• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variational Problem of One Power Type Functional about Second Fundamental Form

    2019-05-04 05:51:10LiuJin

    Liu Jin

    (College of Systems Engineering, National University of Defense Technology, Changsha 410073, China)

    Abstract For an n-dimensional submanifold in a general real ambient manifold φ:Mn→Nn+p, let S denote the square length of second fundamental form of φ. In this paper, we introduce one power type functional concerning S as where r≥1 is a real number, which measures how derivations φ(M) from a totally geodesic submanifold and has a closed relation with the well known Willmore conjecture. For this functional,the first variational equation is obtained, and in unit sphere,we construct a few examples of critical points. Moreover, by two famous matrix inequalities, we derive out the Simons’ type integral inequalities, and based on which a gap phenomenon has been classified.

    Key words Second fundamental form Willmore conjecture Critical point Simons’ type integral inequality Gap phenomenon

    1 Introduction

    Letφ:Mn→Nn+pbe ann-dimensional compact without boundary submanifold in a general ambient manifold. Sometimes we chooseNn+pto be (n+p)-dimensional space formsRn+p(c). It is well known that whenc=1,0,-1,Rn+p(c) is the standard unit sphereSn+p(1), Euclidean spaceEn+pand hyperbolic spaceHn+p(-1) respectively. Choose an orthonormal frame fields

    {e1,…,en,en+1,…,en+p}

    alongMsuch that {e1,…,en} are tangent toMand {en+1,…,en+p} are normal toM. Their dual frame fields are {θ1,…,θn} and {θn+1,…,θn+p} respectively. It is well known thatθn+1=…=θn+p=0 when they are restricted overM. Throughout this paper, we employ the Einstein summation convention, which states that repeated copies of the same index are summed over. Additionally, we adopt the following convention forthe range of the various indices:

    1≤A,B,C,D,…≤n+p,1≤i,j,k,l,…≤n,n+1≤α,β,γ,δ,…≤n+p.

    LetIIdenote the second fundamental form of the submanifoldφ:Mn→Nn+p, which can be expressed in terms of the frame fields and their duals as:

    where ? denotes the tensor product andhαijdenotes the tensor components of the second fundamental form. Additionally define the following quantities:

    In differential geometry, there is a famous classic Willmore functional for submanifold in unit sphereφ:Mn→Sn+p(1) which is defined as

    Due to the importance of Willmore conjecture, many geometric experts generalized the classic Willmore functional to a wide range and some interesting results have been obtained. For examples, Wu [12] considered theW(n,r)functional

    for submanifold inSn+p(1) which simply measures how derivationsφ(M) from a totally umbilical submanifold

    It is well known that the Simons’ integral inequality in [13] plays an important role in the study of minimal submanifold. It says that ifMis ann-dimensional compact minimal submanifold in (n+p)-dimensional unit sphereSn+p(1), then

    For functionalW(n,r)(φ), Wu in [12] proved some Simons’ type integral results which say ifMis ann-dimensional compact critical points ofW(n,r)(φ) in unit sphereSn+p(1), then

    In this paper,we will give a positive confirmation to the above three questions. Concretely we focus the functional about square length of second fundamental form

    FunctionalG(n,r)(φ) has a closed relation with Willmore Conjecture. In fact,obviouslyρ=S-nH2, thus whenMis minimal,ρ=S, andW(n,r)=G(n,r).

    Above all, it is natural and meaningful to study the functionalG(n,r)(φ). In geometric meaning, the functional measures how derivationsφ(M) form a totally geodesic submanifold and generalize the well known classic Willmorefunctional. In this paper, we study the variational problem and gap phenomenon ofG(n,r)(φ).

    The rest of this paper is organized as follows. In section 2, the structure equations of submaifolds and the variation formulas of the second fundamental form are established. In section 3, using the basic formulas in section 2, we calculate the first variation ofG(n,r)(φ). When the ambient manifoldNn+pis unit sphere,in section 4, according to the formulas in section 3, we construct some examples of critical points ofG(n,r)(φ). In section 5, using two famous matrix inequalities, we derive out some Simons’ type integral inequalities. Based on the foregoing results, a gap phenomenon has been classified in section 6.

    2 Structure equations and basic variation formulas

    Letφ:Mn→Nn+pbe ann-dimensional compact submanifold without boundary in an (n+p)-dimensional general ambient manifold, and Φ(·,·):Mn×(-ε,ε)→Nn+pbe a variation ofφ. This means that

    φt=:Φ(·,t):Mn×{t}→Nn+p,?t∈(-ε,ε)

    is an isometric immersion withφ0≡φ.

    Lets=(s1,…,sn,sn+1,…,sn+p) andσ=(σ1,…,σn,σn+1,…,σn+p) be the orthonormal local frame fields of tangent vector bundleTNn+pand cotangent vector bundleT*Nn+p,respectively. Then,e=(e1,…,en,en+1,…,en+p)=φ-1tsis the set of orthonormal local frame fields of the pull-back vector bundleφ-1tTNn+poverMn×{t}. Note since

    φ-1tTNn+p=TMnt⊕T⊥Mnt,

    {e1,…,en} are tangent toMnand {en+1,…,en+p} are normal toMn.

    Letωdenote the connection form overTNn+p. By the pull-back operation, we can assume the following decomposition:

    Φ*σ=θ+Vdt,Φ*σA=θA+VAdt,
    Φ*σi=θi+Vidt,Φ*σα=θα+Vαdt,
    Φ*ω=φ+Ldt,Φ*ωBA=φBA+LBAdt,
    Φ*ωji=φji+Ljidt,Φ*ωαi=φαi+Lαidt,
    Φ*ωiα=φiα+Liαdt,Φ*ωβα=φβα+Lβαdt.

