• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Generalized Markov Interacting Branching Processes with Immigration

    2019-05-04 05:51:48ZhangPeipeiWangJuan

    Zhang Peipei Wang Juan

    (College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China)

    Abstract This paper focuses on discussing some basic properties of the Markov interacting branching processes with immigration which is a natural generalization of the ordinary Markov branching process. After obtaining some key preliminary results, we first obtain some elegant conditions regarding regularity and uniqueness. Then the extinction vector is obtained which is very easy to be calculated. The mean extinction time and the conditional mean extinction time are revealed. The mean explosion time and the total mean life time of the processes are also investigated and resolved.

    Key words Branching process Immigration Regularity and uniqueness Extinction probability Mean extinction time Mean explosive time

    1 Introduction

    The ordinary Markov branching processes (MBPs) from one of the most important classes of stochastic processes. Standard references are, among many others, Harris [1], Athreya and Ney [2] and Asmussen and Hering [3]. The basic property which governs the evolution of an MBP is the branching property. That is that different particles act independently when giving birth or death. Although this basic assumption is extremely useful in analyzing properties of MBP which makes the theory and applications of MBP surprisingly fruitful, few practical models satisfy this assumption. Indeed, in practical cases, particles usually interact with each other. This may explain the reason why there always have been a great interest and an increasing effort to generalize the ordinary branching processes to more general branching models. Such efforts are clearly reflected in [4]. Many different interacting branching models which are generalizations of the ordinary MBP have been proposed and studied in [5-8]. This trend has significantly enriched the research of branching processes and bring fruitful results in the theory and applications of branching processes.

    The main aim of this paper is to consider the generalized Markov interacting branching processes with immigration which is a natural generalization of the model considered in [9]. The criteria for regularity, extinction behaviors and properties for such model will be deeply investigated.

    More specifically, we shall define our model by specifying the infinitesimal characteristic, i.e., the so-called q-matrix. Throughout this paper, letZ+={0,1,2,…} denote the set of nonnegative integers.

    Definition 1.1Aq-matrixQ=(qij;i,j∈Z+) is called a generalized interacting branching processes with immigration (henceforth referred to as a GIBIq-matrix), if there exists a positive integerm≥1 such that

    (1)

    where

    (2)

    Since it is possibly a little bit less intuitive from the view point of probability, so we need re-parameterize our model by lettingbj=lpj(j≥m) andbm=-l,aj=kej(j≥m) andam=-k, which is very convenient. Then we have

    (3)

    where

    (4)

    indicating that our GIBIq-matrix is conservative.

    Definition 1.2A continuous-time Markov chain on the state spaceZ+is called GIBI, if whose transition functionP(t)=(pij;i,j∈Z+) satisfies

    P′(t)=P(t)Q,

    (5)

    whereQis a GIBIq-matrix given in (1)-(2).

    Definition 1.3A GIBIq-matrixQis said to be slowly-exit if ∑∞i=m(1/ωi)=∞ or fast-exit if ∑∞i=m(1/ωi)<∞.

    We can see that this general model is based on the two given sequences {bj;j≥0} in terms of the distribution {pj;j≥0} and the real valuea>0 and {ωj;j≥m} together with the positive integerm. With the sequence {bj;j≥0} being fixed, we can obtain many interesting and important models by varying the sequence {ωj;j≥m}. In fact, many important branching models which have been extensively considered and have important applications can be viewed as special cases of our general branching processes model. For example, if we letm=1 andωi=i(i≥1), we then obtain the much-studied MBP to which huge publications exist. See [2] or [3]. The stoppedMX/M/1 queue is the casem=1 andωi≡1 (see [10,11]).And also some other special cases ofωihave also been addressed. For example, a family of interesting differential-integral equations together with with extinction behaviors have been revealed in [12] whenωi=iνwhereνis a non-negative real number. For arbitraryωi, Chen [13] obtained some uniqueness criteria. In addition if we letm=2 andωi= we then recover the collision branching process (CBP), detailed addressed in [14]. Ifm=2 together withωi=1, the model becomes a queueing model.

    The basic aim of this paper is to fill this gap by analyzing these very general models. Since the cases ofm=1 or 2 have been extensively considered, we assume in this paper thatm≥3, although most of the conclusions obtained in this paper apply perfectly well for casesm=1 orm=2. Note also that we shall assume thatmis the smallest positive integer such that all states {m,m+1,…} communicate, i.e.,G={m,m+1,…} is an irreducible class for the GIBIq-matrixQ.

    It should be emphasized that although we use the terminology of interacting branching processes to denote our general model for the reason of convenience, its application is far beyond branching processes and queueing models. In fact, by choosing suitablemandωi, we could model many other natural phenomena. In fact, this is an important impulse for us to study these general models.

    The structure of this paper is as follows. In the following Section 2, we present a few preliminary results which play an important role in our later analysis. In Section 3, we focus our discussions on uniqueness and regularity of our processes. In particular, several elegant regularity and uniqueness criteria are obtained. Section 4 is devoted to the study of extinction behavior and hitting times. Some important conclusions regarding extinction probabilities and mean extinction times and explosive times are also given. A couple of examples are then provided in Section 5.

    2 Preliminaries

    We first define the generating functions of the known sequence {pj;j≥0} and {ej;j≥0} asR(z)=∑∞j=0pjzjandT(z)=∑∞j=0ejzj. LetB(z)=l(R(z)-zm),A(z)=k(T(z)-zm). By the definition, we could know that GIBI is completely determined by these sequences. So we could define their occurrence functionsB(z) andA(z) as follows:

    (iii)B(z) can be expressed as

    (6)

    withρ0,ρk≥0(k≥1) and

    (7)

    Moreover, if {m,m+1,…} is irreducible forQ, thenρ1>0.

