermions is strongly influenced by the change of Fermi surface shape.Previous theoretical studies are mostly focused on a case where the lattice fermion density is fixed at the half-filling.[19?21]In that case,the induced interactions between bosons are infinite-range RKKY-type,where a supersolid phase[19?24]at commensurate momentum is expected.However,more general results for arbitrary filling and less deep lattice for three-dimensional Bose-Fermi mixtures is still missing.In this article,we study the boson-boson interactions and the excitation spectrum of the bosons in a Bose-Fermi mixture where the fermions experience an optical lattice.We find that the range of the fermion-mediated interactions can be tuned by the lattice depth and the fermion density.Moreover,we find there may emerge multi-roton minimum in Bogoliubov spectrum,when the fermion density is not exactly at half-filling.Most importantly,the range and the mode of the fermion-mediated interactions can be tuned by the lattice depth and the fermion density.

    The following of the article is arranged into three parts.First,we introduce the system and the formulation for the induced interactions and the Bogoliubov spectrum.Then,we revisit the fermion-induced interactions and the Bogoliubov spectrum for bosons,which is mixed with fermions in free space.Finally,we discuss the tunable range interactions and multi-roton excitations for bosons in a Bose-Fermi mixture with optical lattices.

    2 Fermion-Induced Interactions in Bose-Fermi Mixtures

    Here we consider a Bose-Fermi mixture system which could be described by the following hamiltonian,

    Integrating out fermion fields up to the second order ofgBF(the detail of this integration is given in Appendix A),the effective induced interaction can be given as

    where

    is the static structure factor.Here

    is the free fermion’s propagator in imaginary time,

    (ωn=2πβ(n+1/2),n ∈Z,β=1/kBT,andTis the temperature).

    In a translational invariant system,Vind(r,r′)=Vind(r ?r′)gives the information of the effective fermionmediated interactions between bosons.Based on the effective hamiltonian for bosons including the fermionmediated interactions,we can obtain the excitation spectrum of bosons by Bogoliubov theory as

    whereα=is the superfluid order parameter.Before diving into the detail calculations of the spectrum,we first analyze the influence ofVind(k) on the spectrum.Vind(k)is negative.To access a roton-like structure,threre must be a nonzerok,such that|Vind(k)| ?|Vind(0)|.If they are close,then by increasing boson-fermion interaction will drop roton minimum and superfluid velocity at the same time.Thus superfluidity may be destroyed before a roton is formed.Vind(0) is proportional to?N(0),whereN(?)is the fermion density of states.In three-dimensional systems,N(0) is usually finite.

    In the following paragraphs,we first show the result ofVind(r) and Bogoliubov spectrum?kfor fermions without optical lattices.Then we show how optical lattice depth and fermion density affect the induced interactionVind(r)and the Bogoliubov spectrum?k.

    3 Fermions Without Lattices

    In this section,we supposeV(r)=0 for free fermions.Then the static structure factor in momentum spaceχ(q,T) is the Fourier transformation ofχ(r ?r′,T),

    It can be calculated by the following formula

    whereGF(k,iωn)=iωn?|k|2+k2Fand we have takenmF=1/2,μF=k2F.Inserting the Green’s function’s expression into Eq.(8),we can calculate the susceptibility.At zero temperature,we can obtain an analytical expression of the static structure factor (see Appendix B for calculation detail) as

    Similar calculation can be carried out for finite temperature,but the expression is no longer analytical.

    Then we carry out a Fourier transformation ofto real space.In the real space,the induced interactionis oscillating from negative values to positive values.In other words,these interactions are RKKY-type,which has been discovered long ago.[41?42]The finite temperature static structure factor can be also calculated numerically,whose result is presented in Fig.1.We find the low temperature induced interaction is not quite different from the zero temperature result.Recently,this is observed in Cheng Chin’s group’s experiments.[26?27]

    We find the induced interaction in the short-ranger?1/kFis attractive.Therefore,if the boson-boson repulsive interaction is not strong enough,the RKKY interaction may lead to an instability alike attractive interactions in a Bose-Einstein condensate.In that case,there will be a phase separation for the Bose-Fermi mixture.To ensure the short-range interaction being repulsive,we requireIn this parameter region,the superfluid sound velocity is not zero.SinceVind(k) is monotonously decreasing function ofk,this potential can not give rise to a roton-like structure in Bogoliubov spectrum.We also work out the low temperature induced interaction,which is shown in Fig.1 as blue line.

    Fig.1 (Color online) Fermion-induced interactions Vind(r) in real space.The red line is the zero temperature result,and the blue line is the low temperature result.In general,the free fermions induce an RKKY-type interaction in the real space.