    From submanifold theory or [15], it is well known that {θi} are the orthonormal frame fields ofT*Mn, {φji} is the connection form ofTMn, {φβα} is the connection form ofT⊥Mn,{φαi=hαijθj} is the second fundamental form, andθn+1≡…≡θn+p≡0 when they are restricted overMn.

    One can also derive that {Vi,Vα} are the variation vector fields of Φ, meaning that

    It must be mentioned that in variational theory, generally speaking, the tangential variation vector fields∑iVieihave little role in the calculations. So, we assume in this paper that only normal variation vector fields need to be considered

    From the second fundamental form, we can construct some notations which are useful in the variation calculation. First, when the codimension of submanifoldφ:Mn→Nn+pis 1, it meansMnis a hypersurface, we can introduce

    Second, when the codimension ofφ:Mn→Nn+pis greater than 1, we can introduce

    Let Ω, Ω┬, and Ω⊥denote the curvature forms ofTNn+p,TMn, andT⊥Mn, respectively. Hence their components and some other algebraic identities are as follows:

    Φ*Ω=Ψ+dt∧P,Φ*ΩAB=ΨAB+dt∧PAB,

    where Ψ denotes the pull back curvature form without dt, whilePdenotes 1-form with dt.

    Following from the definitions:

    Hence

    From any standard differential geometry text book or [15], one has the structure equations of Riemannian manifold

    ω+ωT=0,dσ-σ∧ω=0,
    Ω+ΩT=0,Ω=dω-ω∧ω,

    whereωT, ΩTdenote the transpose ofω, Ω respectively. By pulling back the both sides of structure equations,one has

    Φ*ω+Φ*ωT=0,

    (1)

    dM×(-ε,ε)Φ*σ-Φ*σ∧Φ*Ω=0,

    (2)

    Φ*Ω+Φ*ΩT=0,

    (3)

    Φ*Ω=dM×(-ε,ε)Φ*ω-Φ*ω∧Φ*ω.

    (4)

    Compare both sides of (1),(2),(3) and (4), one has the following Lemmas.

    Lemma 2.1([11,15,16]). Letφ:Mn→Nn+pbe a submanifold, and ∑αVαeαbe a normal variation vector field, one has

    Lemma 2.2([11,15,16]). Letφ:Mn→Nn+pbe a submanifold, one has structure equations

    Lemma 2.3([11,15,16]). Letφ:Mn→Nn+pbe a submanifold, and ∑αVαeαbe a normal variation vector field, one has

    From any standard differential geometry text book or reference [15], one has the Ricci identity about tensor’s second derivatives.

    Lemma 2.4([15]). Letφ:Mn→Nn+pbe a submanifold, andTl1…lq;α1…αrk1…kpbe a tensor over pullback vector bundleφ-1TN, one has

    In particular, when the tensor in Lemma 2.4 is second fundamental formhαij, together with equations in Lemma 2.2, we have a special Ricci identity.

    Lemma 2.5([11,15,16]). Letφ:Mn→Nn+pbe a submanifold, one has

    ProofBy Lemma 2.4, we have

    Substituting the equations in Lemma 2.2 in to the above formula, easily the desired result is obtained.

    Lemma 2.6Letφ:Mn→Nn+pbe a submanifold, one has

    Finally, one additional lemma is useful for our results.

    Lemma 2.7([16]). With the same notations as above, one has

    3 The first variation calculation

    To calculate the first variation of functionalG(n,r)(φ), two additional lemmas are needed.

    Lemma 3.1Letφ:Mn→Nn+pbe a submanifold, and ∑αVαeαbe a normal variation vector field. Suppose dv=θ1∧…∧θndenotes the volume element, one has

    which completes the proof.

    Lemma 3.2Letφ:Mn→Nn+pbe a submanifold, and ∑αVαeαbe a normal variation vector field, one has

    ProofBy Lemmas 2.3 and 2.7, one has

    which completes the proof.

    Use Lemmas 3.1 and 3.2 together, we can calculate the first variation formula of functionalG(n,r)(φ).

    Theorem 3.1Letφ:Mn→Nn+pbe ann-dimensional submanifold in an (n+p)-dimensional general real ambient manifoldNn+p, thenMis a critical point ofG(n,r)(φ) if and only if for anyα∈[n+1,n+p]

    (5)

    When codimensionp=1, the above equation becomes

    (6)

    ProofUsing Lemma 3.1, Lemma 3.2, and Stoke’s theorem of integration by parts, we calculate

    which completes the proof.

    From any one standard differential geometry text book or [15], we know the curvature of space formsRn+p(c) are

    Thus

    Together with Theorem 3.1, we can derive out the following corollaries.

    Corollary 3.1Letφ:Mn→Rn+p(c) be ann-dimensional submanifold in an (n+p)-dimensional space formsRn+p(c), thenMis a critical point ofG(n,r)(φ) if and only if for anyα∈[n+1,n+p]

    (7)

    When codimensionp=1, the above equation becomes

    (8)

    Corollary 3.2Letφ:Mn→Rn+1(c) be an isoparametric(all principal curvatures are constant ) hypersurface in an (n+1)-dimensional space formsRn+1(c), thenMis a critical point ofG(n,r)(φ) if and only if

    (9)

    For the use in examples construction, it is necessary to expand the first term of the equations in (5) when the ambient manifoldNn+pisRn+p(c).