    Definition 2.1From now on, we assume that allσ0,σ1,…,σm-1are distinct.

    Note that this is purely a technical assumption. Indeed, it is easy to see how to modify the conclusions if this assumption is violated.

    We define that

    (8)

    Sinceρ0-∑∞k=1ρkzkis analytic inside the unit diskDand |ρ0-∑∞k=1ρkzk|≥ρ0(1-|z|)>0 for all |z|<1,G(z) must also be analytic insideD. HenceG(s), viewed as a real function ofs, can be expanded as a Taylor seriesG(s)=∑∞k=1gkskat least within the open interval |s|<1. We now have the following important conclusion.

    Lemma 2.2The coefficients of the power series have the following properties:

    (i) 0

    (ii) IfB′(1)<0, then

    (9)

    and thusg∞:=limn→∞gn=0.

    (iii) IfB′(1)=0, then ∑∞n=0gn=+∞ and the limitg∞:=limn→∞gnexists and is given by

    (10)

    In particular,g∞>0 if and only ifB″(1)<∞.

    (iv) If 0

    (11)

    In particular,g∞>0 if and only ifB′(1)<∞.

    ProofBy recognizing that (8) is precisely the basic identity of discrete renewal theory, we may exploit the theory of renewal sequences (see Kingman [17]). In the notation of Chapter 1 of Kingman,fk=ρk/ρ0(k≥1) andf∞=1-∑∞k=1fk, and the associated renewal sequence {un,n≥0} is given byuk=ρ0gk(k≥0). By the irreducibility of {m,m+1,…} and usingf1=ρ1/ρ0>0, we knowthat this renewal sequence is aperiodic and thatuk>0 for allk≥0 (see expression (1.1.15) of Kingman).

    Now, (i) is true because it is simply a statement of the fact that 00, and a simple calculation shows that

    f∞=(md-mb)/[ρ0(1-σ1)…(σm-1)].

    Part (ii) then follows from Theorem 1.5 of Kingman.

    Parts (iii) and (iv) are consequences of the Erd?s-Feller-Pollard theorem (Theorem 1.5 of Kingman): the limitg∞=limn→∞gn=ρ-10limn→∞unexists, and, becauseB′(1)≥0 implies thatf∞=0, it follows thatu∞=(∑∞k=1kfk)-1, equivalentlyg∞=(∑∞k=1kρk)-1, with the interpretation thatg∞=0 whenever the series is divergent. It remains to evaluateg∞. To this end, first assumeB′(1)=0, then by (8) we know that

    then let’s take the derivative of both sides with respect tozand letz→1, we can know that

    which is precisely (10).

    If 0

    Lemma 2.3Let (pij(t);i,j∈Z+) and (φij(t);i,j∈Z+) be the minimal transition function and resolvent. Then for anyi≥mand |z|<1, we have

    (12)

    (13)

    and

    (14)

    (15)

    ProofWe suppose that 0≤z<1. The proof with -1

    (16)

    whereqj=-qjjand asn→∞,φ(n)ij(λ)↑φij(λ) for alli,j∈Z+.

    Now we return to our GIBI q-matrixQonZ+and we still use {φij(λ);i,j∈Z+} to denote the corresponding Feller minimal resolvent. We first claim that for anyn≥0,i≥0 and 0

    (17)

    We assumei≥msince otherwise (17) is trivially true. We use mathematical induction onnto prove the conclusion. Firstly, the claim is trivially true forn=0.

    Secondly, note that by (16), we can easily get that

    (18)

    and so (17) follows from induction principle. Next, letC(n+1)ij(λ)=φ(n+1)ij(λ)-φ(n)ij(λ)(n≥0), we then haveC(n)ij(λ)≥0(n≥1) and

    (19)

    Using this notation, (18) can be rewritten as

    (20)

    Noting that by using (18) we may immediately obtain that for all 0≤z<1 andi≥m,

    and hence

    (21)

    Lettingz=1 in (21) yields

    (22)

    Lettingn→∞ in (20) and using the above equality leads to the conclusion that for 0

    However, we may find anε>0 such that for all 0<1-ε≤z<1 we haveB(z)≠0. Hence,

    The monotone convergence theorem and dominated convergence theorem then yields

    which in fact holds for all0

    3 Regularity and Uniqueness

    Theorem 3.1IfB′(1)≤0, thenQis regular (equivalently, the minimal process is honest).

    ProofLet (φij(λ)) be the Feller minimalQ-resolvent. IfB′(1)≤0 and thus Lemma 2.1 implies thatB(z)>0 forzin [0, 1]. So from (15) we get that

    Lettingz↑1 and from the limz→1A(z)=0 then yieldsλ∑∞j=0φij(λ)≥1, which implies that the equality holds for alli≥0 since we always haveλ∑∞j=0φij(da)≤1. We deduce that the minimal transition function is honest,and hence thatQis regular.

    Theorem 3.2Suppose that ∑∞k=m(1/ωk)=+∞.

    (i) IfB′(1)<∞, thenQis regular, implying that the minimal process is honest(and thus is the onlyQ-process).

    (ii) IfB′(1)=∞, and ∑∞k=m(gk-m/ωk)<+∞, thenQis not regular, implying that the minimal process is dishonest.

    (iii) IfB′(1)=+∞ and ∑∞k=m(gk-m/ωk)=+∞, thenQis regular.

