唐孟泉 黃佳歡 陳瑾元 王琪 許志茹
摘要:微量元素在植物生長(zhǎng)發(fā)育過(guò)程中是必不可少的,因此研究植物內(nèi)各種微量元素的穩(wěn)態(tài)具有重要意義。銅在光合作用、呼吸作用、乙烯感應(yīng)、活性氧清除和細(xì)胞壁重塑中發(fā)揮重要作用。銅的運(yùn)輸是由一組進(jìn)化上高度保守的轉(zhuǎn)運(yùn)蛋白和金屬伴侶共同完成的。由于根中轉(zhuǎn)運(yùn)蛋白的調(diào)控和高銅含量土壤非常稀缺,使得植物組織中的銅含量一般不會(huì)過(guò)高。然而,銅的利用率低會(huì)降低植物的生產(chǎn)能力。由于某些功能保守的基因的控制,植物會(huì)響應(yīng)銅缺乏的外界環(huán)境。植物主要通過(guò)Ctr/COPT銅轉(zhuǎn)運(yùn)家族轉(zhuǎn)運(yùn)蛋白家族從細(xì)胞外吸收銅,之后由銅伴侶蛋白及P型ATP酶將銅運(yùn)輸?shù)礁骷?xì)胞器中。銅在木質(zhì)部的運(yùn)輸及銅從衰老葉片到嫩葉與生殖組織中進(jìn)行的再分配都須要煙酰胺發(fā)揮作用。此外,銅的再分配過(guò)程須要黃色條紋狀(yellow stripe-like,簡(jiǎn)稱YSL)轉(zhuǎn)運(yùn)體及銅伴侶蛋白CCH的參與,其中CCH蛋白存在于植物的韌皮部。當(dāng)銅供給不足時(shí),植物中增加銅吸收的系統(tǒng)會(huì)被激活,并且使銅能更有效地被利用。一些參與銅調(diào)控的小分子RNA會(huì)下調(diào)某些不重要的銅蛋白的表達(dá)量。低銅條件下,主要的銅應(yīng)答轉(zhuǎn)錄因子SPL7既可以激活參與銅吸收的基因的表達(dá),又可以上調(diào)某些Cu-microRNAs的表達(dá)量。這種調(diào)節(jié)允許光合自養(yǎng)生物生長(zhǎng)所需的最重要的含銅蛋白質(zhì)(如質(zhì)體藍(lán)素)在一定的銅濃度范圍內(nèi)保持活性,這更有利于植物的生長(zhǎng)。植物中銅過(guò)量會(huì)造成活性氧的快速積累,活性氧會(huì)破壞核酸、氧化蛋白并導(dǎo)致脂質(zhì)過(guò)氧化,從而影響細(xì)胞的諸多功能,對(duì)細(xì)胞產(chǎn)生毒害。細(xì)胞內(nèi)銅過(guò)量時(shí)會(huì)上調(diào)金屬硫蛋白(metallothionein,簡(jiǎn)稱MT)的表達(dá)以減少細(xì)胞質(zhì)中游離銅離子的含量。主要闡述植物中銅穩(wěn)態(tài)的作用及其研究進(jìn)展,以及植物對(duì)銅的吸收與再分配過(guò)程,同時(shí)對(duì)銅在細(xì)胞內(nèi)的傳遞及細(xì)胞內(nèi)銅穩(wěn)態(tài)的調(diào)控進(jìn)行簡(jiǎn)單概述。并對(duì)大部分重要的含銅蛋白的研究進(jìn)行簡(jiǎn)要描述。由于高等植物中銅蛋白的研究報(bào)道還較少,因此對(duì)植物中銅穩(wěn)態(tài)的研究概述可以加強(qiáng)研究者對(duì)含銅蛋白質(zhì)生物學(xué)功能的了解,同時(shí)也可以為進(jìn)一步闡明植物吸收利用銅的分子機(jī)制提供依據(jù)。
關(guān)鍵詞:銅穩(wěn)態(tài);銅轉(zhuǎn)運(yùn)體;銅伴侶蛋白;Cu-microRNAs;其他含銅蛋白
中圖分類號(hào): Q581;S184? 文獻(xiàn)標(biāo)志碼: A? 文章編號(hào):1002-1302(2019)10-0305-07
過(guò)渡金屬銅是質(zhì)體藍(lán)素、細(xì)胞色素C等蛋白質(zhì)的輔因子,參與葉綠體和線粒體的電子傳遞、乙烯感應(yīng)和抗氧化脅迫反應(yīng)等過(guò)程。生物體缺銅會(huì)影響自身生長(zhǎng)發(fā)育;銅過(guò)量時(shí)會(huì)造成活性氧的積累,對(duì)膜、蛋白質(zhì)、核酸產(chǎn)生氧化毒害。此外,銅還能取代其他蛋白質(zhì)中的必需金屬元素[1]。因此,生物體在進(jìn)化過(guò)程中形成了特定的調(diào)節(jié)機(jī)制嚴(yán)格控制體內(nèi)的銅含量。
植物中許多在銅穩(wěn)態(tài)過(guò)程中發(fā)揮作用的關(guān)鍵成分在進(jìn)化上是保守的。藍(lán)藻獲得的銅傳遞給細(xì)胞色素C氧化酶和類囊體內(nèi)腔光合電子載體質(zhì)體藍(lán)素。一些集胞藻和魚腥藻在銅缺乏條件下利用細(xì)胞色素C6代替質(zhì)體藍(lán)素[2]。在集胞藻中,銅是由質(zhì)膜上的CtaA和類囊體膜上的PacS這2個(gè)P型ATP酶?jìng)鬟f的。PacS類似于海氏腸球菌的CopB,其作用是使銅從胞漿中排出[3]。集胞藻PCC6803的銅伴侶蛋白ATX1只與CtaA和PacS相互作用,為質(zhì)體藍(lán)素和細(xì)胞色素C氧化酶提供銅[4]。
銅在真核綠藻萊茵衣藻中的主要結(jié)合目標(biāo)是質(zhì)體藍(lán)素、細(xì)胞色素C氧化酶和Fox1。Fox1是一個(gè)酵母細(xì)胞表面鐵還原酶的同源物[5]。衣藻中存在Ctr轉(zhuǎn)運(yùn)體和3個(gè)銅轉(zhuǎn)運(yùn)P型ATP酶的同系物,其中2個(gè)P型ATP酶有可能是藍(lán)藻CtaA和PacS或高等植物PAA1和PAA2的功能同系物,都能為質(zhì)體藍(lán)素提供銅離子[6]。衣藻蛋白銅響應(yīng)調(diào)節(jié)器1(copper response regulator 1,簡(jiǎn)稱CRR1)是應(yīng)答銅缺乏條件的轉(zhuǎn)錄因子。CRR1的靶基因含有1個(gè)銅應(yīng)答調(diào)控元件GTAC,低銅條件下CRR1的激活作用須要此順式作用元件參與。CRR1與高等植物轉(zhuǎn)錄因子SPL(squamosa promoter binding protein-like)功能相似[7],包含轉(zhuǎn)錄因子中的1個(gè)保守結(jié)構(gòu)域SBP和羧基末端富含半胱氨酸(Cys)的區(qū)域。