    Corollary 3.3Letφ:Mn→Rn+p(c) be ann-dimensional submanifold in an (n+p)-dimensional space formsRn+p(c), thenMis a critical point ofG(n,r)(φ) if and only if for anyα∈[n+1,n+p],

    (10)

    ProofNotice that in space formsRn+p(c), by Lemma 2.2, there holds the fact

    hαij,k=hαik,j

    which should be used repeat in the expanding of ∑ij(rSr-1hαij),ij.

    +r(r-1)Sr-2S,ihαij,j+r(r-1)Sr-2S,jhαij,i+rSr-1hαij,ij]

    Substituting the above expression into (5), the desired result is obtained.

    4 Construction of examples

    In this section, we use equations in Theorem 3.1 and its corollaries to explore critical points ofG(n,r)(φ) in unite sphere, the main technique is to solve algebraic equations.

    Example 4.1Totally geodesic submanifolds in unit sphere are critical points ofG(n,r)(φ).

    Example 4.2Letφ:Mn→Sn+1(1) is a totally umbilical but not totally geodesic hypersurface in unit sphere, according to the definition, suppose all principal curvatures are

    k1=k2=…=kn=λ=constant>0.

    Through a direct calculation, we obtain

    H=λ,S=nλ2,P3=nλ3,

    substituting them into the equation (9), we have an algebraic equation of critical points ofG(n,r)(φ)

    which means that there exists a particular totally umbilical but not totally geodesic hypersurface in unit sphere satisfying the critical points ofG(n,r)(φ).

    Example 4.3For a particular hypersurface withn≡0(mod2)

    All principal curvatures are

    Example 4.4Torus withS=n. For a torus with parametersλ,μ,0<λ,μ<1,λ2+μ2=1.

    Sm(λ)×Sn-m(μ)→Sn+1(1),1≤m≤n-1.

    Obviously, all principal curvatures are

    Then the quantityρis

    We solve the equation

    Hence

    and

    Example 4.5For a family hypersurfaces with parameterλ,μ,0<λ,μ<1,λ2+μ2=1,

    Sm(λ)×Sn-m(μ)→Sn+1(1),1≤m≤n-1.

    Obviously, all principal curvatures are

    Then the quantitiesH,S,P3are respectively

    m(2r-m)x6+m(n-m+2r)x4-(n-m)(m+2r)x2+(n-m)(n-m-2r)=0.

    Settingy=x2, then the above equation becomes

    g(y)=:m(2r-m)y3+m(n-m+2r)y2-(n-m)(m+2r)y+(n-m)(n-m-2r)=0.

    In fact, the equation ofg(y) essentially are 3 order polynomial, which can be solved completely, but depends on the parametersn,r,m.

    Example 4.6Let (x,y,z) be a natural coordinates ofR3and (u1,u2,u3,u4,u5) be the natural coordinate system ofR5, we consider the mapping as below

    Then we calculate

    H3=H4=0,S333=S344=S433=S444=0.

    Substituting them into the equation (7), one can conclude that Veronese surface always is a critical point ofG(n,r)(φ).

    Example 4.7Letφ:Mn→Sn+p(1),n≥3 be a minimal submanifold in unit sphere. Ifφ:Mn→Sn+p(1) is also Einstein, then it must be a critical point ofG(n,r)(φ).

    ProofSinceMis minimal and Einstein, according to the definitions, one has

    It is well known that whenn≥3

    R=constant.

    By Lemma 2.2, one has

    Obviously

    S=n(n-1)-R=constant.

    According to the condition of Einstein, one has

    Wheni=j, one has

    Wheni≠j, one has

    Thus for any indexn+1≤α≤n+p, one has

    All above substituting into equation of Corollary 3.3, we conclude that a minimal and Einstein submanifold in unit sphere must be a critical point ofG(n,r)(φ).

    Example 4.8([17]). Let

    5 Simons’ type integral inequalities

    Some lemmas are needed for the establishment of Simons’ type integral inequalities. We start with some basic facts on matrices. For an (n×n) matrixA, we define its square length

    The following properties are obvious:N(A)≥0 for any matrixA, andN(A)=0 if and only ifA≡0;N(A)=N(TATt)=N(TA) for any orthogonal matrixTand for any matrixA;N(AB-BA)=2tr(AABB-ABAB) for any two symmetric matricesA,B.

    Lemma 5.1([14]). IfAandBare symmetric matrices, then

    N(AB-BA)≤2N(A)N(B),

    and the equality holds if and only if eitherA,Bor one of them must be zero, orAandBcan be transformed simultaneously by an orthogonal matrix into multiples of the following matrixes respectively:

    Moreover, ifB1,B2,B3are (n×n)-symmetric matrices satisfying

    N(BiBj-BjBi)=2N(Bi).N(Bj),1≤i,j≤3,

    then at least one of the matricesBimust be zero.

    Lemma 5.2Letφ:Mn→Nn+pbe a submanifold withp≥2,S,Sαβ,Aαas defined in section 2, one has estimate

    ProofDiagonalize (Sαβ) such thatSαβ=0,α≠β, by Lemma 5.1 and Cauchy-Schwartz inequality, one has

    Lemma 5.3([18]). LetB1,…,Bp,p≥2 be symmetric (n×n) matrices.Setting

    One has

    and ≤ becomes = if and only ifB1,…,Bp,p≥2 satisfy one of the below two conditions

    (1)B1=B2=…=Bp=0;

    (2)B1≠0,B2≠0,B3=B4=…Bp=0,L11=L22.