    ProofWe prove (ii) first. LetP(t)=(pij(t);i,j≥0) be the Feller minimalQ-function. Suppose the contrary is true:that this transition function is honest. Then, 1-∑m-1j=0pij(t)=∑∞k=mpik(t)(i≥m). Now lettingt→∞ and using (33) in Lemma 4.3 in advance, yields

    On the other hand, if we denotef(s)=∑m-1j=0aijsj-sm, thenf′(1)=∑m-1j=1jaij-m<-1 and by Lemma 2.1 we knowf(s) has no zero in [0, 1). However, takingk=0 in expression (29) of Lemma 4.1 yieldsf(σ0)=0, a contradiction because we assumedB′(1)=+∞ implies 0<σ0<1 which, in turn, impliesf(σ0)>0 sincef′(1)<0 implies thatf(s)>0 for all 0≤s<1.

    Next, we prove (i). The caseB′(1)≤0 is dealt with in Theorem 3.1, so we suppose that 0

    then we may rewrite (15) fori=mas

    Equating coefficients yields

    (23)

    for anyn≥m. Since ∑∞j=0λφmj(λ)≤1, Theorem 2.5.5 of Hunter [19] may be employed to deduce that

    (24)

    Since 00,∑∞j=0λφmj(λ)=1. Assume this fails. Then, there is aλ>0 with 1-λ∑∞j=0φmj(λ)>0. Lettingn→∞ in (23), and using (24), we obtain

    Since

    it follows that for a fixedλ>0 there is a constantδ>0 and an integerN>msuch that, for alln≥N,φmn(λ)≥δω-1n. This is a contradiction because ∑∞n=mω-1n=+∞. Thus,m∞j=0λφmj(λ)=1 for allλ>0. Now since {m,m+1,…} is an irreducible class, we obtain that ∑∞k=0λφik(λ)=1 for alli≥m. Also, since all states {0,1,…,m-1} are absorbing, the equality is trivially true fori≤m-1.

    Finally, we prove (iii). The stated condition implies that the limit limn→∞ωnexists. Now if the sequence {ωk;k≥m} is eventually non-increasing or if it is eventually non-decreasing but the limit is finite, thenQis clearly regular because it is bounded. We may therefore only consider the case that for somen0,{ωn,n≥n0} is non-decreasing and limn→∞ωn=∞. For this latter case we can choose an integern1>n0such thatωn≥max{ωk:k≤n0} for {ωn:n≥n0} is non-decreasing. It follows from (23) and noting that the first term on the right-hand side of (23) is nonnegative, we get thatforn≥n1,

    Hence, forn≥n1,

    for allz∈[0,1), we see that

    On lettingz→1 in the above expression, we find that the left-hand side tends to a finite value and thus so does the right-hand side. But the second term on the right-hand side certainly tends to a finite limit and therefore the first term must also tend to a finite value. However, this term is a product of two factors, the second of which tends to infinity because ∑∞k=0(gk/ωk+m)=∞. Thus, the first factor must tend to 0. We deduce thatλ∑∞j=0φmj(λ)=1(λ>0), and henceλ∑∞j=0φij(λ)=1(λ>0), for alli≥m, since {m,m+1,…} is irreducible. Finally, it is obvious thatλ∑∞j=0φij(λ)=1(λ>0) fori≤m-1 sineφij(λ)=λ-1δij.

    A careful examination of the proof of Theorem 3.2 reveals that the truth of (ii) depends neither on the condition ∑∞k=m(1/ωk)=+∞, nor onB′(1)=∞. In other words, we have proved that, provided 0

    Theorem 3.3If the GIBI q-matrixQis fast-exit, i.e., ∑∞k=m(1/ωk)<+∞, thenQis regular if and only ifB′(1)≤0.

    ProofIn view of Theorem 3.1, we only need to prove thatQis not regular when 0

    The previous three theorems establish regularity criteria. IfQis regular then there is only oneQ-process, namely the (honest) minimalQ-process. However, the converse may not be always true. Indeed, if ourQis not regular then, although there are infinitely many (even honest) transition functions, there may still exist only one GIBI because recall that our processes must satisfy the Kolmogorov forward equation. Therefore, in addition to the regularity criteria, we also need to establish criteria for uniqueness. Of course in this situation we only need to consider the cases that either 0

    ProofWe only need to prove that under the stated conditions, the equation

    Y(λ)(λI-Q)=0,0≤Y(λ)∈l,

    (25)

    has only the trivial solution for some (and hence for all)λ>0. Suppose the contrary, then (25) has a non-trivial solution {yn(λ):n≥0}. Writing out (25) we find that

    (26)

    and hence the convergence radius of the power seriesH(s):=∑∞n=mhnsn-mis strictly greater thanσ0. It follows that there is anε>0 such thatH(s) is well defined and finite on [0,σ0+ε). Thisεcan, of course, be chosen so small that it also satisfiesσ0+ε<1. LetY(s)=∑∞n=0ynsnand the definition ofA(s), which is well defined and finite at least on [0,1). From (26), we obtain

    H(s)B(s)=(1-A(s))Y(s).

    (27)

    Now we see that bothH(s) andY(s) are well defined and finite at least on [0,σ0+ε), and from the Lemma 2.1 we can know theA(s)<0 is always true. Lettings=σ0in (27) yieldsH(σ0)B(σ0)=(1-A(σ0))Y(σ0). That factsB(σ0)=0 andH(σ0)<∞, and 1-A(σ0)<0 imply thatY(σ0)=0, which in turn impliesyn≡0 , which leads to a contradiction.

