程煥 簡桂花 汪年松
摘 要 慢性腎臟?。╟hronic kidney disease,CKD)已成為威脅公眾健康的重要疾病之一,在CKD諸多并發(fā)癥中,以鈣磷代謝紊亂較為常見。長期的鈣磷代謝紊亂不僅會引起體內(nèi)礦物質(zhì)代謝紊亂和骨代謝異常,誘發(fā)甲狀旁腺功能亢進(jìn),還可引起多器官的轉(zhuǎn)移性鈣化及免疫系統(tǒng)受損。全文簡述CKD患者鈣磷代謝紊亂發(fā)病機(jī)制,旨在為臨床工作提供依據(jù)。
關(guān)鍵詞 慢性腎臟??;鈣磷代謝紊亂;并發(fā)癥
中圖分類號:R692 文獻(xiàn)標(biāo)志碼:A 文章編號:1006-1533(2019)10-0007-03
Research on the pathogenesis of calcium-phosphorus metabolism disorder associated with chronic kidney disease
CHENG Huan1, JIAN Guihua2, WANG Niansong2(1. Kangjian Street Community Health Service Center of Shanghai Xuhui District, Shanghai 200233, China; 2. Department of Nephrology, Shanghai Sixth Peoples Hospital, Shanghai Jiaotong University, Shanghai 200233, China)
ABSTRACT: Chronic kidney disease(CKD) has become one of the important diseases threatening the public health. Among complications of CKD, calcium and phosphorus metabolism disorders is more common. Long-term disorder of calcium and phosphorus metabolism will not only cause disordered regulation of mineral metabolism and abnormal bone metabolism, and are accompanied by the development of hyperparathyroidism, but also cause metastatic calcification of multiple organs and damage of immune system. This article briefly reviews the pathogenesis of calcium and phosphorus metabolism disorders in patients with CKD, and to provide a basis for clinical work.
KEY WORDS chronic kidney disease; calcium and phosphorus metabolism disorder; complications
慢性腎臟?。╟hronic kidney disease,CKD)是一類嚴(yán)重影響人類健康的疾病,且隨發(fā)病率逐年升高,已成為21世紀(jì)人類面臨的全球性重大公共健康問題,而鈣磷代謝紊亂則是CKD患者常見的臨床并發(fā)癥之一,可引起多種疾病,嚴(yán)重影響患者的生活質(zhì)量,是導(dǎo)致CKD透析患者死亡的獨(dú)立危險因素[1]。本文就CKD繼發(fā)鈣磷代謝紊亂的發(fā)病機(jī)制研究進(jìn)展作一簡單綜述。
CKD繼發(fā)鈣磷代謝紊亂的發(fā)病機(jī)制從目前研究進(jìn)展看主要涉及繼發(fā)性甲狀旁腺功能亢進(jìn)(secondary hyperparathyroidisnl,SHPT)、活性維生素D分泌異常、成纖維細(xì)胞生長因子23(fibroblast growth factor 23, FGF-23)增多、Klotho蛋白下調(diào)及高磷血癥幾方面。
1 甲狀旁腺功能亢進(jìn)