    4 Fermions with Lattices

    According to Eq.(6),the requirement of obtaining a roton-like minimum in Bogoliubov spectrum isVind(k≠0) being much larger thanVind(0).For free fermions,we have|Vind(k≠0)| < |Vind(0)|.Therefore it is impossible to get a roton-like structure.However,the fermion model can be described by a tight-binding model,when the optical lattice is deep enough.We can find,the Fermi Surface(FS) is nested at momentumQπ=(±π,±π,±π)/λat half-filling case,whereλis the lattice constant.In this situation,the static structure factorχ(Qπ)is divergent.The system has a density order instability.This is similar to the previous two-dimensional Bose-Fermi mixtures[19]and cavity fermions.[38?40]Indeed,there is another possibility of instability at momentum zero.The static structure factorχ(0) is?N(0) whereN(?) is the fermion density of states (DOS) at energy?.In two-dimensional system,the DOS at zero energy for half-filling is logarithmic divergent because of Van-Hove singularity.The existence of two instabilities will lead to a competition between the instability atq=0 andq=Qπ.However,in threedimensional space,N(0) is finite,therefore we only have instability atQπ.For this reason,the three-dimensional Bose superfluid is always stable for weak Bose-Fermi interactions.

    In the following,we present the calculation for the induced interaction for fermion in optical latticesV(r)=VP(cos2(k0x) + cos2(k0y) + cos2(k0z)),whereVPis the laser pumping strength.The Bloch wave function can be expressed in terms of Mathieu function as?nk(r)=eik·rMnxkx(x)Mnyky(y)Mnzkz(z),wherek=(kx,ky,kz)is in the first Brillouin zone,n=(nx,ny,nz) is the band index.Here we denote the modified band energy for thenthband is?nk.In terms of these definitions,the single particle’s Green’s function can be expressed as

    Therefore,the zero temperature static structure factor can be obtained as

    Here we employ a tight-binding model with nearest neighbor (NN) hopping and the next nearest neighbor (NNN)hopping to simplify the fermions in an optical lattice.The tight-binding model reads

    whereckis the lowest band fermion annihilation operator.tandt′can be fitted from exact energy band dispersion.In general,|t′/t|approaches zero quickly when|VP/Er|>3.

    Before we go to detail,we analyze the FS nesting property at half-filling.Ift′=0,we can find?k+Qπ=??k.The FS has a perfect nesting atq=Qπ.The perfect nesting will be weakened by the presence of NNN hoping or the density being not exact at half-filling.In the following subsections,we present how NNN hopping and filling have their effect on the induced interactions and Bogoliubov spectrum.

    4.1 Lattice Depth Effect on the Induced Interactions

    First we fix the chemical potential to be 0.1t.By tuningVPfrom small to large,t′/tshrinks to zero.Here we denote the nesting momentum asqmax,which is the momentum for largestχ(q).Then we can discuss howqmaxandVind(qmax) change against the lattice strength.

    With chemical potential being fixed,we vary the optical lattice depthVPfrom?Erto?5Er.Then we obtainfrom Eq.(11),wheregBF/Eris fixed as 0.1.The corresponding figures ofVind(q) are given in Fig.2.We find the induced interaction peak in momentum space shifts from a ring aroundQπto exact atQπas the pumping field increases.At the same time,we find the contrast betweenVind(qmax) andVind(0) increases from 2 to 5 as the lattice strength increases from?Erto?5Er.From these results,we predict the interaction range is increasing when the lattice depth is increasing.

    Here we show what peaks in momentum space imply in real space potential.AssumingVind(q) is peaked atqjmaxand can be approximated aswhere summation overjis summation over different peaks andr?is an effective range.By Fourier transformation we have

    Then we can see the oscillation factor comes fromand the width 1/r?in momentum space implies the range of the potential in real space.The range of the interaction strength depends on how sharp is the peak ofVind(q) in momentum space.

    Further,we give the Bogoliubov spectrum of bosons in different lattice depth.One can find roton like excitations emerge,as is shown in Fig.3.One can find when the lattice depth is not so deep,the roton position is not aroundQπ(K) point.

    Fig.2 (Color online)Induced interaction in momentum space Vind(q).The momentum space is restricted to the cubic region qi=x,y,z ∈[0,π/λ].In (a),(b),(c),(d),we show Vind(q) for different fermion optical lattice strength.VP=?Er in (a),VP=?2Er in (b),VP=?3Er in (c) and VP=?5Er in (d).The chemical potential μ is mixed as 0.1t.The corner in the center of each figure is Qπ=(π,π,π)/λ point.