    We now summarize our main conclusions concerning uniqueness.

    Theorem 3.5There is exactly one GIBI if any one of the following holds:

    (i)B′(1)≤0 .

    (ii)Qis slowly-exit and 0

    4 Extinction

    We now turn to considering the extinction behaviour and hitting times regarding GIBI.

    Let {X(t),t≥0} be the corresponding GIBI which is the Feller minimal process and letP(t)=(pij(t);i,j∈Z+) denote its transition function. Define the extinction timesτkfork=0,1,…,m-1 as

    It is clear thatτ=min{τ0,…,τm-1} is the overall extinction time. For alli>mandk≤m-1, define the individual extinction probabilities by

    (28)

    and the overall extinction probability byai=P(τ<∞|X(0)=i)=∑m-1k=0aik.

    Lemma 4.1The quantities (aik,k=0,1,…,m-1) given in (28) satisfy the relationship

    ai0+ai1σk+…+ai,m-1σm-1k=σik,k=0,1,…,m-1,

    (29)

    We now prove (29). By (13), we have

    (30)

    First assumeσ0=1. Then by Lemma 2.1(i), we knowB(s)>0 for alls∈(0,1) and hence for alls∈[0,1),

    Lettingt→∞ in the above equality ,and we have A(1)=0, then notingj≥mare transient yields ∑m-1j=0aij≥1. Since ∑m-1j=0aij≤1 is always true, we then have ∑m-1j=0aij=1, which shows that (29) holds fork=0.

    Remark 4.2By Lemma 4.1, the extinction probability vectorATi=(ai0,ai1,…,aim-1) satisfies (for eachi) the matrix equationVAi=Bi, whereBTi=(σi0,…,σim-1)and the coefficient matrixVis independent ofiand is the well-known Vandermonde matrix and thus, if themzeros 1,σ0,…,σm-1ofB(z) are different as we have assumed, then the Vandermonde determinant ofVis non-zero and therefore the extinction probability vector can be uniquely determined. Note that if there does exist some zeros ofB(z) which are equal, then it is easy to see how to obtain the solution by some trivial amendments and thus our assumption that all zeros ofB(z) are different isindeed without loss any generality.

    For anyi≥m, define

    (31)

    It is obvious thatGm(z)=G(z). By (30),Gi(z) is analytic inDand thus can be expanded as a Taylor series

    Lemma 4.3Let (pij(t);i,j∈Z+) be the minimal transition function.

    (i) For anyi,k≥2,

    (32)

    (33)

    and hence

    (34)

    ProofIt follows from (13) that

    Finally, suppose that ∑∞k=m(gk-m/ωk)<∞. From the remarks made preceding the statement of Lemma 4.3, we have

    for anyi≥m. Therefore (32) implies (33). In particular, if ∑∞k=m(1/ωk)<∞, then ∑∞k=m(gk-m/ωk)<∞ since {gk} is bounded. Finally, (33) implies (34) is trivial and hence the proof is complete.

    Theorem 4.4Let (pij(t),i,j∈Z+) be the Feller minimal Q-function.

    (i) For anyi≥m, the extinction probabilities (aik,k=0,1,…,m-1) are given by

    ai0+ai1σk+…+ai,m-1σm-1k=σik,k=0,1,…,m-1,

    (35)

    (ii) IfB′(1)≤0, thenai=∑m-1i=0aik=1, while if 0

    ProofBy noting (28), we see that this theorem is nothing but re-statement of Lemma 4.1. Finally, the last conclusion can be easily obtained.

    Theorem 4.5For the Feller minimal GIBI,Ei(τ) is finite for some (and then all)i≥mif and only ifB′(1)≤0 and in such case

    More specifically,

    (ii) if 0

    ProofIt is easily seen from Theorem 4.5 and Lemma 2.1 that if 0

    It is clear that when the extinction is not certain thenEi(τk)=+∞(i≥2,k=0,1). Under these circumstances it is natural to consider the conditional expected extinction times, given byEi(τk|τk<∞)=μik/aik, whereμik=Ei(τkI{τk<∞})(k=0,1).

    Theorem 4.6The following statements hold for the Feller minimal GIBI starting in stateiwherei≥m.

    Ei(τk|τk<∞)=a-1ik·μik,k≤m-1,i≥m,

    whereμik=Ei(τkI{τk<∞}) and satisfy the linear equations

    (36)

    Ei(τk|τk<∞)=a-1ik·μik,k≤m-1,i≥m,

    whereμiksatisfy the linear equations (36).

    ProofWe prove (ii) first. Since 0

    (37)

    On integrating (37) and usingaik-pik(t)=P(t<τk<∞|X(0)=i)(k≤m-1), we find that

    Noting that |σj|σ0<1, lettingt→∞ and using the monotone convergence theorem and dominated convergence theorem and noting (32) gives (36). By Remark 4.2, we see thatS<∞ is equivalent to

    Therefore, it can be easily seen by using some algebra thatμik<∞(k≤m-1) if and only ifS<∞.

    Now we prove (i). SinceB′(1)≤0,P(τ<∞|X(0)=i)=1. It follows from Theorem 4.4 thatai=1, and so the ensuing honesty of the transition function allows us to deduce that ∑m-1k=0(aik-pik(t))=∑∞k=mpik(t). Noting |σj|<1 forj=1,…,m-1 we know that (36) still holds forj=1,…,m-1 in this case. Hence, we still have (35) withσ0=1. A similar argument yields the required conclusions. The proof is complete.