SHPT是CKD患者常見并發(fā)癥之一[2],其特征是甲狀旁腺組織異常增生、甲狀旁腺激素(parathylxfid hormone,PTH)水平升高,引起SHPT,臨床主要表現(xiàn)為鈣磷代謝紊亂。近年來,對SHPT的深入研究從分子和細(xì)胞水平揭示了CKD-SHPT的發(fā)病機(jī)制[3]。PTH是調(diào)節(jié)骨代謝、維持血清濃度的重要激素,其具體作用機(jī)制有如下幾方面:①PTH使腎臟1-a羥化酶活性增強(qiáng),生成骨化三醇增多,從而促進(jìn)腸道對鈣、磷的吸收。②PTH促進(jìn)近曲小管重吸收鈣增多、磷減少,促進(jìn)磷的排泄,維持鈣磷正常生理濃度。③持續(xù)性高PTH水平作用于成骨細(xì)胞表面[4],使成骨細(xì)胞表達(dá)型骨膠原減少,而配體kappa B核因子表達(dá)增多[5],這兩種骨細(xì)胞表面因子表達(dá)的改變,導(dǎo)致骨骼的代謝呈高轉(zhuǎn)換狀態(tài),骨吸收增加,鈣磷釋放入血,進(jìn)而加重高鈣、高磷血癥。CKD患者早期血清鈣、磷和PTH基本維持正常,當(dāng)進(jìn)展至晚期時,特別是當(dāng)腎小球?yàn)V過率小于30 ml/min,出現(xiàn)低鈣和高磷血癥,PTH進(jìn)一步釋放,引起SHPT[6]。
2 活性維生素D代謝異常
維生素D在體內(nèi)有重要的功能,在CKD患者,因患者紫外線攝入不足、高齡、飲食攝入不足及尿蛋白丟失、合并高尿酸血癥、代謝性酸中毒等諸多因素,抑制了1-a羥化酶的活性,導(dǎo)致活性維生素D(即骨化三醇)合成量減少?;钚跃S生素D具有促小腸對鈣磷的吸收和轉(zhuǎn)運(yùn)、促溶骨和成骨及促腎小管對鈣磷的重吸收作用,但需維生素受體(VDR)介導(dǎo)才能發(fā)揮效應(yīng),VDR是位于細(xì)胞核內(nèi)的一種配體依賴性轉(zhuǎn)錄因子?;钚跃S生素D可通過白細(xì)胞介素-6和瘦素介導(dǎo)產(chǎn)生VDR的配體因子STATs,后者可直接通過維生素D反應(yīng)元件與維生素D受體作用,也可通過DNA成環(huán)遠(yuǎn)程作用,啟動骨細(xì)胞對FGF-23基因的表達(dá)[7]。然后,F(xiàn)GF-23又可通過一系列生物信號轉(zhuǎn)導(dǎo),最終調(diào)控1-a羥化酶表達(dá),降低活性維生素D水平。隨著CKD進(jìn)展、腎小管萎縮及FGF-23水平進(jìn)行性升高,導(dǎo)致并加重體內(nèi)活性維生素D缺乏,后者又可影響組織內(nèi)VDR的表達(dá),尤其是甲狀旁腺細(xì)胞的VDR水平下調(diào)[8]。
3 FGF-23增多
FGF-23是近年發(fā)現(xiàn)的調(diào)節(jié)鈣、磷代謝的激素,與Klotho蛋白具有協(xié)同作用,F(xiàn)GF-23的高水平與Klotho的低表達(dá)是CKD進(jìn)展的因素之一[9]。FGF-23是由骨細(xì)胞和成骨細(xì)胞分泌的新型多肽激素,作為調(diào)節(jié)鈣磷代謝的細(xì)胞因子,主要作用于近曲小管上皮細(xì)胞,抑制對磷旳重吸收和活性維生素D的合成,并對甲狀旁腺激素水平進(jìn)行調(diào)節(jié)。FGF-23的生物學(xué)信號主要是通過其受體(FGFR)介導(dǎo),目前已證實(shí)FGFR通路在FGF-23升高機(jī)制中起有重要作用[10],1,25-(OH)2D3及PTH能促進(jìn)FGF-23的表達(dá)[11]。FGFR表達(dá)于人體全身大多數(shù)組織,但由于其必需共受體跨膜蛋白Klotho僅表達(dá)于腎臟與甲狀旁腺[12],使FGF-23具有器官特異性。FGF-23對鈣磷代謝影響的作用機(jī)制:①FGF-23與遠(yuǎn)曲腎小管的FGFR-Klotho復(fù)合體結(jié)合,產(chǎn)生抑制近端腎小管鈉-磷共向轉(zhuǎn)運(yùn)體活性的信號,從而降低腎小管對磷的重吸收,增加尿磷,降低血磷。②FGF-23調(diào)控催化活性維生素D合成與失活的生物酶基因[13]的表達(dá),達(dá)到降低活性維生素D水平的效應(yīng)。其一是通過下調(diào)Cyp27bl基因表達(dá),降低1-a羥化酶水平,使活性維生素D合成減少;其二是通過上調(diào)Cyp24基因表達(dá),增加血清2,4羥化酶水平,使活性維生素D失活增多,以上雙重調(diào)節(jié)作用使活性維生素D水平下降,從而又影響腸道對鈣離子的吸收。③FGF-23通過與甲狀旁腺組織的FGFR-Klotho復(fù)合體結(jié)合,激活下游信號轉(zhuǎn)導(dǎo)通路,可直接抑制PTH的表達(dá)與分泌,盡管PTH的分泌增加可引起血磷和血鈣水平升高,繼而對PTH分泌有負(fù)反饋抑制作用,但PTH總體水平仍增高[14]。CKD患者血清FGF-23水平顯著升高,后者通過“腎-甲狀旁腺”軸發(fā)揮對礦物質(zhì)及PTH的調(diào)節(jié)作用,隨著CKD進(jìn)展,殘余腎單位進(jìn)一步減少及缺乏復(fù)合體的甲狀旁腺組織增生均導(dǎo)致了FGF-23抵抗現(xiàn)象,使血清鈣磷、PTH、維生素D的自穩(wěn)態(tài)被打破,反饋性地刺激骨細(xì)胞,上調(diào)FGF-23的表達(dá)與分泌,使血清FGF-23水平進(jìn)一步升高??傊現(xiàn)GF-23與PTH相互作用,共同調(diào)節(jié)體內(nèi)礦物質(zhì)代謝和骨吸收。