    When condition (2) holds,B1,B2can be transformed simultaneously by an common orthogonal matrix into the following matrices respectively:

    Lemma 5.4Letφ:Mn→Nn+pbe a submanifold withp≥2,S,Sαβ,Aαas defined in section 2, one has estimate

    ProofLemma 5.4 is a directly consequence of Lemma 5.3.

    Lemma 5.5Letφ:Mn→Nn+pbe a submanifold.

    (i) When codimensionp=1, one has

    (ii) When codimensionp≥2, one has

    (iii) When codimensionp≥2, one has

    (iv) When codimensionp≥2, one has

    ProofBy the definition ofSand Laplacian operator, one has

    (11)

    We denote the last term ∑ijkαhαijhαij,kk=:T1, by Lemma 2.2, one obtains

    (12)

    Furthermore, we denote the last term ∑ijkαhαij(hαik,jk-hαik,kj)=:T2, by Lemma 2.5, one has

    According to the definition of trace andN(·),one has

    (13)

    Substituting (13) into (12), one has

    (14)

    Together with Bianchi identities and changing the index, one has

    (15)

    Putting (15) into (14), one has

    (16)

    When codimensionp=1, one has

    (17)

    When codimensionp≥2, by Lemma 5.2, one has

    (18)

    When codimensionp≥2, by Lemma 5.4, one has

    (19)

    Putting (16),(17),(18),and (19) into (11), the desired results are obtained.

    Lemma 5.6Letφ:Mn→Nn+pbe a submanifold,Sdefined as before andr≥1, one has

    Δ(Sr)=r(r-1)Sr-2|S|2+rSr-1Δ(S).

    (i) When codimensionp=1, one has

    Δ(Sr)=r(r-1)Sr-2|

    +2rSr-1|

    (ii) When codimensionp≥2, one has

    (iii) When codimensionp≥2, one has

    Δ(Sr)≥r(r-1)Sr-2|

    +2rSr-1|

    (iv) When codimensionp≥2, one has

    Δ(Sr)≥r(r-1)Sr-2|

    +2rSr-1|

    ProofBy the definition of Lapalacian operator, one has

    together with Lemma 5.5, the desired results are obtained.

    Integrating both sides of equalities and inequalities in Lemma 5.6, together using the Stokes’ theorem and equations in Theorem 3.1, we can derive out the following theorem.

    Theorem 5.1Letφ:Mn→Nn+pbe a critial submanifold ofG(n,r)(φ) withr≥1.

    (i) When codimensionp=1, one has

    (ii) When codimensionp≥2, one has

    (iii) When codimensionp≥2, one has

    (iv) When codimensionp≥2, one has

    ProofSinceφ:Mn→Nn+pis a critical point ofG(n,r)(φ), one has

    Integrating the second term in Lemma 5.6, by Stokes’ theorem

    Thus, we can easily derive out the integral equalities and inequalities in Theorem 5.1.

    From any standard differential geometry text book or [15], we know the curvature of space formsRn+p(c) are

    Together with Theorem 5.1, we can derive out the following corollary.

    Corollary 5.1Letφ:Mn→Rn+p(c) be a critial submanifold ofG(n,r)(φ) in space form withr≥1.

    (i) When codimensionp=1, one has

    (ii) When codimensionp≥2, one has

    (iii) When codimensionp≥2, one has

    (iv) When codimensionp≥2, one has

    6 Gap phenomenon of critical points

    In order to give a classification of the boundary points of the Simons’ type integral equalities or inequalities, we need three very important conclusions which are treated as a Lemma and a main Theorem in [14] and a theorem in [18]. For a hypersurface, we choose frame fields in such a way thathij=0,?i≠j,hi=hii.

    Lemma 6.1([14]). Letφ:Mn→Sn+1(1) be a compact hypersurface withh≡0, then there are two cases.(1).h1=…=hn=λ=constant, andMis a totally umbilic(λ>0) or totally geodesic (λ=0);(2).andMis a Riemannian product ofM1×M2, where

    Based on examples in section 4 and Lemmas in section 5 and section 6, we can derive out the following theorems, which draw a picture of the gap phenomenon of critical points ofG(n,r)(φ).

    ProofSinceMis minimal,i.e.,H2=0, by the (i) of Corollary 5.1, one has

    If 0≤S≤n, we have 2rSr(S-n)≤0 and

    Since

    we have

    Thus we obtainS≡0 orS≡nandh=0.

    then

    or

    For the former case,Mis a torusSm(λ)×Sn-m(μ)→Sn+1(1),1≤m≤n-1, determined by

    For the latter case,Mis a torusSm(λ)×Sn-m(μ)→Sn+1(1),1≤m≤n-1, determined by

    ProofWe denote

    and

    By (i) of Corollary 5.1, we have

    Ifa≤S≤b, we have 2rSr-1(S-a)(s-b)≤0 and

    Since

    we have

    Thus we obtainS≡aorS≡bandh=0. WhenS=a,b, by Lemma 6.1 and Example 4.5, we can conclude thatMis a torus determined through algebraic equations.

    and

    ProofWe denote

    and

    By (iii) of Corollary 5.1, one has

    Since

    we have

    Thus we obtainS≡aorS≡bandh=0. By Lemma 5.1 and the proof process of Lemma 5.5, we have some inequalities in Lemma 5.5 must be equalities. ThusH2=0, by Lemma 6.2 and Example 4.6, we can conclude that (i)a=0 andMis totally geodesic;(ii)andMis Veronese surface inS4.