    5 Explosion

    We now turn our attention to evaluating the explosion probabilities and expected explosion times. In view of Theorem 3.1, we only need to consider the case that 0

    Theorem 5.1The following statements hold for the minimal process starting in stateiwherei≥m.

    (i) IfB′(1)≤0, thenai∞=0.

    (38)

    ProofIfB′(1)≤0, then the minimal process is honest and henceai∞=0. Under the conditions of (ii), it follows from Theorem 3.1 that the minimal process is dishonest and thuspi∞(t)=1-∑∞j=0pij(t)>0. Our expression forai∞follows on lettingt→∞ and using (34) together with Theorem 4.4. Next, we write

    Integrating this with respect tot, and noting thatP(τ∞≤t|τ∞<∞,X(0)=i)=pi∞(t)/ai∞, yields (38).

    Finally, we consider the following question. Suppose a GIBI starts at statei≥1, then before the final extinction or explosion, the process will “enjoy” its life in wandering over all the positive states. We are now interested in obtaining the overall mean holding time at each positive statek(≥m), since it provides important and very useful information regarding the evolution behaviour of the GIBI. Let us agree to call them the global holding times. More specifically, letTkbe thetotal time spent in statek(≥m) and letμik=Ei(Tk)(i≥m). Then

    denote the mean global holding time at statekbefore extinction or explosion. Clearlyμi=∑∞j=1μijis the mean total survival time of the GIBI when the process starts at statek(≥m). However, the solutions to this question have been implied by our previous work and thus we only need to summarize them here.

    Theorem 5.2Suppose the Feller minimal GIBI starts at statei≥m.

    (i) For anyk≥m, the mean global holding time at statekis always finite and given by

    (ii) The mean total survival time of the GIBI is finite if and only ifSis convergent and, in which case, it is given by

    ProofThe results follow directly from Theorem 4.3, particularly (32) and (33), and the proof of Theorem 4.5.