4 Klotho蛋白下調(diào)
Klotho基因是與衰老相關(guān)的基因,主要表達(dá)于腎臟和甲狀旁腺,隨著年齡的增加及慢性腎病的進(jìn)展,Klotho基因呈低水平表達(dá)。人體內(nèi)Klotho蛋白有兩種形式,即膜型和分泌型。膜型Klotho蛋白與FGFR結(jié)合形成共受體,當(dāng)受到FGF-23刺激信號即通過上述機(jī)制調(diào)節(jié)血磷、PTH等。除此之外,分泌型Klotho蛋白尚存在非FGF-23依賴機(jī)制[15],通過旁分泌方式直接抑制近端腎小管及腸內(nèi)鈉-磷共向轉(zhuǎn)運(yùn)體活性,進(jìn)而發(fā)揮降磷作用。研究發(fā)現(xiàn),分泌型Klotho蛋白還具有b-葡糖醛酸酶活性[16],可活化遠(yuǎn)曲小管上皮細(xì)胞的鈣離子通道并維持其數(shù)量[17],增加鈣離子重吸收。隨著CKD的進(jìn)展,Klotho水平呈進(jìn)行性下降,尤其是尿毒癥期,毒素通過酶學(xué)機(jī)制[18]刺激Klotho基因發(fā)生甲基化而轉(zhuǎn)為沉默基因,最終使Klotho蛋白的表達(dá)減少??傊珻KD患者Klotho蛋白水平較正常人群明顯下降,通過FGF-23依賴及非依賴兩種途徑發(fā)揮對鈣磷代謝及PTH的調(diào)節(jié)作用,最終導(dǎo)致高磷低鈣、繼發(fā)性甲狀旁腺功能亢進(jìn)的發(fā)生及進(jìn)展[19-20]。
5 高磷血癥
人體內(nèi)磷的總量主要決定于食物中磷的攝入、腸道對磷的吸收以及腎臟排磷三者之間的平衡,主要受三種激素調(diào)控,分別是PTH、活性維生素D及FGF-23,這三種激素也相互影響。通過對FGF-23-Klotho軸的研究發(fā)現(xiàn),磷不僅只是一種沉積在骨中的礦物質(zhì),還應(yīng)被看作是一種重要的營養(yǎng)物和生物配體[21]。由于腎臟是磷排泄的唯一器官,隨著腎單位的逐漸減少,腎小球?yàn)V過率明顯下降,血磷水平逐步升高,長期的高磷水平刺激PTH分泌增加。Levin等[22]報道其機(jī)制如下:①高血磷可直接刺激甲狀旁腺分泌PTH;②磷與鈣結(jié)合形成CaHPO4,導(dǎo)致高鈣血癥,刺激PTH分泌增多;③高血磷可刺激FGF-23生成增加,抑制1-a羥化酶活性,使活性維生素D生成減少及甲狀旁腺維生素D受體下調(diào),最后導(dǎo)致維生素D抵抗,繼而降低對甲狀旁腺的負(fù)反饋抑制效應(yīng),導(dǎo)致PTH分泌增多。PTH作用于骨,使鈣磷釋放增多,進(jìn)而加重高磷血癥,而高磷又可直接刺激骨細(xì)胞,上調(diào)FGF-23分泌,如此形成惡性循環(huán),故終末期腎病患者普遍存在高磷血癥。研究表明GFR小于60 ml/ min、血磷水平趨近正常時,PTH總體水平已有升高[23];當(dāng)GFR下降至30 ml/min以下時,血磷水平總體已升高,PTH水平升高更為顯著,而高磷血癥的發(fā)生較普遍[24];當(dāng)GFR下降至20 ml/min以下時,高磷血癥的發(fā)生幾乎無可避免[23]。
綜上所述,鈣磷代謝紊亂是CKD患者常見且嚴(yán)重的并發(fā)癥,與CKD患者(尤其是維持性血液透析患者)的預(yù)后密切相關(guān)。了解CKD繼發(fā)鈣磷代謝紊亂的發(fā)病機(jī)制可為鈣磷代謝紊亂的治療時機(jī)和治療方法選擇提供重要依據(jù),達(dá)到服務(wù)臨床診療的最終目的,也是目前慢性腎病研究領(lǐng)域的熱點(diǎn)之一。FGF-23與Klotho蛋白究竟哪個是CKD鈣磷代謝紊亂發(fā)病的初始因子,尚需進(jìn)一步研究,通過研究FGF-23增多與Klotho蛋白下調(diào)幅度亦可為CKD鈣磷代謝紊亂評估預(yù)后服務(wù)。
參考文獻(xiàn)
[1] 許琳, 關(guān)天俊. 慢性腎臟病患者的磷管理[J]. 世界臨床藥物, 2016, 7(4): 236-240.