    ProofWe denote

    and

    By the (iii) of Corollary 5.1, one has

    Ifa≤S≤b, we have 3rSr-1(S-a)(S-b)≤0 and

    Since

    we have

    Thus we obtainS≡aorS≡bandh=0. By Lemma 5.3 and the proof process of Lemma 5.5, some inequalities in Lemma 5.5 must be equalities. ThusH2=0, by Lemma 6.3 and Example 4.6, we can conclude that (i)a=0 andMis totally geodesic;(ii)andMis Veronese surface inS4.

    7 Conclusion

    In this paper, one power type functional concerning the square length of second fundamental form has been constructed which generalizes the well known classic Willmore functional, we calculate the first variational equation. Using some algebraic technique, some examples of critical points ofG(n,r)functional are constructed or proven. Based on the first variational calculation, the higher derivative computation of functionSr, and some trickly inequalities, we have established some Simons’ type integral inequalities forG(n,r)submanifolds. Without any surprise, isoparametric torus inSn+1(1) and Veronese surface inS4(1) still play an important role in the discussion of gap phenomenon and show us an interesting picture aboutG(n,r)submanifolds.

    一区二区三区四区激情视频| 又爽又黄无遮挡网站| 国产黄色视频一区二区在线观看| 欧美一级a爱片免费观看看| 伊人久久精品亚洲午夜| 久久国产乱子免费精品| 欧美zozozo另类| 久99久视频精品免费| 熟妇人妻不卡中文字幕| 国产毛片a区久久久久| 汤姆久久久久久久影院中文字幕 | 国产精品嫩草影院av在线观看| 精品亚洲乱码少妇综合久久| 最近中文字幕2019免费版| 又大又黄又爽视频免费| 国模一区二区三区四区视频| 免费黄频网站在线观看国产| 一级毛片黄色毛片免费观看视频| 五月玫瑰六月丁香| 水蜜桃什么品种好| 尾随美女入室| 中文欧美无线码| 我要看日韩黄色一级片| 久久草成人影院| 91狼人影院| 国产av在哪里看| a级毛片免费高清观看在线播放| 国产精品久久久久久精品电影小说 | 国产视频首页在线观看| 韩国av在线不卡| 久久久精品免费免费高清| 精品一区二区三区人妻视频| 亚洲精品视频女| 菩萨蛮人人尽说江南好唐韦庄| 色播亚洲综合网| 成人亚洲精品av一区二区| 日本熟妇午夜| 日韩制服骚丝袜av| 99久久精品国产国产毛片| 国产亚洲av片在线观看秒播厂 | 国产黄色小视频在线观看| 免费在线观看成人毛片| 久久久久久久久中文| ponron亚洲| 国产精品三级大全| 18禁裸乳无遮挡免费网站照片| 亚洲av在线观看美女高潮| 99久久九九国产精品国产免费| eeuss影院久久| 久久精品久久精品一区二区三区| 国产在线一区二区三区精| 波野结衣二区三区在线| 亚洲av.av天堂| 美女内射精品一级片tv| 国产高清三级在线| 边亲边吃奶的免费视频| 麻豆国产97在线/欧美| 国产人妻一区二区三区在| 成年女人在线观看亚洲视频 | 亚洲国产欧美人成| 啦啦啦啦在线视频资源| 国产精品1区2区在线观看.