    听说在线观看完整版免费高清| 好看av亚洲va欧美ⅴa在| 最新在线观看一区二区三区| 男女之事视频高清在线观看| 高清日韩中文字幕在线| 人人妻人人澡欧美一区二区| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩精品一区二区| 欧洲精品卡2卡3卡4卡5卡区| 欧美一级毛片孕妇| 99在线视频只有这里精品首页| 男人和女人高潮做爰伦理| 亚洲国产精品成人综合色| 国产三级黄色录像| 男女做爰动态图高潮gif福利片| 88av欧美| 丰满乱子伦码专区| 欧美zozozo另类| 成人鲁丝片一二三区免费| 色综合欧美亚洲国产小说| 亚洲在线观看片| 免费看光身美女| 成人特级黄色片久久久久久久| 最好的美女福利视频网| 久久久久久国产a免费观看| 99精品欧美一区二区三区四区| 亚洲无线在线观看| 免费看十八禁软件| 99久久综合精品五月天人人| 好看av亚洲va欧美ⅴa在| 夜夜看夜夜爽夜夜摸| 日韩精品青青久久久久久| 神马国产精品三级电影在线观看| 精华霜和精华液先用哪个| 久久久久久久久大av| 日本五十路高清| 亚洲乱码一区二区免费版| 日本与韩国留学比较| 国产不卡一卡二| avwww免费| 国产91精品成人一区二区三区| 国产av不卡久久| 天天添夜夜摸| 男人和女人高潮做爰伦理| 日本黄色片子视频| 高潮久久久久久久久久久不卡| 搡老熟女国产l中国老女人| 久久精品亚洲精品国产色婷小说| 国产视频一区二区在线看| 日本免费一区二区三区高清不卡| 一进一出好大好爽视频| 69av精品久久久久久| 欧美成狂野欧美在线观看| 99riav亚洲国产免费| 久久亚洲真实| 少妇的丰满在线观看| 啦啦啦韩国在线观看视频| 少妇高潮的动态图| 日韩成人在线观看一区二区三区| 天堂√8在线中文| 亚洲aⅴ乱码一区二区在线播放| 午夜激情欧美在线| 真实男女啪啪啪动态图| 老司机深夜福利视频在线观看| 精品一区二区三区人妻视频| 国产精品,欧美在线| 午夜亚洲福利在线播放| 国产视频内射| 少妇的逼水好多| 免费av不卡在线播放| 2021天堂中文幕一二区在线观| 国产精品三级大全| 国产亚洲av嫩草精品影院| 老司机午夜福利在线观看视频| 天堂av国产一区二区熟女人妻| 亚洲乱码一区二区免费版| 亚洲国产精品sss在线观看| 极品教师在线免费播放| 99久国产av精品| 国产精品99久久久久久久久| 国产精品av视频在线免费观看| 99久久无色码亚洲精品果冻| 九色国产91popny在线| 一个人看的www免费观看视频| 久久久成人免费电影| 精品久久久久久久末码| 国产精品98久久久久久宅男小说| 国产高清三级在线| 日本三级黄在线观看| 亚洲精品一区av在线观看| 夜夜看夜夜爽夜夜摸| 日本成人三级电影网站| 亚洲色图av天堂| 小说图片视频综合网站| 午夜免费成人在线视频| 日本 av在线| 国产精品女同一区二区软件 | 最近最新中文字幕大全免费视频| 一a级毛片在线观看| 婷婷精品国产亚洲av在线| 免费看a级黄色片| 久久久久久久久大av| 亚洲狠狠婷婷综合久久图片| 99久久无色码亚洲精品果冻| 99国产综合亚洲精品| 草草在线视频免费看| 男女床上黄色一级片免费看| 变态另类丝袜制服| 性色av乱码一区二区三区2| 日韩有码中文字幕| 成人亚洲精品av一区二区| 淫妇啪啪啪对白视频| 一本综合久久免费| 日韩中文字幕欧美一区二区| 日韩人妻高清精品专区| 极品教师在线免费播放| 欧美另类亚洲清纯唯美| 欧美不卡视频在线免费观看| 国产蜜桃级精品一区二区三区| 国产成人影院久久av| 久久久精品大字幕| 日韩欧美 国产精品| 亚洲内射少妇av| 日韩有码中文字幕| 欧美乱码精品一区二区三区| 亚洲欧美日韩无卡精品| 最近最新免费中文字幕在线| 中文字幕久久专区| 在线十欧美十亚洲十日本专区| 丁香欧美五月| 成人午夜高清在线视频| 中文字幕人妻熟人妻熟丝袜美 | 久久精品91无色码中文字幕| 亚洲国产精品久久男人天堂| 动漫黄色视频在线观看| 中文字幕熟女人妻在线| 校园春色视频在线观看| 亚洲精品在线美女| 欧美日韩中文字幕国产精品一区二区三区| 欧美一级毛片孕妇| 亚洲色图av天堂| 在线免费观看的www视频| 欧美成人一区二区免费高清观看| 亚洲人成网站高清观看| 欧美最新免费一区二区三区 | 色综合亚洲欧美另类图片| av国产免费在线观看| 久久伊人香网站| 天天躁日日操中文字幕| 乱人视频在线观看| 国产高清视频在线观看网站| 岛国在线免费视频观看| 熟女人妻精品中文字幕| 黑人欧美特级aaaaaa片| 国产乱人伦免费视频| 日本 av在线| 嫩草影院精品99| 1024手机看黄色片| 精品久久久久久久久久久久久| 国产伦一二天堂av在线观看| 国内少妇人妻偷人精品xxx网站| 久久久久久久久大av| 欧美zozozo另类| xxxwww97欧美| 日日摸夜夜添夜夜添小说| 波野结衣二区三区在线 | 国产一区二区在线av高清观看| 亚洲人成电影免费在线| 午夜日韩欧美国产| 日韩欧美精品v在线| 丝袜美腿在线中文| 午夜精品一区二区三区免费看| 日本五十路高清| 夜夜爽天天搞| 一级毛片高清免费大全| 中文字幕人成人乱码亚洲影| 成年人黄色毛片网站| 欧美日韩国产亚洲二区| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 久久精品亚洲精品国产色婷小说| 香蕉av资源在线| tocl精华| 成人永久免费在线观看视频| 老汉色av国产亚洲站长工具| 久久伊人香网站| 一进一出抽搐gif免费好疼| 国产亚洲欧美在线一区二区| 性欧美人与动物交配| 又紧又爽又黄一区二区| 九九热线精品视视频播放| 日本黄色片子视频| 悠悠久久av| 欧美性感艳星| 国产高清三级在线| 日本与韩国留学比较| 丝袜美腿在线中文| 中文资源天堂在线| 国产私拍福利视频在线观看| 性欧美人与动物交配| 成年女人看的毛片在线观看| 色播亚洲综合网| 啦啦啦韩国在线观看视频| 久久国产乱子伦精品免费另类| 