高等植物擬南芥中存在轉(zhuǎn)運(yùn)蛋白和銅伴侶蛋白共同應(yīng)答銅脅迫的調(diào)控模式,其中,通過(guò)COPT2、ZIP2、CCH等基因的轉(zhuǎn)錄水平與銅含量成反比可知,這些蛋白質(zhì)在銅穩(wěn)態(tài)的調(diào)節(jié)過(guò)程中是必需的[8]。此外,葡萄中轉(zhuǎn)運(yùn)蛋白、銅伴侶蛋白和P型ATP酶也共同控制細(xì)胞內(nèi)的銅平衡[9]。
1 銅在植物中的作用
土壤中的銅濃度范圍為3~110 μg/g,平均豐度為 55 μg/g[10]。銅的平均豐度與鋅相當(dāng),但與鐵、鋁、錳相比則較低。植物對(duì)銅的有效吸收取決于不同的土壤類型。銅離子,特別是Cu2+,與有機(jī)物有很高的親和力,因此有機(jī)土壤更可能是銅缺乏土壤[11]。有報(bào)道稱植物中的銅含量范圍在2~50 μg/g之間[12],通常情況下,植物組織中銅含量降低到 5 μg/g 以下時(shí)表現(xiàn)為銅缺乏,銅含量大于等于20 μg/g時(shí)則會(huì)產(chǎn)生銅毒害[11]。
銅是植物中重要的微量元素,在植物中發(fā)現(xiàn)的主要含銅蛋白如表1所示。植物在缺銅時(shí)生長(zhǎng)速度減慢,嫩葉畸變或變白(萎黃病),葉緣卷曲,頂端分生組織受損,甚至?xí)斐晒麑?shí)產(chǎn)量減少[12]。細(xì)胞壁的形成速度降低和一些組織(包括木質(zhì)部組織)木質(zhì)化引起的水分運(yùn)輸受阻是銅缺乏導(dǎo)致的[11]。由于植物的根會(huì)優(yōu)先積累銅,所以土壤中銅濃度過(guò)量首先會(huì)減緩植物根系的生長(zhǎng)[13]。銅毒害最常見的癥狀是營(yíng)養(yǎng)組織黃化,植物的鐵吸收能力降低,甚至出現(xiàn)鐵吸收缺陷[11]。幼苗中,葉綠體的類囊體膜,特別是光系統(tǒng)Ⅱ(PSⅡ),是銅毒害的主要目標(biāo)之一[14]。
2 銅的吸收與再分配
2.1 銅的吸收
銅通過(guò)COPT家族轉(zhuǎn)運(yùn)蛋白進(jìn)入植物根細(xì)胞的細(xì)胞質(zhì)。COPT轉(zhuǎn)運(yùn)體屬于保守的Ctr家族,擬南芥中存在5個(gè)COPT家族成員,COPT1定位于質(zhì)膜,在根中大量表達(dá),其表達(dá)量受低銅水平的調(diào)控[15-17];COPT2定位于液泡,在莖中大量表達(dá)的COPT2是細(xì)胞表面最主要的銅吸收蛋白[16,18];COPT3定位在質(zhì)膜上,主要負(fù)責(zé)將銅從胞內(nèi)運(yùn)輸?shù)桨鈁19];COPT5定位于液泡,其功能是在銅缺乏條件下把液泡內(nèi)的銅運(yùn)輸?shù)郊?xì)胞質(zhì)中[20]。此外,擬南芥中銅在器官間的再分配須要液泡膜上的銅轉(zhuǎn)運(yùn)蛋白COPT5發(fā)揮作用[21]。
COPT/Ctr類蛋白運(yùn)輸還原型銅[22]。大多數(shù)的COPT/Ctr轉(zhuǎn)運(yùn)蛋白的氮末端的甲硫氨酸區(qū)域參與銅的結(jié)合,促進(jìn)銅的運(yùn)輸[23]。擬南芥COPT1、COPT2、COPT3、COPT5、ZIP2、ZIP4都能恢復(fù)酵母ctr1Δ突變體對(duì)銅的高親和力吸收功能。因此,ZIP2、ZIP4也負(fù)責(zé)植物細(xì)胞對(duì)銅的吸收。ZIP2在根中的表達(dá)量相對(duì)較高,而ZIP4在葉片中的表達(dá)量較高[16,18]。
銅過(guò)量會(huì)上調(diào)富含半胱氨酸的金屬硫蛋白(MT)的表達(dá),用來(lái)緩沖細(xì)胞內(nèi)的銅濃度。在關(guān)于酵母細(xì)胞中金屬硫蛋白過(guò)量表達(dá)的研究結(jié)果顯示,擬南芥中4種類型的MT在結(jié)合銅和鋅的過(guò)程中都能發(fā)揮作用[24-25]。此外,擬南芥可以通過(guò)螯合和運(yùn)輸銅到細(xì)胞外的機(jī)制來(lái)避免因銅過(guò)量引起的細(xì)胞質(zhì)損傷。
2.2 銅由根到地上部分的運(yùn)輸及再分配
銅在進(jìn)入木質(zhì)部前是從根的共質(zhì)體中運(yùn)出的。蒸騰作用會(huì)讓銅離子由木質(zhì)部到達(dá)成熟葉片,然后將其運(yùn)輸?shù)巾g皮部,最終到達(dá)庫(kù)組織(指消耗養(yǎng)料或儲(chǔ)藏養(yǎng)料的器官),如新生葉子、花、種子。P型ATP酶如HMA5位于質(zhì)膜上,作用是把一價(jià)銅離子運(yùn)輸?shù)郊?xì)胞外。HMA5基因主要在根和花中表達(dá);銅過(guò)量時(shí),HMA5基因的表達(dá)量上調(diào)[26]。有報(bào)道稱,蛋白COPT1能把銅運(yùn)往根細(xì)胞內(nèi)[17,27]。
銅的長(zhǎng)距離運(yùn)輸有螯合劑如蛋氨酸衍生化合物煙酰胺的參與。煙酰胺是一種金屬螯合物,在植物中參與鐵和其他金屬離子的運(yùn)輸。煙酰胺對(duì)銅離子具有高親和力,會(huì)使銅在不含煙酰胺的番茄植株的木質(zhì)部中的運(yùn)輸效率大大降低,當(dāng)外源給予煙酰胺時(shí),突變體木質(zhì)部中的銅離子水平恢復(fù)到野生型植株的銅離子水平[28]。缺乏煙酰胺的煙草植物的葉中缺乏鐵、鋅、銅,并且表現(xiàn)出生殖缺陷[29]。上述結(jié)果均表明,煙酰胺參與了銅等金屬離子在木質(zhì)部中的運(yùn)輸過(guò)程。煙酰胺的另一個(gè)功能是參與高親和力的鐵的吸收過(guò)程。此外,黃色條紋狀(yellow stripe-like,簡(jiǎn)稱YSL)轉(zhuǎn)運(yùn)體可能參與了其他細(xì)胞吸收金屬螯合物(煙酰胺)的過(guò)程。擬南芥基因組編碼了8個(gè)YSL轉(zhuǎn)運(yùn)體[30]。YSL1、YSL2、YSL3在葉片衰老時(shí)參與銅的再分配過(guò)程[31]。YSL2在銅缺乏時(shí)表達(dá)量顯著上調(diào)[32]。當(dāng)銅過(guò)量時(shí),YSL1和YSL3蛋白含量下降[33]。YSL轉(zhuǎn)運(yùn)體的作用可能是在組織間重新分配礦物質(zhì),因此韌皮部中煙酰胺的含量較高。煙酰胺不僅能結(jié)合金屬離子,且其氮含量較高,所以植物的庫(kù)組織接收了煙酰胺等同于同時(shí)接收氮和必需的金屬離子,這將有利于植物的生長(zhǎng)發(fā)育。