    Fig.3 (Color online) In (a),we show the Bogoliubov spectrum for VP=?2Er case. gBnB/Er=4.05 and /Er2=0.0045.Red color is small energy value and violet color is for large energy value.In (b),we show the dispersion of bosons in a path from Γ point to M point,to K point then return to Γ point.A reference dispersion is presented in dashed line when we turn off the boson-fermion interactions.

    4.2 Fermion Density Effect on the Induced Interactions

    Here we fix the lattice depth to beVP=?5Er.In this situation,the FS nesting is almost perfect.And the induced interaction is divergent at the momentumQπ.After driving the filling away from the half-filling,we find the momentumqmaxwhereVind(q) is peaked shifts fromQπto incommensurate momentums.We show the inducedVind(q) in momentum space in Fig.4.And the chemical potential is equal tot,0.5t,and 0.1tin Figs.4(a),4(b),and 4(c) inrespectively.We see the induced interaction peaks in (±π,±π,0),(0,±π,±π),and (±π,0,±π)forμ=t.As the chemical potential approaches zero,the induced interaction peaks aroundQπ=(±π,±π,±π)point,forming a circle aroundQπpoint.Meanwhile,the contrast between the peakVind(qmax)andVind(0)diverges in the process ofμapproaching 0.The peak of induced interaction becomes larger and larger as the chemical potential approaches zero.If we translate these information in real space,that is,the induced interaction’s oscillation pattern is changed and the range is enlarged when the fermion density approaches half-filling.

    Then we study how single-particle excitation spectrum of the bosons is changed byVind(q).First,we conclude that we can not have both superfluid and roton structure in the same time for relative low filling (but not close to zero).The reason is that the contrast betweenVind(qmax) andVind(0) is not large whenμis not close to 0.Meanwhile,the superfluid sound velocity will be reduced severely whengBFis large enough to give rise to a roton structure.Therefore,the system will experience a collapse where bosons and fermions are separated before a roton-like excitation can be generated in Bogoliubov spectrum.

    Second,aroundμ=0,a roton-like excitation is possible.This is because the contrast betweenVind(qmax)andVind(0) is large when the fermion density is close to half-filling.When the nesting momentum becomes incommensurate,there could be multi-roton structure in Bogoliubov spectrum.Here we show the single-particle excitation spectrum of bosons in deep fermion lattice limit(VP=?5Er) in Fig.4.In Fig.5(a),we show the Bogoliubov spectrum?kwithμF=0.1t.is taken as 0.0039.In Fig.5(b),we show the Bogoliubov spectrum?kwithμF=0.5t,=0.004 31.The boson interaction energy is taken asgBnB/Er=4.05.In Fig.5(c),we give the Bogoliubov spectrum along ΓMKΓ circle in momentum space.The dotdashed line is the Bogoliubov spectrum without Fermi gases.We observe more than one roton minimum in Fig.5(c) for different fermion density(dashed line and solid line).

    Fig.4 (Color online) The static structure factor in momentum space χ0(q).In these figures we only show the largest region of the static structure factor.In (a),the chemical potential is μ=t; In (b),the chemical potential is μ=0.5t; and in (c),the chemical potential is μ=0.1t.The brighter color is for larger χ(q),and the darker color is for smaller χ(q).Three axes are qx,qy,and qz direction,from ?π to π.Beyond this range,the static structure factor is almost zero,suppressed by the band gap.

    Fig.5 (Color online) In (a) and (b) we give the Bogoliubov spectrum for Bose gases mixed with Fermi gases in deep lattice.The chemical potential of the Fermi gases isμ=0.1t andμ=0.5t(t<0)in(a)and(b)respectively.In(c),the blue dot-dashed line is for the Bogoliubov spectrum of the interacting Bose gases alone,while the black dashed line and the red solid line are Bogoliubov spectrum of Bose gases mixed with lattice fermions along ΓMKΓ route in the first Brilluin zone.

    5 Conclusion

    To summarize,we find boson-fermion interactions in a Bose-Fermi mixtures can induce an RKKY-type interaction between bosons.We can control the momentum pattern and the interaction range by tuning the lattice depth and the fermion density.In three-dimensional systems,the fermion-mediated interactions are strongly affected by the Fermi surface properties like FS nesting.On the other hand,unlike the two-dimensional case,the lattice fermion density of states in three-dimensional system is always finite,rather than a logarithmic divergence in two-dimensional system.This property ensures a roton-like excitation in Bogoliubov spectrum without instability at zero momentum.In some special fillings close to half-filling,multi-roton structure in Bogoliubov spectrum is observed.Therefore the Bose-Fermi mixture is an ideal system to study the interaction range effect,incommensurate density orders and the competing density orders.