| 草草在线视频免费看| 亚洲婷婷狠狠爱综合网| 青春草视频在线免费观看| 亚洲精品aⅴ在线观看| 一级a做视频免费观看| 乱系列少妇在线播放| 可以在线观看毛片的网站| 三级国产精品欧美在线观看| 2018国产大陆天天弄谢| 亚洲一区高清亚洲精品| 国产毛片a区久久久久| 精品国产三级普通话版| 最后的刺客免费高清国语| 国产大屁股一区二区在线视频| 国产男女超爽视频在线观看| 久久久久久伊人网av| 亚洲精品国产av成人精品| 国产精品麻豆人妻色哟哟久久 | 成人鲁丝片一二三区免费| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 男女视频在线观看网站免费| 亚洲av成人精品一区久久| 精品一区二区三区人妻视频| 国产精品精品国产色婷婷| 国产亚洲一区二区精品| 国内精品一区二区在线观看| 美女主播在线视频| 国模一区二区三区四区视频| 80岁老熟妇乱子伦牲交| 日本午夜av视频| 丝袜美腿在线中文| 国产大屁股一区二区在线视频| 午夜免费男女啪啪视频观看| 日韩成人伦理影院| 国产精品99久久久久久久久| 91午夜精品亚洲一区二区三区| av一本久久久久| 麻豆av噜噜一区二区三区| 精品少妇黑人巨大在线播放| 在线免费观看的www视频| 国产亚洲精品久久久com| 成人一区二区视频在线观看| 亚洲自拍偷在线| 久久97久久精品| 久久久久久久久久久丰满| 欧美日韩综合久久久久久| 最近最新中文字幕免费大全7| 在现免费观看毛片| 中国美白少妇内射xxxbb| 亚洲精品成人久久久久久| 亚洲精品影视一区二区三区av| 伊人久久国产一区二区| 边亲边吃奶的免费视频| 亚洲欧洲日产国产| 在线免费观看的www视频| 国产成人精品福利久久| 亚洲第一区二区三区不卡| 精品国产三级普通话版| 69av精品久久久久久| 51国产日韩欧美| 在线观看人妻少妇| 久久久久久久久中文| 成人亚洲精品一区在线观看 | 久久久精品免费免费高清| 国产三级在线视频| 亚洲婷婷狠狠爱综合网| 人人妻人人看人人澡| 日日啪夜夜撸| 日日摸夜夜添夜夜爱| 亚洲国产精品国产精品| 亚洲精品日韩在线中文字幕| 乱人视频在线观看| 少妇裸体淫交视频免费看高清| 美女脱内裤让男人舔精品视频| 日韩欧美 国产精品| 亚洲成人精品中文字幕电影| 亚洲av电影在线观看一区二区三区 | 一级a做视频免费观看| 最近的中文字幕免费完整| 日韩成人伦理影院| av免费观看日本| 免费观看无遮挡的男女| 高清在线视频一区二区三区| 亚洲国产高清在线一区二区三| 亚洲av成人av| 男人和女人高潮做爰伦理| 国产视频内射| 国产大屁股一区二区在线视频| 成人高潮视频无遮挡免费网站| 汤姆久久久久久久影院中文字幕 | 午夜激情福利司机影院| 亚洲人成网站高清观看| 三级男女做爰猛烈吃奶摸视频| 久久国产乱子免费精品| 日韩强制内射视频| 有码 亚洲区| 亚洲av免费高清在线观看| 中文字幕人妻熟人妻熟丝袜美| 99久久九九国产精品国产免费| 亚洲电影在线观看av| 九九久久精品国产亚洲av麻豆| 一区二区三区免费毛片| 在线播放无遮挡| 免费播放大片免费观看视频在线观看| 亚洲四区av| 日日摸夜夜添夜夜添av毛片| 久久精品久久久久久噜噜老黄| 毛片女人毛片| 伊人久久精品亚洲午夜| 午夜激情久久久久久久| 18禁动态无遮挡网站| 日本-黄色视频高清免费观看| 国产精品日韩av在线免费观看| 一级黄片播放器| www.av在线官网国产| 国产成年人精品一区二区| 三级国产精品片| 欧美最新免费一区二区三区| 99九九线精品视频在线观看视频| 老师上课跳d突然被开到最大视频| 中文天堂在线官网| av国产久精品久网站免费入址| 免费人成在线观看视频色| 亚洲精品日韩av片在线观看| 久99久视频精品免费| www.av在线官网国产| 亚洲熟妇中文字幕五十中出| 九九爱精品视频在线观看| 两个人的视频大全免费| 久久午夜福利片| 久久久精品免费免费高清| 国产一区二区在线观看日韩| 秋霞在线观看毛片| 高清午夜精品一区二区三区| 嫩草影院新地址| 国产成人a区在线观看| 中文欧美无线码| 最近手机中文字幕大全| 免费看光身美女| 亚洲自偷自拍三级| 亚洲图色成人| 亚洲国产精品sss在线观看| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 欧美一区二区亚洲| 99久久精品一区二区三区| 久久久久精品久久久久真实原创| 青春草国产在线视频| 插逼视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 大又大粗又爽又黄少妇毛片口| 3wmmmm亚洲av在线观看| 在线免费观看不下载黄p国产| 伦理电影大哥的女人| 国产成人福利小说| 亚洲国产精品国产精品| 中文欧美无线码| 午夜福利视频1000在线观看| 大香蕉久久网| 免费大片18禁| 夜夜爽夜夜爽视频| 亚洲av.av天堂| 成年免费大片在线观看| 国产午夜福利久久久久久| 国产黄色小视频在线观看| 黄色欧美视频在线观看| 高清日韩中文字幕在线| 精品久久久久久成人av| 自拍偷自拍亚洲精品老妇| 91精品伊人久久大香线蕉| 别揉我奶头 嗯啊视频| a级毛色黄片| 亚洲最大成人手机在线| 国产单亲对白刺激| 中国美白少妇内射xxxbb| 亚洲欧美日韩无卡精品| 能在线免费观看的黄片| 肉色欧美久久久久久久蜜桃 | 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 狂野欧美激情性xxxx在线观看| 国产在线一区二区三区精| freevideosex欧美| 久99久视频精品免费| 成人亚洲欧美一区二区av| 国产精品女同一区二区软件| 80岁老熟妇乱子伦牲交| 一级片'在线观看视频| 蜜桃久久精品国产亚洲av| 国产精品国产三级专区第一集| 男插女下体视频免费在线播放| 一个人看视频在线观看www免费| 亚洲内射少妇av| 内地一区二区视频在线| 婷婷色综合大香蕉| 国产69精品久久久久777片| 