COPT轉(zhuǎn)運(yùn)體家族還參與了從葉片和其他地上部分器官的共質(zhì)體中吸收銅的過(guò)程,此過(guò)程須要在細(xì)胞表面對(duì)銅離子進(jìn)行還原。在擬南芥中,大部分生殖組織中的鐵、錳、銅離子似乎是通過(guò)維管系統(tǒng)從根部直接進(jìn)行運(yùn)輸?shù)摹4送?,擬南芥生殖組織會(huì)通過(guò)韌皮部吸收并轉(zhuǎn)移營(yíng)養(yǎng)組織中包括銅在內(nèi)的一些礦物元素[34]。擬南芥銅伴侶蛋白CCH在衰老葉片中的表達(dá)量上調(diào)[35-36],在韌皮部分泌液中能夠檢測(cè)到CCH蛋白,由此推測(cè),擬南芥銅伴侶蛋白CCH中植物特有的羧基末端結(jié)構(gòu)域可能參與了通過(guò)胞間連絲進(jìn)行的銅運(yùn)輸過(guò)程。金屬硫蛋白家族成員MT1a和MT2b可能參與了擬南芥中銅在韌皮部運(yùn)輸過(guò)程,MT1在擬南芥植株衰老過(guò)程中表達(dá)量上調(diào)[24,36]。
3 細(xì)胞內(nèi)銅的傳遞
3.1 銅在內(nèi)膜系統(tǒng)中傳到乙烯受體和質(zhì)外體
擬南芥中重金屬轉(zhuǎn)運(yùn)P型ATP酶有8個(gè)成員(HMA1~HMA8),其中RAN1的功能是最先被鑒定出來(lái)[37]。酵母和哺乳動(dòng)物細(xì)胞中RAN1同系物的功能是將銅從細(xì)胞質(zhì)運(yùn)輸?shù)郊?xì)胞外[38]。植物中銅傳遞到乙烯受體需要RAN1/HMA7基因的產(chǎn)物。擬南芥RAN1是酵母和人類的銅轉(zhuǎn)運(yùn)P型ATP酶的功能同系物,在內(nèi)膜系統(tǒng)中發(fā)揮功能,它可以將銅傳遞給乙烯受體,而乙烯受體的生物合成需要銅[39]。RAN1結(jié)合的銅離子可能來(lái)源于ATX1和CCH[26]。最新的研究表明,利用小分子Triplin螯合銅離子的試驗(yàn)證實(shí)了銅是從ATX1傳遞給RAN1的,此過(guò)程是乙烯受體生物合成和信號(hào)轉(zhuǎn)導(dǎo)所必需的[40]。
擬南芥HMA5是RAN1的同源物[37]。與ran1突變體植株不同的是,擬南芥hma5突變體不表現(xiàn)感知乙烯信號(hào)的相關(guān)缺陷。研究表明,ran1與hma5功能缺失突變體在細(xì)胞增殖方面都存在缺陷,由于缺乏RAN1和HMA5,銅無(wú)法傳遞到需要銅的質(zhì)外體氧化酶和漆酶,而質(zhì)外體氧化酶和漆酶均參與了細(xì)胞壁的形成過(guò)程,進(jìn)而影響了ran1和hma5突變體細(xì)胞的增殖[27]。此外,質(zhì)外體抗壞血酸氧化酶還在細(xì)胞增殖、煙草和擬南芥的耐鹽性能中發(fā)揮作用[41]。擬南芥質(zhì)外體中的另一個(gè)銅蛋白plantacyanin在柱頭引導(dǎo)花粉管形成過(guò)程中起作用[42]。
3.2 胞漿的銅伴侶蛋白
擬南芥中有2個(gè)與酵母ScATX1同源的蛋白,分別為AtATX1、AtCCH。AtATX1定位在細(xì)胞質(zhì)中,功能是把銅傳遞給重金屬P型ATP酶。AtATX1和AtCCH蛋白可以恢復(fù)酵母atx1與sod1突變體的相關(guān)功能缺陷。不同于ScATX1和AtATX1蛋白,擬南芥CCH蛋白具有植物特有的羧基末端延伸區(qū)[35,43]。酵母雙雜交結(jié)果顯示,擬南芥ATX1能與HMA5的N-末端相互作用[43];完整的CCH蛋白不能與HMA5蛋白相互作用,在刪除羧基末端結(jié)構(gòu)域之后可以實(shí)現(xiàn)相互作用[27,43]。釀酒酵母中Cd2+結(jié)合ATX1后會(huì)影響ATX1和CCC2之間的相互作用[44]。擬南芥CCH基因在維管組織周圍表達(dá),在韌皮部分泌物中可以檢測(cè)到該蛋白。CCH蛋白通過(guò)胞間連絲運(yùn)輸?shù)綗o(wú)核細(xì)胞(如篩管成分)可能需要CCH羧基末端結(jié)構(gòu)域的參與,這提供了一種細(xì)胞間銅轉(zhuǎn)運(yùn)的共質(zhì)體途徑。銅缺乏、衰老、氧化應(yīng)激和茉莉酸處理是導(dǎo)致擬南芥CCH基因表達(dá)上調(diào)的原因[36,43]。擬南芥ATX1的過(guò)量表達(dá)會(huì)提高植物對(duì)銅脅迫的耐受性,此過(guò)程需要ATX1的銅結(jié)合基序MXCXXC發(fā)揮作用[26]。
植物中超氧化物岐化酶(SOD)的銅伴侶CCS已經(jīng)在番茄[45]、馬鈴薯[46]、玉米[47]和擬南芥[48]中被鑒定。擬南芥只有1個(gè)酵母CCS功能同系物[49]。當(dāng)這個(gè)全長(zhǎng)的擬南芥蛋白融合綠色熒光蛋白(GFP)后只定位于葉綠體[50];然而,在CCS突變體中,3種銅鋅超氧化物歧化酶的活性都受到影響[49]。因此,質(zhì)體中的CCS將銅傳遞給CSD2,細(xì)胞質(zhì)中的CCS為CSD1和CSD3提供銅。CSD2的成熟需要CCS傳遞的銅,CSD1的成熟不需要CCS,但是無(wú)CCS蛋白時(shí)其成熟效率很低[51]。研究表明,CCS的N末端結(jié)構(gòu)域能促使銅離子從CCS釋放并結(jié)合到SOD1上[52]。
3.3 銅轉(zhuǎn)運(yùn)至線粒體