    Appendix A: Deduction of Eq.(5)

    where?(r,τ),ψ(r,τ) are a complex bosonic field and a complex fermionic field,whose boundary conditions are?(r,0)=?(r,β) andψ(r,0)=?ψ(r,β).β=1/kBTis the inverse temperature.

    From the action,one can observe the second line of the action is completely bilinear term of fermionic fieldψ.If one denotes a Green function operator in virtual time asthen by integrating the fermionic field we obtain

    wherex=(r.τ) is a four vector.τ ∈[0,β]is imaginary time.Applying integration over fermionic fieldψ,and make use of the Grassman number integralwhere={Aij}is the matrix,then we can obtain an action with only the bosonic fields.As now there are only fermion bilinear terms,an exact integration over fermionic field is possible,and the result is

    ConsideringgBFis a small parameter,we expand the ln function to a second order form,that is

    Here trace is over differentx,x′.The first term always vanishes.If we only consider the case whereτ=τ′,then the second term is

    Now we obtain Eq.(5).

    Appendix B: Deduction for Eq.(8)

    We start from Eq.(8).By insertingGF(k,iωn)=iωn?k2+k2F,we have

    Here we introduceb(x)=k2F?(q2/4)(1?x2).Ifq <2kF,b(x)≥0 for allx.Ifq >2kF,it is possible thatb(x)<0.

    First,we consider the case forq <2kFwhereb(x)>0 for allx.Here we setβ(k2?b)=twhich leads toOne key integral in Eq.(A10) can be calculated as

    Therefore,at zero temperature,inβ →∞limit,we have

    Second,we considerq >2kFcase.In this case,a different approach is taken directly at zero temperature,which is much simpler then above method.(Above method is more suitable forq <2kFcase)