日本-黄色视频高清免费观看| 久久97久久精品| 久久久欧美国产精品| 在线免费观看的www视频| 女的被弄到高潮叫床怎么办| av播播在线观看一区| 国产片特级美女逼逼视频| 国产白丝娇喘喷水9色精品| 91久久精品国产一区二区三区| 国产色爽女视频免费观看| 精品久久久久久久久亚洲| 在线免费观看不下载黄p国产| 肉色欧美久久久久久久蜜桃 | 久久久久久久国产电影| 亚洲国产精品sss在线观看| 国产精品美女特级片免费视频播放器| 夜夜看夜夜爽夜夜摸| 女人十人毛片免费观看3o分钟| 人人妻人人看人人澡| 爱豆传媒免费全集在线观看| 亚洲天堂国产精品一区在线| 日韩制服骚丝袜av| 亚洲美女搞黄在线观看| 日韩中字成人| 亚洲精品第二区| 大话2 男鬼变身卡| 99久国产av精品国产电影| 国产精品1区2区在线观看.| 欧美日韩视频高清一区二区三区二| 成人欧美大片| 五月玫瑰六月丁香| 日本一本二区三区精品| 日韩欧美三级三区| 亚洲天堂国产精品一区在线| 国产成人91sexporn| 三级国产精品片| 色综合色国产| 久久亚洲国产成人精品v| 美女脱内裤让男人舔精品视频| 日本wwww免费看| 欧美丝袜亚洲另类| 国产永久视频网站| 久久久久精品性色| 成人毛片60女人毛片免费| 一区二区三区乱码不卡18| 黄色一级大片看看| 啦啦啦中文免费视频观看日本| 看黄色毛片网站| 国产亚洲91精品色在线| 欧美97在线视频| 美女国产视频在线观看| 又爽又黄a免费视频| 男人舔女人下体高潮全视频| 亚洲精品国产av蜜桃| 街头女战士在线观看网站| 三级毛片av免费| 成年女人看的毛片在线观看| 毛片女人毛片| 国产成人精品久久久久久| 欧美xxxx黑人xx丫x性爽| 少妇丰满av| 日韩 亚洲 欧美在线| 成年女人看的毛片在线观看| 亚洲四区av| 99视频精品全部免费 在线| 国精品久久久久久国模美| 国产成人一区二区在线| 观看美女的网站| 日韩在线高清观看一区二区三区| 舔av片在线| 赤兔流量卡办理| 国产亚洲91精品色在线| 免费观看精品视频网站| 国产成人福利小说| a级一级毛片免费在线观看| 一级片'在线观看视频| 又黄又爽又刺激的免费视频.| 免费av毛片视频| 熟妇人妻不卡中文字幕| 国产伦精品一区二区三区视频9| 蜜桃亚洲精品一区二区三区| 久久国产乱子免费精品| 久久久久久久大尺度免费视频| 久久99蜜桃精品久久| 国产乱来视频区| 一区二区三区高清视频在线| av在线播放精品| 日韩电影二区| 国产成人免费观看mmmm| 青春草国产在线视频| 人体艺术视频欧美日本| 婷婷色综合www| 久久久久久久久久久免费av| 六月丁香七月| 一个人看的www免费观看视频| 久久6这里有精品| 天天一区二区日本电影三级| 国精品久久久久久国模美| 日韩,欧美,国产一区二区三区| 视频中文字幕在线观看| 国产成人精品福利久久| 亚洲高清免费不卡视频| 国产高清不卡午夜福利| 日本一二三区视频观看| 国产免费一级a男人的天堂| 五月天丁香电影| 精品一区二区三区人妻视频| 能在线免费观看的黄片| freevideosex欧美| 99热全是精品| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区| 少妇被粗大猛烈的视频| 亚洲av在线观看美女高潮| 精品久久久久久电影网| 真实男女啪啪啪动态图| 久久人人爽人人爽人人片va| 欧美变态另类bdsm刘玥| 偷拍熟女少妇极品色| 国产午夜精品论理片| 国产综合精华液| 精品少妇黑人巨大在线播放| 一二三四中文在线观看免费高清| 网址你懂的国产日韩在线| 大片免费播放器 马上看| 成年版毛片免费区| videossex国产| 亚洲成人av在线免费| 精品久久久精品久久久| 国产成人精品久久久久久| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区黑人 | 亚洲色图av天堂| av卡一久久| 色网站视频免费| 最近手机中文字幕大全| 国产高潮美女av| 国产美女午夜福利| 街头女战士在线观看网站| 一级av片app| 亚洲精品日韩av片在线观看| 亚洲精品乱码久久久v下载方式| 亚洲国产av新网站| 国产成人a区在线观看| 午夜激情久久久久久久| 免费看不卡的av| 深爱激情五月婷婷| 女人久久www免费人成看片| 美女内射精品一级片tv| 国产成人精品久久久久久| 久久久久精品性色| 大陆偷拍与自拍| 日韩成人av中文字幕在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品456在线播放app| 高清午夜精品一区二区三区| 在线观看美女被高潮喷水网站| 中文字幕人妻熟人妻熟丝袜美| 神马国产精品三级电影在线观看| 免费黄色在线免费观看| 91av网一区二区| 国产91av在线免费观看| 最近最新中文字幕免费大全7| 夜夜爽夜夜爽视频| 噜噜噜噜噜久久久久久91| 亚洲,欧美,日韩| 免费观看性生交大片5| 女人久久www免费人成看片| 日韩欧美精品免费久久| 成人毛片a级毛片在线播放| 久99久视频精品免费| 日产精品乱码卡一卡2卡三| 干丝袜人妻中文字幕| 欧美日韩精品成人综合77777| 亚洲不卡免费看| 我的女老师完整版在线观看| 