線粒體基質(zhì)是包括銅在內(nèi)的金屬的儲(chǔ)存場(chǎng)所[53]。酵母Cox19蛋白參與了功能性細(xì)胞色素C氧化酶的形成[54]。擬南芥Cox17是線粒體膜間隙中參與銅傳遞到細(xì)胞色素C氧化酶的可溶性蛋白;此外,細(xì)胞色素C氧化酶還需要其他的線粒體銅伴侶蛋白激活,Cox11和Sco1是植物中保守的線粒體銅伴侶蛋白,負(fù)責(zé)把銅離子結(jié)合到細(xì)胞色素C氧化酶上[54]。擬南芥中有2個(gè)Cox17基因,在酵母cox19突變體中都可以發(fā)揮功能互補(bǔ)作用[55]。研究發(fā)現(xiàn),鹽脅迫處理后,atcox17-1和atcox17-2突變體都可以正常生長(zhǎng)發(fā)育,細(xì)胞色素氧化酶也具有活性,但是會(huì)出現(xiàn)鹽脅迫應(yīng)答基因的表達(dá)量降低、活性氧升高和脂質(zhì)過(guò)氧化等現(xiàn)象,由此說(shuō)明AtCox17可能參與擬南芥中一組脅迫響應(yīng)基因的表達(dá)調(diào)控[56]。
3.4 向葉綠體傳遞銅
在植物葉綠體中,銅傳遞給類囊體腔的質(zhì)體藍(lán)素和基質(zhì)中的CSD2,其中質(zhì)體藍(lán)素和CSD2都是核基因編碼的。質(zhì)體藍(lán)素參與光合作用,對(duì)植物的生長(zhǎng)發(fā)育至關(guān)重要,因此,當(dāng)銅缺乏時(shí),植物體調(diào)節(jié)細(xì)胞內(nèi)銅離子的分布,優(yōu)先將銅傳遞給質(zhì)體藍(lán)素,從而保證光合作用能夠正常進(jìn)行[57-58]。PAA1和PAA2編碼銅轉(zhuǎn)運(yùn)P型ATP酶,分別位于葉綠體內(nèi)膜和類囊體膜上[59]。擬南芥paa1和paa2突變體的相關(guān)研究表明,銅傳遞到質(zhì)體藍(lán)素和電子傳遞途徑需要這2個(gè)轉(zhuǎn)運(yùn)蛋白的參與;此外,這2種轉(zhuǎn)運(yùn)蛋白具有不同功能,在paa1突變體中,銅無(wú)法被運(yùn)輸?shù)交|(zhì)和CSD2,但在paa2突變體中無(wú)此現(xiàn)象。因此,PAA1和PAA2可能分別是CtaA和PacS的功能同系物。paa1paa2雙突變體可使幼苗致死[60],由此說(shuō)明銅對(duì)光合作用至關(guān)重要及質(zhì)體藍(lán)素在擬南芥光合自養(yǎng)生長(zhǎng)中的重要作用[58]。有趣的是,通過(guò)外界補(bǔ)充銅可以減輕paa1突變體和paa2突變體(但不是paa1paa2雙突變體)植株的表型癥狀,由此說(shuō)明,植物細(xì)胞中可能存在另一種途徑將銅傳遞給葉綠體。與paa2突變體相比,paa1突變體對(duì)銅過(guò)量更敏感[60],此研究結(jié)果與類囊體膜是銅毒害的主要目標(biāo)這一觀點(diǎn)[61]一致。
許多銅轉(zhuǎn)運(yùn)P型ATP酶可以與銅伴侶的氨基末端重金屬結(jié)合的結(jié)構(gòu)域相互作用[62]。藍(lán)藻細(xì)胞膜上有3種P型ATP酶,分別參與銅(CtaA)、鋅(ZiaA)、鈷(Co,CoaA)的吸收。Atx1的功能是把銅傳遞給重金屬轉(zhuǎn)運(yùn)P型ATP酶PacS,PacS再把銅傳遞到類囊體。PacS和ZiaA的氨基末端結(jié)構(gòu)域結(jié)合相應(yīng)的金屬離子(分別為銅,鋅),但銅結(jié)合ZiaA氨基末端結(jié)構(gòu)域的能力比鋅強(qiáng)。此外,藍(lán)藻細(xì)胞中ZiaA的氨基末端不能接受Atx1傳遞的銅,因?yàn)檫@2個(gè)蛋白質(zhì)不能相互作用[63]。因此,藍(lán)藻銅伴侶蛋白Atx1可以促進(jìn)銅傳遞到正確的靶蛋白上,同時(shí)防止錯(cuò)誤的相互作用發(fā)生。由此推測(cè),如果轉(zhuǎn)運(yùn)體的拓?fù)浣Y(jié)構(gòu)允許,PAA1和PAA2的氨基末端的HMB結(jié)構(gòu)域有可能發(fā)生相互作用,PAA1則有可能作為PAA2的銅伴侶行使銅傳遞功能,反之亦然,這一現(xiàn)象是否存在尚需相關(guān)試驗(yàn)驗(yàn)證。
3.5 液泡在銅穩(wěn)態(tài)中的作用
酵母細(xì)胞質(zhì)中某些物質(zhì)的螯合能力保證了每個(gè)細(xì)胞內(nèi)沒(méi)有游離的銅離子存在。那么銅是如何傳遞給細(xì)胞器的呢?植物的線粒體和質(zhì)體都是重要的銅儲(chǔ)存部位(綠色細(xì)胞中的大部分銅儲(chǔ)存在葉綠體中),但沒(méi)有特定的銅伴侶直接把銅運(yùn)輸?shù)竭@些細(xì)胞器表面。事實(shí)上,植物細(xì)胞的細(xì)胞器通??拷号菽?。因此,一個(gè)金屬離子從液泡膜運(yùn)輸?shù)礁黝惣?xì)胞器只是一個(gè)很短的距離,之后銅離子就能與PAA1類的轉(zhuǎn)運(yùn)蛋白結(jié)合。葉綠體、液泡和細(xì)胞壁是主要的銅積累位點(diǎn)[61]。
4 銅穩(wěn)態(tài)的調(diào)控
4.1 銅轉(zhuǎn)運(yùn)體等蛋白在細(xì)胞銅穩(wěn)態(tài)中的作用
植物通過(guò)調(diào)節(jié)銅的吸收和分布來(lái)響應(yīng)環(huán)境的銅脅迫。轉(zhuǎn)運(yùn)體COPT1和COPT2在高銅含量時(shí)下調(diào)表達(dá),COPT3~COPT5的表達(dá)不受銅濃度影響[16]。銅含量較高的條件下,根中把銅運(yùn)入細(xì)胞的COPT1表達(dá)量下調(diào),而將銅運(yùn)出細(xì)胞的HMA5表達(dá)量上調(diào),這說(shuō)明根中存在反饋機(jī)制來(lái)調(diào)節(jié)細(xì)胞內(nèi)的銅濃度。此外,轉(zhuǎn)錄調(diào)節(jié)因子SPL7也調(diào)節(jié)COPT1和COPT2的表達(dá)水平[64]。低銅含量的條件下,轉(zhuǎn)運(yùn)體ZIP2和ZIP4的表達(dá)量上調(diào),但這2種蛋白質(zhì)的表達(dá)量受鋅濃度的影響較大。研究發(fā)現(xiàn),在銅和鋅缺乏的條件下,葉中的COPT2表達(dá)量上調(diào)。銅缺乏時(shí),根中AtOPT3和3個(gè)煙酰胺合成酶基因的表達(dá)量上調(diào)[18]。2個(gè)YSL轉(zhuǎn)運(yùn)蛋白(YSL2和YSL3)參與植物衰老過(guò)程中銅的重新分布[65]。這些蛋白共同調(diào)節(jié)植物細(xì)胞中的銅穩(wěn)態(tài)以應(yīng)答環(huán)境的銅脅迫。