    Here we set cosθ=x.The condition forxisx>(k2F?k2?q2)/2kq.Becausek2F?k2?q2/2kq

    猜你喜歡
    陳宇
    陳宇的書法藝術(shù)
    中華書畫家(2022年9期)2022-09-19 03:34:54
    大師兄
    王佳女、趙蓮如、劉琳、陳宇作品
    《朱頂紅》
    流行色(2019年10期)2019-12-06 08:13:28
    綠色建筑工程監(jiān)理及控制的相關(guān)探討
    以不愛的名義同居,大學(xué)生情侶“失樂”人性蹺蹺板
    Have a Guess不猜不知道
    這條河里沒有魚
    紙片的神力
    加入“缺牙幫”
    午夜福利视频1000在线观看| 波多野结衣巨乳人妻| 国国产精品蜜臀av免费| 色网站视频免费| 国产91av在线免费观看| 一级毛片久久久久久久久女| 九草在线视频观看| 亚洲一区高清亚洲精品| www.色视频.com| 免费无遮挡裸体视频| 中文字幕亚洲精品专区| 日日干狠狠操夜夜爽| 亚洲精品久久久久久婷婷小说| 国产在线男女| 成年免费大片在线观看| 国产精品日韩av在线免费观看| 婷婷色麻豆天堂久久| 亚洲人成网站在线观看播放| 国产视频内射| 97热精品久久久久久| av免费观看日本| 看十八女毛片水多多多| 日日啪夜夜爽| 熟女人妻精品中文字幕| 亚洲欧美成人综合另类久久久| 99热这里只有是精品50| 国产高清国产精品国产三级 | 中文字幕人妻熟人妻熟丝袜美| 色综合亚洲欧美另类图片| 亚洲精华国产精华液的使用体验| 91精品伊人久久大香线蕉| 亚洲精品自拍成人| 蜜桃久久精品国产亚洲av| 国产精品日韩av在线免费观看| 日本免费在线观看一区| 国产激情偷乱视频一区二区| 免费黄网站久久成人精品| 日日干狠狠操夜夜爽| 亚洲最大成人av| 色吧在线观看| 日本午夜av视频| 身体一侧抽搐| 久久久久国产网址| 亚洲av成人精品一区久久| 国产精品伦人一区二区| 美女内射精品一级片tv| 美女xxoo啪啪120秒动态图| xxx大片免费视频| 久久国产乱子免费精品| 久久久久久九九精品二区国产| 99视频精品全部免费 在线| 午夜免费男女啪啪视频观看| 又爽又黄a免费视频| 日本黄色片子视频| 久久6这里有精品| 亚洲18禁久久av| 国产不卡一卡二| 天天一区二区日本电影三级| 成人综合一区亚洲| av女优亚洲男人天堂| 国产精品久久久久久av不卡| 精品一区在线观看国产| 国产精品国产三级国产av玫瑰| 两个人的视频大全免费| h日本视频在线播放| 九九爱精品视频在线观看| 国产精品久久久久久久久免| 亚洲精品一二三| 在线免费观看的www视频| 国产成人freesex在线| 亚洲成人中文字幕在线播放| 国产高清不卡午夜福利| av黄色大香蕉| 亚洲四区av| 精品一区在线观看国产| 久久久久精品久久久久真实原创| 在线a可以看的网站| 午夜视频国产福利| 亚洲美女搞黄在线观看| 春色校园在线视频观看| 在线观看一区二区三区| 国产免费福利视频在线观看| 国产激情偷乱视频一区二区| 内地一区二区视频在线| 成人午夜高清在线视频| 国产成年人精品一区二区| 亚洲欧美精品自产自拍| 午夜久久久久精精品| 亚洲精品第二区| 欧美性猛交╳xxx乱大交人| 亚洲国产欧美在线一区| 神马国产精品三级电影在线观看| 久久久久久久久久成人| 成人午夜精彩视频在线观看| 亚洲av在线观看美女高潮| 麻豆av噜噜一区二区三区| 国产精品久久久久久av不卡| 天天躁夜夜躁狠狠久久av| 可以在线观看毛片的网站| 亚洲av不卡在线观看| 人妻少妇偷人精品九色| 亚洲精品色激情综合| 99热网站在线观看| 国产av在哪里看| 一级毛片黄色毛片免费观看视频| 国产淫语在线视频| av线在线观看网站| 91精品国产九色| 91久久精品国产一区二区三区| 两个人的视频大全免费| 亚洲成人av在线免费| kizo精华| 国产色婷婷99| 又黄又爽又刺激的免费视频.| 80岁老熟妇乱子伦牲交| 色5月婷婷丁香| .