[2] Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes(KDIGO)[J]. Kidney Int, 2006, 69(11): 1945-1953.
[3] 賈彥諾, 高志華, 徐然東, 等. 慢性腎衰竭繼發(fā)性甲狀旁腺功能亢進(jìn)的相關(guān)因素分析及治療[J]. 中國老年學(xué)雜志, 2015, 35(11): 3182-3184.
[4] Byon CH, Sun Y, Chen J, et a1. Runx2-upregulated receptor activator of nuclear factor kappaB ligand in calcifying smooth muscle cells promotesmigration and osteoelastic diferentiation of macrophages[J]. Arterioscler Thromb Vasc Biol, 2011, 31(6): 1387-1396.
[5] Shalhoub V, Shatzen EM, Ward SC, et a1. FGF23 neutralization improves chronic kidney disease associated hyperparathyroidism yet incresdes moritality[J]. J Clin Invest, 2012, 122(7): 2543-2553.
[6] Felsenfeld AJ, Levine BS, Rodriguez M. Pathophysiology of calcium, phosphorus, and magnesium dysregulation in chronic kidney disease[J]. Semin Dial, 2015, 28(6): 564-577.
[7] Lau WL, Leaf EM, Hu MC, et al. Vitamin D receptor agonists increase klotho and osteopontin while decreasing aortic calcication in mice with chronic kidney disease fed ahigh phosphate diet[J]. Kidney Int, 2012, 82(12): 1261-1270.
[8] Saini RK, Kaneko I, Jurutka PW, et al. 1, 25-dihydroxyvitaminD(3) regulation of fibroblast growth factor-23 expression in bonecell:evidence for primary and secondary mechaniseras modulated by leptin and interleukin-6[J]. Calcif Tissue Int, 2013, 92(4): 339-353.
[9] Andrukhova O, Smorodchenko A, Egerbacher M, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel[J]. EMBO J, 2014, 33(3): 229-246.
[10] Hassan A, Durlacher K, Silver J. et al. The fibroblast growth factor receptor mediates the increased FGF23 expression in a-cute and chronic uremia[J]. Am J Physiol Renal Physiol, 2016, 310(3): 217-221.
[11] Guo YC, Yuan Q. Fibroblast growth factor 23 and bone mineralisation[J]. Int J Oral Sci, 2015, 7(1): 8-13.
[12] Hruska kA, Mathew S. The roles of the skeleton and phosphorus in the CKD mineral bone disorder[J]. Adv Chronic kidney Dis, 20l1, 18(2): 98-104.
[13] Kuro-O M. Phosphate and Klotho[J]. Kidney Int Suppl, 2011, 79(S121): S20-S23.
[14] Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats[J]. J Clin Invest, 2007, 117(12): 4003-4008.
[15] Yu Y, Sanderson SR, Reyes M, et al. Novel NaPi-IIc mutations causing HHRH and idiopathic hypercalciuria in several unrelated families:longterm follow-up in one kindred[J]. Bone, 2012, 50(5): 1100-1106.
[16] Kuro-O M. Klotho and aging[J]. Biochim Biophys Acta, 2009, 1790(10): 1049-1058.
[17] Huang CL. Regulation of ion channels by secreted Klotho; mechanisms and implicalions[J]. Kidney Int, 2010, 77(10): 855-860.
[18] Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vasular calcification in chronic kidney disease[J]. Am Soc Nephrol, 2011, 22(1): 124-136.
[19] Komaba H, Fukagawa M. FGF23-Parathyroid interaction:implications in hronic kidney disease[J]. Kidney Int, 2010, 77(4): 292-298.
[20] Kuro-O M. Klotho in health and disease[J]. Curr Opin Nephrol Hypertens, 2012, 21(4): 362-368.
[21] Kuro-O M. A phosphate-centric paradigm for pathophysiology and therapy of chronic kidney disease[J]. Kidney Int Suppl(2011), 2013, 3(5): 420-426.
[22] Levin A, Bakris GL, Molitch M, et al. Prevalence of abnormal serumvitamin D. PTH, calcium, and phosphorus in patients with chronickidney disease:results of the study to evaluate early kidney disease[J]. Kidney Int, 2007, 71(1): 31-38.
[23] Okuno S. Kidney and bone update:the 5-year history and future of CKD-MBD. Bone metabolic marker in hemodialysis patients update[J]. Clin Calcium, 2012, 22(7): 1009-1017.
[24] Eddington H, Hoefield R, Sinha S, et al. Serum phosphate and mor-tality in patients with chronic kidney disease[J]. Clin J Am Soc Nephrol, 2010, 5(12): 2251-2257.