4.2 銅穩(wěn)態(tài)涉及的microRNAs
銅穩(wěn)態(tài)機(jī)制的一個(gè)重要組成部分是通過(guò)下調(diào)一些不重要的含銅蛋白,優(yōu)先把銅傳遞給質(zhì)體藍(lán)素和其他重要的銅蛋白。銅的可利用性是植物銅鋅超氧化物歧化酶基因表達(dá)的主要因素[66]。Wintz等的研究表明,銅鋅超氧化物歧化酶基因(CSD1和CSD2)及其銅伴侶CCS在低銅條件下表達(dá)下調(diào),通過(guò)這一共同調(diào)節(jié)的方式響應(yīng)銅脅迫[18]。除了銅鋅超氧化物歧化酶(Cu/Zn SOD),植物在葉綠體基質(zhì)中還存在鐵超氧化物歧化酶(FeSOD)。在銅含量較低的條件下,鐵超氧化物歧化酶FSD1具有活性,Cu/Zn SOD不表達(dá),銅可以優(yōu)先供給類囊體腔的質(zhì)體藍(lán)素。高銅條件下,F(xiàn)SD1不表達(dá),Cu/Zn SOD成為銅在基質(zhì)中主要的傳遞目標(biāo)[50,60,66]。因此,擬南芥通過(guò)控制Cu/Zn SOD和FeSOD的表達(dá)來(lái)響應(yīng)銅脅迫[66];擬南芥中銅的缺乏并不影響質(zhì)體藍(lán)素mRNA的積累[67]。此外,銅通過(guò)控制1個(gè)microRNA即miR398的表達(dá)來(lái)調(diào)控CSD2的含量[68]。miR398的結(jié)構(gòu)目標(biāo)是CSD1、CSD2、CCS和COX5b mRNA[69]。
功能保守的miR398家族有3個(gè)成員,包括miR398a、miR398b、miR398c。Sunkar等提出miR398參與了擬南芥抗氧化應(yīng)激脅迫的調(diào)控[70]。擬南芥miR398和miRNA靶向結(jié)合位點(diǎn)的分析結(jié)果顯示,miR398調(diào)控CSD1和CSD2的表達(dá)量[68]。擬南芥中銅的含量是決定miR398表達(dá)的主要因素[69]。通過(guò)剪切產(chǎn)物5′-RACE法在擬南芥中證實(shí)了miR397和miR408的結(jié)合位點(diǎn),它們以參與木質(zhì)化的2種銅酶LAC4和LAC17的轉(zhuǎn)錄產(chǎn)物為靶位點(diǎn)[71],miR408也可以結(jié)合植物質(zhì)外體銅蛋白plantacyanin的轉(zhuǎn)錄產(chǎn)物[67]。miR1444的靶位點(diǎn)是多酚氧化酶(PPO)的轉(zhuǎn)錄產(chǎn)物[72]。由于這些miRNA的靶目標(biāo)都編碼銅蛋白,當(dāng)前的研究將miR397、miR398、miR408、miR1444統(tǒng)稱為Cu-microRNAs。Cu-microRNAs的結(jié)合位點(diǎn)是銅應(yīng)答相關(guān)基因的表達(dá)產(chǎn)物[67],這些Cu-microRNAs的表達(dá)量在低銅條件下上升,在高銅條件下下降或不表達(dá)。
4.3 轉(zhuǎn)錄因子SPL7的調(diào)控
衣藻蛋白CRR1是一種轉(zhuǎn)錄因子,在銅缺乏時(shí)上調(diào)特定基因的表達(dá)[7]。CRR1的靶基因(如CYC6和CPX1)在啟動(dòng)子區(qū)域含有序列GTAC。植物中,Cu-microRNAs和FeSOD的啟動(dòng)子區(qū)域有高頻率出現(xiàn)的序列GTAC,擬南芥miRNA398c等Cu-miRNAs和FSD1在低銅條件下表達(dá)上調(diào)。SPL7是植物中保守的銅應(yīng)答調(diào)控因子。擬南芥SPL7是SPL轉(zhuǎn)錄因子家族成員,與CRR1蛋白的同源性較高[73]。擬南芥spl7突變體中,Cu-microRNAs在低銅條件下不表達(dá),銅轉(zhuǎn)運(yùn)體、銅伴侶及一些轉(zhuǎn)錄因子都無(wú)法表達(dá)[64]。此外,低銅條件下,擬南芥SPL7對(duì)COPT2和FSD1的調(diào)節(jié)具有晝夜節(jié)律的特征,額外添加銅會(huì)減少此節(jié)律變化的幅度[74]。最近的研究表明,SPL7是細(xì)胞內(nèi)最主要的銅缺乏響應(yīng)成分,轉(zhuǎn)錄因子HY5與轉(zhuǎn)錄因子SPL7相互作用促使光以及銅傳遞信號(hào)共同參與植物的生長(zhǎng)發(fā)育,HY5通過(guò)與miR408的共同調(diào)節(jié)來(lái)影響植物的銅穩(wěn)態(tài)[75]。
5 結(jié)論與展望
銅在細(xì)胞內(nèi)的傳遞以及含銅蛋白的組裝是一個(gè)被高度調(diào)節(jié)的過(guò)程,涉及特定蛋白質(zhì)的相互作用和復(fù)雜的調(diào)控體系;此外,參與植物體內(nèi)銅穩(wěn)態(tài)調(diào)解過(guò)程的小RNA和調(diào)解蛋白,其功能都是保守的。目前,在植物中,與其他金屬離子相比,銅穩(wěn)態(tài)的相關(guān)研究較為詳細(xì)。對(duì)一些轉(zhuǎn)運(yùn)體及銅伴侶的研究證明了銅向特定目標(biāo)傳遞的大體過(guò)程,此過(guò)程參與植物重要的生理作用。Cu-microRNAs如何調(diào)控細(xì)胞內(nèi)銅穩(wěn)態(tài)及其生物學(xué)意義仍需進(jìn)一步研究驗(yàn)證。盡管如此,與酵母和細(xì)菌相比,植物體內(nèi)銅穩(wěn)態(tài)的相關(guān)研究仍然滯后;植物在進(jìn)化過(guò)程中由于基因組復(fù)制產(chǎn)生了銅轉(zhuǎn)運(yùn)體、銅伴侶蛋白、含銅蛋白等多種蛋白家族,使得家族成員在植物中是否存在功能分工、是否具有新功能抑或出現(xiàn)假基因均需試驗(yàn)驗(yàn)證。本文主要從植物銅穩(wěn)態(tài)的角度綜述了植物對(duì)銅的吸收與再分配過(guò)程,同時(shí)對(duì)銅在細(xì)胞內(nèi)的傳遞及細(xì)胞內(nèi)銅穩(wěn)態(tài)的調(diào)控進(jìn)行了概述,希望可以為闡明植物吸收利用銅的分子機(jī)制的相關(guān)研究提供依據(jù)。