国产精品久久| 欧美精品一区二区大全| 街头女战士在线观看网站| 亚洲伊人久久精品综合| 嫩草影院精品99| 国产成人a∨麻豆精品| 老司机影院成人| 日本黄色片子视频| 十八禁国产超污无遮挡网站| 少妇的逼水好多| 国产 一区 欧美 日韩| 麻豆av噜噜一区二区三区| 51国产日韩欧美| 三级毛片av免费| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品国产精品| 水蜜桃什么品种好| 国产在视频线精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品一区二区性色av| av线在线观看网站| 18禁动态无遮挡网站| 国产精品国产三级国产专区5o| 麻豆成人午夜福利视频| 国产免费视频播放在线视频 | 久久精品夜夜夜夜夜久久蜜豆| 三级经典国产精品| 日韩在线高清观看一区二区三区| 国内精品宾馆在线| 中文精品一卡2卡3卡4更新| 久久这里只有精品中国| 亚洲精品乱码久久久久久按摩| 日韩欧美一区视频在线观看 | 啦啦啦韩国在线观看视频| 干丝袜人妻中文字幕| 亚洲欧美一区二区三区国产| 欧美日韩国产mv在线观看视频 | 嫩草影院新地址| 日韩三级伦理在线观看| 男女下面进入的视频免费午夜| 亚洲,欧美,日韩| 国产精品人妻久久久久久| 日日啪夜夜爽| 午夜精品国产一区二区电影 | 哪个播放器可以免费观看大片| 汤姆久久久久久久影院中文字幕 | 特级一级黄色大片| 中文字幕av在线有码专区| 欧美97在线视频| 久久久久久久大尺度免费视频| 免费看日本二区| 日韩一区二区三区影片| 婷婷色综合www| 久久6这里有精品| 一级a做视频免费观看| 亚洲一级一片aⅴ在线观看| 黑人高潮一二区| 精品一区二区免费观看| 久久热精品热| 欧美区成人在线视频| 尾随美女入室| 日韩视频在线欧美| 亚洲av在线观看美女高潮| 亚洲最大成人av| 久久精品人妻少妇| 精品国产一区二区三区久久久樱花 | 一夜夜www| 麻豆成人午夜福利视频| av线在线观看网站| 国产成人午夜福利电影在线观看| h日本视频在线播放| 纵有疾风起免费观看全集完整版 | 啦啦啦中文免费视频观看日本| 午夜爱爱视频在线播放| 99久国产av精品| 最近最新中文字幕大全电影3| 亚洲无线观看免费| 免费观看av网站的网址| 亚洲精品乱码久久久久久按摩| 国产成人免费观看mmmm| 综合色丁香网| 国产在视频线精品| 欧美成人精品欧美一级黄| 成人欧美大片| 免费av不卡在线播放| 在线观看av片永久免费下载| 91av网一区二区| 国产成人精品婷婷| 六月丁香七月| 干丝袜人妻中文字幕| 啦啦啦韩国在线观看视频| 亚洲av二区三区四区| 国产午夜精品久久久久久一区二区三区| 床上黄色一级片| 卡戴珊不雅视频在线播放| 欧美xxxx性猛交bbbb| 午夜久久久久精精品| 欧美人与善性xxx| 肉色欧美久久久久久久蜜桃 | 国产精品无大码| 欧美精品国产亚洲| 毛片一级片免费看久久久久| 亚洲精品第二区| 国产综合懂色| 欧美激情久久久久久爽电影| 久久久久久久久久久免费av| 午夜免费观看性视频| 精品人妻偷拍中文字幕| 观看美女的网站| 国产成人a区在线观看| 国产高潮美女av| 久久热精品热| 国产精品国产三级国产av玫瑰| 69av精品久久久久久| 亚洲一区高清亚洲精品| 亚洲欧美成人精品一区二区| 精品熟女少妇av免费看| 亚洲欧美成人综合另类久久久| 97在线视频观看| 亚洲av免费高清在线观看| 尤物成人国产欧美一区二区三区| 伦精品一区二区三区| 久久久久久久久久人人人人人人| 国产极品天堂在线| 亚洲av成人av| 国产片特级美女逼逼视频| 午夜久久久久精精品| 一个人看的www免费观看视频| 日本午夜av视频| 日本免费a在线| 精品人妻熟女av久视频| 精品国内亚洲2022精品成人| 十八禁网站网址无遮挡 | 汤姆久久久久久久影院中文字幕 | 一区二区三区四区激情视频| 日本黄色片子视频| 午夜免费男女啪啪视频观看| 1000部很黄的大片| 亚洲国产欧美在线一区| 能在线免费看毛片的网站| 内地一区二区视频在线| 亚洲性久久影院| 2022亚洲国产成人精品| 少妇的逼好多水| 亚洲国产精品成人久久小说| 中文在线观看免费www的网站| 亚洲,欧美,日韩| 婷婷色麻豆天堂久久| 亚洲国产欧美人成| 在线 av 中文字幕| 毛片女人毛片| 99久久人妻综合| 亚洲色图av天堂| 少妇丰满av| 天天躁日日操中文字幕| 91精品国产九色| 欧美日韩综合久久久久久| 国产精品av视频在线免费观看| 一个人免费在线观看电影| 少妇熟女欧美另类| 尾随美女入室| 神马国产精品三级电影在线观看| 狂野欧美激情性xxxx在线观看| 亚洲成人久久爱视频| 精品国内亚洲2022精品成人| 欧美三级亚洲精品| 我的女老师完整版在线观看| 日韩欧美精品免费久久| 国产精品麻豆人妻色哟哟久久 | 日韩强制内射视频| 少妇熟女欧美另类| 尾随美女入室| 精华霜和精华液先用哪个| 中文欧美无线码| 嫩草影院新地址| 欧美成人精品欧美一级黄| h日本视频在线播放| 七月丁香在线播放| 丰满少妇做爰视频| 精品人妻一区二区三区麻豆| 三级经典国产精品| 