午夜福利在线观看吧| 美女被艹到高潮喷水动态| 精品久久久久久,| 最近最新免费中文字幕在线| 国产成+人综合+亚洲专区| 亚洲美女视频黄频| 欧美丝袜亚洲另类 | 亚洲国产日韩欧美精品在线观看 | 丁香六月欧美| 成人三级黄色视频| 女警被强在线播放| 国产极品精品免费视频能看的| 偷拍熟女少妇极品色| 久久伊人香网站| 亚洲成人久久性| 嫩草影院精品99| 日本在线视频免费播放| 日本黄色视频三级网站网址| 97人妻精品一区二区三区麻豆| 九色成人免费人妻av| 久久久久九九精品影院| 欧美大码av| 国产亚洲精品综合一区在线观看| 精品国产超薄肉色丝袜足j| 国产蜜桃级精品一区二区三区| a级毛片a级免费在线| xxxwww97欧美| 欧美成人免费av一区二区三区| 99热这里只有精品一区| 国产v大片淫在线免费观看| 国产探花在线观看一区二区| 亚洲精品一卡2卡三卡4卡5卡| 午夜免费成人在线视频| 99国产综合亚洲精品| 日韩av在线大香蕉| 两人在一起打扑克的视频| 久久久久久久亚洲中文字幕 | 嫩草影视91久久| 久久精品人妻少妇| 亚洲激情在线av| 国产三级黄色录像| 中文字幕精品亚洲无线码一区| 欧美另类亚洲清纯唯美| 夜夜躁狠狠躁天天躁| 怎么达到女性高潮| 亚洲国产欧美网| 国产精品久久久久久人妻精品电影| 国产亚洲欧美98| 可以在线观看毛片的网站| 久久香蕉精品热| 日韩欧美国产一区二区入口| 国产一区二区在线观看日韩 | 在线免费观看不下载黄p国产 | 国产亚洲av嫩草精品影院| 美女cb高潮喷水在线观看| 色av中文字幕| 精品久久久久久久人妻蜜臀av| 脱女人内裤的视频| 日韩欧美在线乱码| 欧美三级亚洲精品| 丁香欧美五月| 午夜亚洲福利在线播放| 欧美成人性av电影在线观看| 国产高清有码在线观看视频| 一边摸一边抽搐一进一小说| 久久久久久久亚洲中文字幕 | 午夜两性在线视频| 免费电影在线观看免费观看| 两个人视频免费观看高清| 欧美黄色淫秽网站| 久久精品亚洲精品国产色婷小说| 91av网一区二区| 亚洲黑人精品在线| 在线播放国产精品三级| 亚洲国产高清在线一区二区三| 亚洲精品色激情综合| 成人性生交大片免费视频hd| 亚洲午夜理论影院| 亚洲精品日韩av片在线观看 | 亚洲国产中文字幕在线视频| 亚洲人成网站在线播放欧美日韩| 亚洲av成人av| 97超级碰碰碰精品色视频在线观看| 内射极品少妇av片p| 最新中文字幕久久久久| 久久久色成人| 757午夜福利合集在线观看| 88av欧美| 婷婷丁香在线五月| 欧美一区二区精品小视频在线| 国产精品 国内视频| 国产欧美日韩精品一区二区| 少妇丰满av| 国内精品久久久久久久电影| 欧美日韩综合久久久久久 | 久久精品国产综合久久久| av欧美777| 在线观看午夜福利视频| 久久伊人香网站| 老司机在亚洲福利影院| 久久精品影院6| 老司机福利观看| 在线天堂最新版资源| 99久久精品热视频| 最近最新中文字幕大全免费视频| 色av中文字幕| 一个人看的www免费观看视频| 99精品欧美一区二区三区四区| 中文字幕精品亚洲无线码一区| 少妇熟女aⅴ在线视频| 丰满人妻一区二区三区视频av | 亚洲无线观看免费| 日本 av在线| av女优亚洲男人天堂| 国产免费男女视频| 久久精品国产清高在天天线| 国产成人aa在线观看| 欧美绝顶高潮抽搐喷水| 18禁国产床啪视频网站| 国产成人aa在线观看| 国产精品国产高清国产av| 国产国拍精品亚洲av在线观看 | 欧美激情久久久久久爽电影| 日本a在线网址| 少妇的逼水好多| 有码 亚洲区| 怎么达到女性高潮| 19禁男女啪啪无遮挡网站| 最近最新中文字幕大全电影3| 99久久精品热视频| 精品人妻一区二区三区麻豆 | 又爽又黄无遮挡网站| 婷婷精品国产亚洲av在线| 欧美日韩一级在线毛片| 全区人妻精品视频| 国产精华一区二区三区| av福利片在线观看| 十八禁人妻一区二区| 久久国产精品影院| www.www免费av| 在线观看66精品国产| 色播亚洲综合网| 岛国在线观看网站| 最近最新中文字幕大全免费视频| 少妇高潮的动态图| 啪啪无遮挡十八禁网站| 成年版毛片免费区| 免费看十八禁软件| 动漫黄色视频在线观看| 麻豆国产av国片精品| 国内精品美女久久久久久| 午夜免费激情av| 女同久久另类99精品国产91| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 黄片大片在线免费观看| 国产一区二区三区视频了| 黄片大片在线免费观看| 人妻夜夜爽99麻豆av| tocl精华| 好男人电影高清在线观看| bbb黄色大片| 日韩欧美 国产精品| 日韩亚洲欧美综合| 国产一区二区三区视频了| tocl精华| 欧美日韩黄片免| 青草久久国产| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| 在线观看66精品国产| 在线观看午夜福利视频| 亚洲电影在线观看av| 一区二区三区免费毛片| 国产极品精品免费视频能看的| 久久久久九九精品影院| 国产免费一级a男人的天堂| 久久久国产成人免费| 久久久久久人人人人人| 久久久久性生活片| 丁香欧美五月| 亚洲国产精品久久男人天堂| 精品乱码久久久久久99久播| 中文字幕久久专区| 淫秽高清视频在线观看| 欧美绝顶高潮抽搐喷水| 夜夜爽天天搞| 亚洲电影在线观看av| 欧美成狂野欧美在线观看| 两个人的视频大全免费| 很黄的视频免费| 2021天堂中文幕一二区在线观| 亚洲一区高清亚洲精品| eeuss影院久久| 精品99又大又爽又粗少妇毛片 | 国产精品久久久久久久电影 | 精品久久久久久,| 老司机午夜福利在线观看视频| 啦啦啦免费观看视频1| 欧美成人免费av一区二区三区| av欧美777| 国产高清videossex| 在线免费观看的www视频| 精品一区二区三区av网在线观看| 久久精品综合一区二区三区| 国产午夜精品论理片| 噜噜噜噜噜久久久久久91| 国产伦在线观看视频一区| 日本a在线网址| 