參考文獻(xiàn):
[1]Foster A W,Osman D,Robinson N J. Metal preferences and metallation[J]. Journal of Biological Chemistry,2014,289(41):28095-28103.
[2]Zhang L,Mcspadden B,Pakrasi H B,et al. Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803[J]. The Journal of Biological Chemistry,1992,267(27):19054-19059.
[3]Magnani D,Solioz M. How bacteria handle copper[M]//Nies D H,Silver S. Molecular microbiology of heavy metals. Heidelberg:Springer,2007:259-285.
[4]Tottey S,Rondet S A,Borrelly G P,et al. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets,interaction with an importer,and alternative sites for copper acquisition[J]. Journal of Biological Chemistry,2002,277(7):5490-5497.
[5]Merchant S S,Allen M D,Kropat J,et al. Between a rock and a hard place:Trace element nutrition in Chlamydomonas[J]. Biochimica et Biophysica Acta - Molecular Cell Research,2006,1763(7):578-594.
[6]Hanikenne M,Krmer U,Demoulin V,et al. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae[J]. Plant Physiology,2005,137:428-446.
[7]Kropat J,Tottey S,Birkenbihl R P,et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(51):18730-18735.
[8]Pozo T D,Cambiazo V,González M. Gene expression profiling analysis of copper homeostasis in Arabidopsis thaliana[J]. Biochemical & Biophysical Research Communications,2010,393(2):248-252.
[9]Leng X,Wang X,Li X,et al. Transporters,chaperones,and P-type ATPases controlling grapevine copper homeostasis[J]. Functional & Integrative Genomics,2015,15(6):673-684.
[10]Misra K C. Understanding mineral deposits[M]. Berlin:Springer Netherlands,2000.
[11]Marschner H. Mineral nutrition of higher plants[M]. London:Academic Press,1995.
[12]Epstein E,Bloom A J.Mineral nutrition of plants:principles and perspectives[M]. 2nd. New York:Academic Press,2005.
[13]Navariizzo F,Cestone B,Cavallini A A,et al. Copper excess triggers phospholipase D activity in wheat roots[J]. Phytochemistry,2006,67(12):1232-1242.
[14]Bernal M,Roncel M,Ortega J M,et al. Copper effect on cytochrome b559 of photosystem Ⅱ under photoinhibitory conditions[J]. Physiol Plant,2004,120(4):686-694.
[15]Andrés-colás N,Perea-García A,Puig S,et al.Deregulated copper transport affects arabidopsis development especially in the absence of environmental cycles[J]. Plant Physiology,2010,153:170-184.
[16]Sancenon V,Puig S,Mira H,et al.Identification of a copper transporter family in Arabidopsis thaliana[J]. Plant Molecular Biology,2003,51(4):577-587.
[17]SancenónV,Puig S,Mateu-Andrés I,et al. The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development[J]. Journal of Biological Chemistry,2004,279(15):15348-15355.