久久久久久伊人网av| 欧美日韩国产mv在线观看视频 | 精品一区二区免费观看| 午夜福利在线观看吧| 乱码一卡2卡4卡精品| 国产午夜福利久久久久久| 亚洲国产欧美人成| 日韩一区二区三区影片| 国产伦一二天堂av在线观看| av免费观看日本| 亚洲aⅴ乱码一区二区在线播放| 日日啪夜夜爽| 免费观看在线日韩| 777米奇影视久久| 人妻少妇偷人精品九色| 欧美日本视频| 日韩中字成人| 日日干狠狠操夜夜爽| 日日啪夜夜爽| 天堂中文最新版在线下载 | 日韩,欧美,国产一区二区三区| 人人妻人人澡欧美一区二区| 国产综合精华液| 中文字幕亚洲精品专区| 国产精品一区二区在线观看99 | 啦啦啦中文免费视频观看日本| 中文字幕免费在线视频6| 麻豆成人av视频| 久久热精品热| 国产精品女同一区二区软件| 99久久人妻综合| 成人毛片a级毛片在线播放| 国产精品一区二区三区四区久久| 水蜜桃什么品种好| 久久久久久久久久成人| 国产伦精品一区二区三区视频9| 午夜免费激情av| 亚洲av中文字字幕乱码综合| 亚洲成人精品中文字幕电影| 国精品久久久久久国模美| 又爽又黄a免费视频| 国产精品一区二区性色av| 一级a做视频免费观看| 如何舔出高潮| 免费av不卡在线播放| 又粗又硬又长又爽又黄的视频| 国产麻豆成人av免费视频| 国产伦在线观看视频一区| 99热网站在线观看| 亚洲四区av| 在线播放无遮挡| 亚洲怡红院男人天堂| 午夜福利视频1000在线观看| 国产色婷婷99| 免费看a级黄色片| 国产av国产精品国产| 日韩欧美国产在线观看| 1000部很黄的大片| 99九九线精品视频在线观看视频| 干丝袜人妻中文字幕| 精品不卡国产一区二区三区| 中文精品一卡2卡3卡4更新| 99热全是精品| 天天一区二区日本电影三级| 日韩欧美三级三区| 色视频www国产| 欧美激情久久久久久爽电影| 在线观看一区二区三区| 午夜免费激情av| 国产又色又爽无遮挡免| 99久久精品热视频| 五月天丁香电影| 亚洲无线观看免费| 国产成人91sexporn| 亚洲欧美中文字幕日韩二区| 国产伦在线观看视频一区| 亚洲av.av天堂| 亚洲欧美一区二区三区国产| 久久鲁丝午夜福利片| 国产一区亚洲一区在线观看| 日本欧美国产在线视频| 人人妻人人看人人澡| 亚洲美女视频黄频| 高清欧美精品videossex| 18+在线观看网站| 26uuu在线亚洲综合色| 成年人午夜在线观看视频 | 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 亚洲精品中文字幕在线视频 | 成人亚洲欧美一区二区av| 日韩中字成人| 免费看美女性在线毛片视频| 99久久人妻综合| 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 2021少妇久久久久久久久久久| 欧美高清成人免费视频www| 免费观看a级毛片全部| 亚洲最大成人手机在线| 国产成人一区二区在线| 精华霜和精华液先用哪个| 国内精品宾馆在线| 看免费成人av毛片| 久久人人爽人人爽人人片va| 国产69精品久久久久777片| 大陆偷拍与自拍| 97在线视频观看| 尤物成人国产欧美一区二区三区| 看十八女毛片水多多多| 色哟哟·www| 欧美高清性xxxxhd video| 亚洲av中文av极速乱| 亚洲精品影视一区二区三区av| 免费人成在线观看视频色| 美女主播在线视频| 在现免费观看毛片| www.av在线官网国产| 亚洲av免费在线观看| 啦啦啦啦在线视频资源| 久久久久久久久久人人人人人人| 一边亲一边摸免费视频| 久热久热在线精品观看| 欧美精品一区二区大全| 91在线精品国自产拍蜜月| 国产淫语在线视频| 亚洲成人中文字幕在线播放| 精品一区二区三区视频在线| 99热6这里只有精品| kizo精华| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 午夜福利在线观看免费完整高清在| 国产av国产精品国产| 成人综合一区亚洲| 亚洲欧洲国产日韩| 成人鲁丝片一二三区免费| 你懂的网址亚洲精品在线观看| 听说在线观看完整版免费高清| 国产一区有黄有色的免费视频 | 国产精品日韩av在线免费观看| 中文字幕制服av| 高清午夜精品一区二区三区| 综合色丁香网| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 国产精品熟女久久久久浪| 久久精品国产亚洲av涩爱| 日韩av免费高清视频| 99久久人妻综合| 91av网一区二区| 国产人妻一区二区三区在| 国产白丝娇喘喷水9色精品| 久久久精品94久久精品| 