日韩一区二区视频免费看| 国产亚洲最大av| 国产探花极品一区二区| 丰满少妇做爰视频| 国产爱豆传媒在线观看| 国产单亲对白刺激| 亚洲综合色惰| 午夜免费观看性视频| 激情 狠狠 欧美| 丝袜喷水一区| 国产男人的电影天堂91| 波多野结衣巨乳人妻| 青青草视频在线视频观看| 大香蕉久久网| 男人和女人高潮做爰伦理| 日韩一本色道免费dvd| 成人鲁丝片一二三区免费| av国产免费在线观看| 中文字幕亚洲精品专区| 亚洲一级一片aⅴ在线观看| 日韩一区二区视频免费看| 偷拍熟女少妇极品色| 网址你懂的国产日韩在线| 国产亚洲精品久久久com| 中文字幕av成人在线电影| 免费看av在线观看网站| 菩萨蛮人人尽说江南好唐韦庄| 亚洲在线观看片| 国产精品爽爽va在线观看网站| 国产一区二区三区综合在线观看 | www.色视频.com| 中文字幕久久专区| 久久综合国产亚洲精品| 亚洲经典国产精华液单| 亚洲国产精品成人久久小说| 国产一区二区三区av在线| 亚洲精品乱码久久久v下载方式| 亚洲18禁久久av| 91精品一卡2卡3卡4卡| 亚洲欧美日韩卡通动漫| 国产成人精品久久久久久| 99热6这里只有精品| 看非洲黑人一级黄片| 日本三级黄在线观看| 国产男人的电影天堂91| 欧美人与善性xxx| 午夜福利在线观看吧| 国产免费一级a男人的天堂| 亚洲aⅴ乱码一区二区在线播放| 黄色日韩在线| 国产美女午夜福利| 久久久久精品久久久久真实原创| 夜夜爽夜夜爽视频| 视频中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 国产中年淑女户外野战色| 日韩伦理黄色片| 成人美女网站在线观看视频| 欧美一区二区亚洲| 熟女电影av网| 三级国产精品片| 草草在线视频免费看| 一级毛片aaaaaa免费看小| 亚洲精品久久午夜乱码| 国产av码专区亚洲av| 国产中年淑女户外野战色| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av成人精品一区久久| 亚洲av电影在线观看一区二区三区 | av天堂中文字幕网| 久久久精品94久久精品| 99久久九九国产精品国产免费| 精品欧美国产一区二区三| 久久99蜜桃精品久久| 日韩欧美国产在线观看| 久久久精品欧美日韩精品| 亚洲经典国产精华液单| 亚洲人与动物交配视频| 草草在线视频免费看| 国产伦精品一区二区三区四那| 国精品久久久久久国模美| 身体一侧抽搐| 久热久热在线精品观看| av又黄又爽大尺度在线免费看| 国产伦在线观看视频一区| 一本久久精品| 只有这里有精品99| 精品久久久久久久久久久久久| 久久久精品94久久精品| 黄色日韩在线| 久久人人爽人人片av| 精品一区二区免费观看| 亚洲精华国产精华液的使用体验| 久久午夜福利片| 亚洲av中文av极速乱| 亚洲精品乱码久久久v下载方式| 亚洲欧洲日产国产| 网址你懂的国产日韩在线| 国产精品美女特级片免费视频播放器| 又大又黄又爽视频免费| 日韩欧美一区视频在线观看 | 1000部很黄的大片| 女的被弄到高潮叫床怎么办| 床上黄色一级片| 少妇高潮的动态图| 国产黄色视频一区二区在线观看| 亚洲av成人精品一二三区| 80岁老熟妇乱子伦牲交| videossex国产| 2022亚洲国产成人精品| 蜜桃久久精品国产亚洲av| 欧美另类一区| 三级经典国产精品| 免费黄色在线免费观看| 亚洲av男天堂| 欧美+日韩+精品| 国产精品熟女久久久久浪| 哪个播放器可以免费观看大片| 中文字幕久久专区| 国产免费视频播放在线视频 | 狠狠精品人妻久久久久久综合| 有码 亚洲区| 国产精品一区二区三区四区免费观看| 国产老妇伦熟女老妇高清| 少妇被粗大猛烈的视频| 午夜精品一区二区三区免费看| 综合色丁香网| 国产免费一级a男人的天堂| 久久久久久久国产电影| 久久精品综合一区二区三区| 欧美最新免费一区二区三区| 99热这里只有是精品在线观看| 国产成人91sexporn| 免费看不卡的av| 18禁裸乳无遮挡免费网站照片| 黄片无遮挡物在线观看| 久久久a久久爽久久v久久| 亚洲精品久久午夜乱码| 国产爱豆传媒在线观看| 久久久久久久久久久丰满| 国产精品精品国产色婷婷| 日本-黄色视频高清免费观看| 99久国产av精品| 夫妻午夜视频| 成人亚洲欧美一区二区av| 亚洲一区高清亚洲精品| 久久久国产一区二区| 看十八女毛片水多多多| 国产乱来视频区| 国产三级在线视频| 成人美女网站在线观看视频| 日韩av在线大香蕉| 蜜臀久久99精品久久宅男| 一级爰片在线观看| 日韩av在线大香蕉| 免费高清在线观看视频在线观看| 亚洲av成人精品一区久久| 久久6这里有精品| 亚洲精品日韩在线中文字幕| 国产大屁股一区二区在线视频| 欧美日韩视频高清一区二区三区二| 1000部很黄的大片| 亚洲精品一区蜜桃| 观看美女的网站| 国内少妇人妻偷人精品xxx网站| 丝瓜视频免费看黄片| 国产高清国产精品国产三级 | 人妻制服诱惑在线中文字幕| 简卡轻食公司| 一级毛片 在线播放| 免费看光身美女| 午夜激情欧美在线| 黑人高潮一二区| 看十八女毛片水多多多| 日本黄色片子视频| 少妇的逼好多水| 人体艺术视频欧美日本| 晚上一个人看的免费电影| 国产亚洲最大av| 国内精品美女久久久久久|