[18]Wintz H,F(xiàn)ox T,Wu Y Y,et al. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis[J]. The Journal of Biological Chemistry,2003,278(48):47644-47653.
[19]Pilon M. Moving copper in plants[J]. New Phytologist,2011,192(2):305-307.
[20]Garcia-Molina A,Andrés-Colás N,Perea-García A,et al. The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency[J]. The Plant Journal,2011,65(6):848-860.
[21]Klaumann S,Nickolaus S D,F(xiàn)ürst S H,et al. The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana[J]. New Phytologist,2011,192(2):393-404.
[22]Eisses J F,Kaplan J H. The mechanism of copper uptake mediated by human CTR1,a mutational analysis[J]. Journal of Biological Chemistry,2005,280(44):37159-37168.
[23]Beaudoin J,Thiele D J,Labbé S,et al. Dissection of the relative contribution of the Schizosaccharomyces pombe Ctr4 and Ctr5 proteins to the copper transport and cell surface delivery functions[J]. Microbiology,2011,157(4):1021-1031.
[24]Guo W J,Bundithya W,Goldsbrough P B. Characterization of the Arabidopsis metallothionein gene family:tissue-specific expression and induction during senescence and in response to copper[J]. New Phytologist,2003,159(2):369-381.
[25]Guo W J,Meetam M,Goldsbrough P B. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance[J]. Plant Physiology,2008,146(4):1697-1706.
[26]Shin L J,Lo J C,Yeh K C. Copper chaperone antioxidant protein1 is essential for copper homeostasis[J]. Plant Physiology,2012,159(3):1099-1110.
[27]Andrés-Colás N,Sancenón V,Rodríguez-Navarro S,et al. The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots[J]. The Plant Journal,2006,45(2):225-236.
[28]Pich A,Scholz G. Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.):nicotianamine-stimulated copper transport in the xylem[J]. Journal of Experimental Botany,1996,47(294):41-47.
[29]Takahashi M,Terada Y,Nakai I,et al. Role of nicotianamine in the intracellular delivery of metals and plant reproductive development[J]. Plant Cell,2003,15(6):1263-1280.
[30]Briat J F,Curie C,Gaymard F. Iron utilization and metabolism in plants[J]. Current Opinion in Plant Biology,2007,10(3):276-282.
[31]Chu H H,Chiecko J,Punshon T,et al. Successful reproduction requires the function of Arabidopsis YELLOW STRIPE-LIKE1 and YELLOW STRIPE-LIKE3 metal-nicotianamine transporters in both vegetative and reproductive structures[J]. Plant Physiology,2010,154(1):197-210.
[32]Bemal M,Casero D,Singh V,et al. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis[J]. Plant Cell,2012,24(2):738-761.
[33]Chen C C,Chen Y Y,Tang I C,et al. Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance[J]. Plant Physiology,2011,156(4):2225-2234.
[34]Waters B M,Grusak M A. Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia,Landsberg erecta,Cape Verde Islands,and the mutant line ysl1ysl3[J]. New Phytologist,2008,177(2):389-405.
[35]Himelblau E,Mira H,Lin S J,et al. Identification of a functional homolog of the yeast copper homeostasis gene ATX1 from Arabidopsis[J]. Plant Physiology,1998,117(4):1227-1234.
[36]Mira H,Martínez N,Pearrubia L. Expression of a vegetative-storage-protein gene from Arabidopsis is regulated by copper,senescence and ozone[J]. Planta,2002,214(6):939-946.
[37]Williams L E,Mills R F. P1B-ATPases - an ancient family of transition metal pumps with diverse functions in plants[J]. Trends in Plant Science,2005,10(10):491-502.
[38]Lutsenko S,Barnes N L,Bartee M Y,et al. Function and regulation of human copper-transporting ATPases[J]. Physiological Reviews,2007,87(3):1011-1046.
[39]Binder B M,Rodríguez F I,Bleecker A B. The copper transporter RAN1 is essential for biogenesis of ethylene receptors in Arabidopsis[J]. Journal of Biological Chemistry,2010,285(48):37263-37270.
[40]Li W,Lacey R F,Ye Y J,et al. Triplin,a small molecule,reveals copper ion transport in ethylene signaling from ATX1 to RAN1[J]. Plos Genetics,2017,13(4):e1006703.
[41]Yamamoto A,Bhuiyan M N,Waditee R,et al. Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants[J]. Journal of Experimental Botany,2005,56(417):1785-1796.
[42]Dong J,Kim S T,Lord E M. Plantacyanin plays a role in reproduction in Arabidopsis[J]. Plant Physiology,2005,138(2):778-789.
[43]Puig S,Mira H,Dorcey E,et al. Higher plants possess two different types of ATX1-like copper chaperones[J]. Biochemical & Biophysical Research Communications,2007,354(2):385-390.
[44]Heo D H,Baek I J,Kang H J,et al. Cd2+ binds to Atx1 and affects the physical interaction between Atx1 and Ccc2 in Saccharomyces cerevisiae[J]. Biotechnology Letters,2012,34(2):303-307.
[45]Zhu H N,Shipp E,Sanchez R J,et al. Cobalt2+ binding to human and tomato copper chaperone for superoxide dismutase:implications for the metal ion transfer mechanism[J]. Biochemistry,2000,39(18):5413-5421.
[46]Trindade L M,Horvath B M,Bergervoet M J,et al. Isolation of a gene encoding a copper chaperone for the copper/zinc superoxide dismutase and characterization of its promoter in potato[J]. Plant Physiology,2003,133(2):618-629.
[47]Ruzsa S M,Scandalios J G. Altered Cu metabolism and differential transcription of Cu/ZnSod genes in a Cu/ZnSOD-deficient mutant of maize:evidence for a Cu-responsive transcription factor[J]. Biochemistry,2003,42(6):1508-1516.
[48]Wintz H,Vulpe D C. Plant copper chaperones[J]. Biochemical Society Transactions,2002,30(4):732-735.
[49]Chu C C,Lee W C,Guo W Y,et al. A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis[J]. Plant Physiology,2005,139(1):425-436.
[50]Abdelghany S E,Burkhead J L,Gogolin K A,et al. AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7[J]. Febs Letters,2005,579(11):2307-2312.
[51]Huang C H,Kuo W Y,Weiss C,et al. Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis[J]. Plant Physiology,2012,158(2):737-746.
[52]Fukuoka M,Tokuda E,Nakagome K,et al. An essential role of N-terminal domain of copper chaperone in the enzymatic activation of Cu/Zn-superoxide dismutase[J]. Journal of Inorganic Biochemistry,2017,175:208-216.