欧美成人午夜免费资源| 神马国产精品三级电影在线观看| 久久午夜福利片| 欧美人与善性xxx| 国产黄a三级三级三级人| 蜜桃久久精品国产亚洲av| 中文欧美无线码| 国产成人aa在线观看| 欧美区成人在线视频| 免费观看无遮挡的男女| 国产成人午夜福利电影在线观看| 我的女老师完整版在线观看| 99久国产av精品| 亚洲精品视频女| 亚洲精品日本国产第一区| 成人亚洲精品一区在线观看 | 亚洲av不卡在线观看| 亚洲精品自拍成人| 日韩亚洲欧美综合| 久久久久久久久久成人| 噜噜噜噜噜久久久久久91| 欧美一级a爱片免费观看看| 亚洲av成人精品一二三区| 亚洲成人一二三区av| 精品亚洲乱码少妇综合久久| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 午夜爱爱视频在线播放| 欧美最新免费一区二区三区| 日日干狠狠操夜夜爽| 中国美白少妇内射xxxbb| 亚洲精品,欧美精品| 国产人妻一区二区三区在| 午夜福利在线观看免费完整高清在| 性插视频无遮挡在线免费观看| 国产成人午夜福利电影在线观看| 色吧在线观看| 九九爱精品视频在线观看| 日韩中字成人| 婷婷色av中文字幕| 自拍偷自拍亚洲精品老妇| 国产淫片久久久久久久久| 欧美区成人在线视频| 久久韩国三级中文字幕| 天天一区二区日本电影三级| 舔av片在线| 最近最新中文字幕大全电影3| 最新中文字幕久久久久| 狠狠精品人妻久久久久久综合| 美女大奶头视频| 成人二区视频| av播播在线观看一区| 99热全是精品| 亚洲精品乱码久久久久久按摩| 简卡轻食公司| 日韩欧美 国产精品| 99久国产av精品国产电影| 免费av不卡在线播放| 久久韩国三级中文字幕| 看免费成人av毛片| 搡老妇女老女人老熟妇| 亚洲欧美成人精品一区二区| 九色成人免费人妻av| 午夜精品一区二区三区免费看| 亚洲伊人久久精品综合| 亚洲精品乱码久久久v下载方式| 国产午夜精品久久久久久一区二区三区| 非洲黑人性xxxx精品又粗又长| 日本黄大片高清| 99久国产av精品国产电影| 国产av码专区亚洲av| 性插视频无遮挡在线免费观看| 精品酒店卫生间| 亚洲欧美日韩卡通动漫| 不卡视频在线观看欧美| 一区二区三区四区激情视频| 欧美日本视频| 舔av片在线| 日韩成人伦理影院| 激情 狠狠 欧美| 99久久精品一区二区三区| 亚洲av福利一区| 精品人妻一区二区三区麻豆| 日韩伦理黄色片| 欧美 日韩 精品 国产| 精品国产三级普通话版| 日本三级黄在线观看| 久久99精品国语久久久| 久久人人爽人人片av| 在线观看av片永久免费下载| 成年人午夜在线观看视频 | 亚洲av免费在线观看| 日韩电影二区| 国产黄a三级三级三级人| 欧美潮喷喷水| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 亚洲av一区综合| 91精品一卡2卡3卡4卡| 少妇的逼好多水| 国产成人精品一,二区| 国产一区亚洲一区在线观看| 欧美97在线视频| 中文精品一卡2卡3卡4更新| 国产成人精品一,二区| 在线免费观看的www视频| videos熟女内射| 欧美精品国产亚洲| 高清毛片免费看| 免费高清在线观看视频在线观看| 国产精品国产三级国产专区5o| 亚洲av国产av综合av卡| 亚洲欧美中文字幕日韩二区| 男女边摸边吃奶| 天堂俺去俺来也www色官网 | 一夜夜www| 欧美激情久久久久久爽电影| 男女视频在线观看网站免费| 黄色日韩在线| 禁无遮挡网站| 国产免费一级a男人的天堂| 熟女人妻精品中文字幕| 2022亚洲国产成人精品| 韩国高清视频一区二区三区| 黄片无遮挡物在线观看| 久久久久久久大尺度免费视频| 草草在线视频免费看| 天堂影院成人在线观看| 丰满人妻一区二区三区视频av| 亚洲在线自拍视频| 久久人人爽人人爽人人片va| 波多野结衣巨乳人妻| 床上黄色一级片| 看黄色毛片网站| 综合色丁香网| 亚洲欧美日韩东京热| 国产一区二区亚洲精品在线观看| 国产午夜精品一二区理论片| 一个人免费在线观看电影| 亚洲av二区三区四区| 禁无遮挡网站| 日韩av不卡免费在线播放| av女优亚洲男人天堂| 午夜福利高清视频| 欧美3d第一页| 亚洲av成人精品一二三区| 男女那种视频在线观看| 日韩av免费高清视频| 久久久欧美国产精品| 国产黄色小视频在线观看| 伊人久久精品亚洲午夜| 好男人视频免费观看在线| 天堂中文最新版在线下载 | 日韩强制内射视频| 不卡视频在线观看欧美| 亚洲综合精品二区| 成人毛片a级毛片在线播放| 成年免费大片在线观看| 久久国产乱子免费精品| 亚洲精品国产av蜜桃| 久久这里只有精品中国|