精品福利观看| 亚洲五月婷婷丁香| 日韩人妻高清精品专区| 国产精品亚洲av一区麻豆| 精华霜和精华液先用哪个| 欧美中文综合在线视频| 99精品欧美一区二区三区四区| 免费人成在线观看视频色| 90打野战视频偷拍视频| 亚洲最大成人中文| 午夜老司机福利剧场| 小说图片视频综合网站| av女优亚洲男人天堂| 波多野结衣高清无吗| 首页视频小说图片口味搜索| 精品国产三级普通话版| 精品久久久久久久久久免费视频| 综合色av麻豆| 久久久久国产精品人妻aⅴ院| 啪啪无遮挡十八禁网站| 精品一区二区三区视频在线观看免费| 国产麻豆成人av免费视频| av中文乱码字幕在线| 欧美一级毛片孕妇| 高清日韩中文字幕在线| 天堂av国产一区二区熟女人妻| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲电影在线观看av| 操出白浆在线播放| 91av网一区二区| www.熟女人妻精品国产| 天堂√8在线中文| 99久久99久久久精品蜜桃| 69人妻影院| 女同久久另类99精品国产91| 日韩有码中文字幕| 91av网一区二区| 高清在线国产一区| 老汉色av国产亚洲站长工具| 一本综合久久免费| 日本 欧美在线| 亚洲一区二区三区色噜噜| 操出白浆在线播放| av国产免费在线观看| 精品人妻一区二区三区麻豆 | xxx96com| 噜噜噜噜噜久久久久久91| 久久精品国产亚洲av涩爱 | 两个人看的免费小视频| 淫秽高清视频在线观看| 看黄色毛片网站| 亚洲性夜色夜夜综合| 99国产精品一区二区三区| 老鸭窝网址在线观看| 色哟哟哟哟哟哟| 国产日本99.免费观看| 少妇丰满av| 国产成人a区在线观看| 亚洲无线在线观看| 成年版毛片免费区| av女优亚洲男人天堂| 午夜福利18| 蜜桃久久精品国产亚洲av| 国产高清视频在线观看网站| 香蕉久久夜色| www.www免费av| 大型黄色视频在线免费观看| 中出人妻视频一区二区| 亚洲av美国av| 好看av亚洲va欧美ⅴa在| 亚洲精品影视一区二区三区av| 午夜福利在线观看免费完整高清在 | 最近最新免费中文字幕在线| 国产精品综合久久久久久久免费| 婷婷丁香在线五月| 久久精品国产亚洲av香蕉五月| 亚洲av电影不卡..在线观看| 美女大奶头视频| xxxwww97欧美| 人人妻人人澡欧美一区二区| e午夜精品久久久久久久| 精品人妻1区二区| 两人在一起打扑克的视频| 久久这里只有精品中国| 国产激情偷乱视频一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产一级毛片七仙女欲春2| xxxwww97欧美| 91麻豆精品激情在线观看国产| 少妇的逼水好多| 啪啪无遮挡十八禁网站| 日本免费一区二区三区高清不卡| 中出人妻视频一区二区| 天堂动漫精品| 国产成+人综合+亚洲专区| 十八禁人妻一区二区| 亚洲精品在线观看二区| 成人18禁在线播放| 久久久久久国产a免费观看| 日韩精品中文字幕看吧| 国产真实乱freesex| 国产一区在线观看成人免费| 国产探花在线观看一区二区| av视频在线观看入口| 国产一区二区三区视频了| 又爽又黄无遮挡网站| 99热只有精品国产| 无限看片的www在线观看| 久久久久九九精品影院| 久久人人精品亚洲av| 国产av一区在线观看免费| 亚洲无线在线观看| 欧美最新免费一区二区三区 | 亚洲avbb在线观看| 国产欧美日韩精品亚洲av| 亚洲一区二区三区不卡视频| 最后的刺客免费高清国语| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| av中文乱码字幕在线| 精品久久久久久成人av| 国产精品日韩av在线免费观看| 一本综合久久免费| 99国产精品一区二区蜜桃av| 在线a可以看的网站| bbb黄色大片| 久久婷婷人人爽人人干人人爱| 丁香六月欧美| 国产精品久久视频播放| 午夜福利在线在线| 天堂影院成人在线观看| 香蕉丝袜av| 不卡一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 国产精品三级大全| 波野结衣二区三区在线 | 亚洲成人久久性| 一卡2卡三卡四卡精品乱码亚洲| 国产成人福利小说| 国产毛片a区久久久久| 麻豆成人午夜福利视频| 午夜福利欧美成人| 国产精品野战在线观看| 日本 欧美在线| av天堂在线播放| 久久国产精品人妻蜜桃| 18禁美女被吸乳视频| 一区二区三区高清视频在线| 亚洲精品乱码久久久v下载方式 | 婷婷亚洲欧美| 美女 人体艺术 gogo| 国产私拍福利视频在线观看| 又黄又粗又硬又大视频| 午夜精品久久久久久毛片777| 日本 av在线| 亚洲午夜理论影院| 免费观看的影片在线观看| 欧美av亚洲av综合av国产av| 一级毛片女人18水好多| 色播亚洲综合网| 欧美又色又爽又黄视频| 男女那种视频在线观看| 一个人免费在线观看电影| 一区二区三区高清视频在线| 丰满人妻熟妇乱又伦精品不卡| av在线天堂中文字幕| 日本黄大片高清| 99热这里只有精品一区| a级毛片a级免费在线| 日本成人三级电影网站| www国产在线视频色| 国产一区二区在线av高清观看| av天堂中文字幕网| 首页视频小说图片口味搜索| 99在线人妻在线中文字幕| 免费av不卡在线播放| e午夜精品久久久久久久| 免费高清视频大片| 婷婷精品国产亚洲av| 成年免费大片在线观看| 哪里可以看免费的av片| 白带黄色成豆腐渣| 97超级碰碰碰精品色视频在线观看| 在线免费观看的www视频| 岛国在线观看网站| 精品无人区乱码1区二区| 美女高潮喷水抽搐中文字幕| 成年版毛片免费区| 两人在一起打扑克的视频| 老汉色av国产亚洲站长工具| 少妇高潮的动态图| 免费在线观看成人毛片| 亚洲国产欧洲综合997久久,| 婷婷精品国产亚洲av| 别揉我奶头~嗯~啊~动态视频| 午夜福利18| 中文字幕人妻熟人妻熟丝袜美 | a级一级毛片免费在线观看| 欧美日韩乱码在线| 欧美乱码精品一区二区三区|