[53]Pierrel F,Cobine P A,Winge D R. Metal Ion availability in mitochondria[J]. Biometals,2007,20(3-4):675-682.
[54]Carr H S,Winge D R. Assembly of cytochrome c oxidase within the mitochondrion[J]. Accounts of Chemical Research,2003,36(5):309-316.
[55]Balandin T,Castresana C. AtCOX17,an Arabidopsis homolog of the yeast copper chaperone COX17[J]. Plant Physiology,2002,129(4):1852-1857.
[56]Garcia L,Welchen E,Gey U,et al. The cytochrome c oxidase biogenesis factor AtCOX17 modulates stress responses in Arabidopsis[J]. Plant Cell & Environment,2016,39(3):628-644.
[57]Molina-Heredia F P,Wastl J,Navarro J A,et al. Photosynthesis:a new function for an old cytochrome?[J]. Nature,2003,424(6944):33-34.
[58]Weigel M,Varotto C,Pesaresi P,et al. Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana[J]. The Journal of Biological Chemistry,2003,278(33):31286-31289.
[59]Bernal M,Testillano P S,Alfonso M,et al. Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter[J]. Journal of Structural Biology,2007,158(1):46-58.
[60]Abdelghany S E,Müllermoulé P,Niyogi K K,et al. Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts[J]. The Plant Cell,2005,17(4):1233-1251.
[61]Bernal M,Ramiro M V,Cases R,et al. Excess copper effect on growth,chloroplast ultrastructure,oxygen-evolution activity and chlorophyll fluorescence in Glycine max cell suspensions[J]. Physiologia Plantarum,2006,127(2):312-325.
[62]Arnesano F,Banci L,Bertini I,et al. Metallochaperones and metal-transporting ATPases:a comparative analysis of sequences and structures[J]. Genome Research,2002,12(2):255-271.
[63]Borrelly G P,Rondet S A,Tottey S,et al. Chimeras of P1-type ATPases and their transcriptional regulators:contributions of a cytosolic amino-terminal domain to metal specificity[J]. Molecular Microbiology,2004,53(1):217-227.
[64]Yamasaki H,Hayashi M,F(xiàn)ukazawa M,et al. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis[J]. The Plant Cell,2009,21(1):347-361.
[65]Waters B M,Chu H H,Didonato R J,et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds[J]. Plant Physiology,2006,141(4):1446-1458.
[66]Cohu C M,Pilon M. Regulation of superoxide dismutase expression by copper availability[J]. Physiologia Plantarum,2007,129(4):747-755.
[67]Abdelghany S E,Pilon M. MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis[J]. The Journal of Biological Chemistry,2008,283(23):15932-15945.
[68]Dugas D V,Bartel B. Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases[J]. Plant Molecular Biology,2008,67(4):403-417.
[69]Yamasaki H,Abdelghany S E,Cohu C M,et al. Regulation of copper homeostasis by micro-RNA in Arabidopsis[J]. The Journal of Biological Chemistry,2007,282(22):16369-16378.
[70]Sunkar R,Kapoor A,Zhu J K. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance[J]. The Plant Cell,2006,18(8):2051-2065.
[71]Berthet S,Demontcaulet N,Pollet B,et al. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems[J]. The Plant Cell,2011,23(3):1124-1137.
[72]Ravet K,Danford F L,Dihle A,et al. Spatiotemporal analysis of copper homeostasis in Populus trichocarpa reveals an integrated molecular remodeling for a preferential allocation of copper to plastocyanin in the chloroplasts of developing leaves[J]. Plant Physiology,2011,157(3):1300-1312.
[73]Cardon G,Hhmann S,Klein J,et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene,1999,237(1):91-104.
[74]Perea-García A,Andrés-Bordería A,Andrés S M D,et al. Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana[J]. Journal of Experimental Botany,2016,67(1):391-403.
[75]Zhang H,Zhao X,Li J,et al. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper[J]. Plant Cell,2014,26(12):4933-4953.
[76]Pesaresi P,Scharfenberg M,Weigel M,et al. Mutants,overexpressors,and interactors of Arabidopsis plastocyanin isoforms:revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state[J]. Molecular Plant,2009,2(2):236-248.
[77]Abdel-Ghany S E. Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in Arabidopsis thaliana,grown at different copper regimes[J]. Planta,2008,229(4):767-779.
[78]Welchen E,Chan R L,Gonzalez D H. The promoter of the Arabidopsis nuclear gene COX5b-1,encoding subunit 5b of the mitochondrial cytochrome c oxidase,directs tissue-specific expression by a combination of positive and negative regulatory elements[J]. Journal of Experimental Botany,2004,55(405):1997-2004.
[79]Kliebenstein D J,Monde R A,Last R L. Superoxide dismutase in Arabidopsis:an eclectic enzyme family with disparate regulation and protein localization[J]. Plant Physiology,1998,118(2):637-650.
[80]Chen Y F,Randlett M D,F(xiàn)indell J L,et al. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis[J]. Journal of Biological Chemistry,2002,277(22):19861-19866.
[81]Nakamura K,Go N. Function and molecular evolution of multicopper blue proteins[J]. Cellular & Molecular Life Sciences,2005,62(18):2050-2066.
[82]Cai X N,Davis E J,Ballif J,et al. Mutant identification and characterization of the laccase gene family in Arabidopsis[J]. Journal of Experimental Botany,2006,57(11):2563-2569.
[83]Frébort I,Sebela M,Svendsen I,et al. Molecular mode of interaction of plant amine oxidase with the mechanism-based inhibitor 2-butyne-1,4-diamine[J]. The FEBS Journal,2000,267(5):1423-1433.
[84]An Z,Jing W,Liu Y,et al. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba[J]. Journal of Experimental Botany,2008,59(4):815-825.
[85]Marina M,Maiale S J,Rossi F R,et al. Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava[J]. Plant Physiology,2008,147(4):2164-2178.
[86]Arnon D I. Copper enzymes in isolated chloroplasts. Polyphenoloxidse in Beta vulgaris[J]. Plant Physiology,1949,24(1):1-15.
[87]Mayer A M. Polyphenol oxidases in plants and fungi:going places? A review[J]. Phytochemistry,2006,67(21):2318-2331.
[88]Schubert M,Petersson U A,Haas B J,et al. Proteome map of the chloroplast lumen of Arabidopsis thaliana[J]. Journal of Biological Chemistry,2002,277(10):8354-8365.