• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact 2×2 parabolic multimode interference thermo–optic switches based on fluorinated photopolymer?

    2019-04-13 01:14:28JiHouWang王繼厚ChangMingChen陳長鳴KeWeiHu胡珂瑋RuCheng程儒ChunXueWang王春雪YunJiYi衣云驥XiaoQiangSun孫小強FeiWang王菲ZhiYongLi李智勇andDaMingZhang張大明
    Chinese Physics B 2019年4期
    關(guān)鍵詞:長鳴智勇春雪

    Ji-Hou Wang(王繼厚),Chang-Ming Chen(陳長鳴),Ke-Wei Hu(胡珂瑋),Ru Cheng(程儒),Chun-Xue Wang(王春雪),Yun-Ji Yi(衣云驥),Xiao-Qiang Sun(孫小強),Fei Wang(王菲),Zhi-Yong Li(李智勇),and Da-Ming Zhang(張大明),?

    1State Key Laboratory of Integrated Optoelectronics,College of Electronic Science and Engineering,Jilin University,Changchun 130012,China

    2State Key Laboratory of Integrated Optoelectronics,Institute of Electronic Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    1.Introduction

    Currently,the highly integrated optical transmission systems are the key components for building broadband optical communication networks.[1–4]Specially,thermo–optic(TO)switching devices are essential parts in photonics integrated circuits which can be applied to reconfigurable optical transmission networks.[5–9]Compared with the fiber-type TO optical switches,the waveguide-type TO switches have captured considerable interest such as functional compact photonic chips with smaller size,lower driving power consumption and faster response.Diversified TO waveguide switching structures have been used in actual optical chips,such as x-junction,[10,11]Mach–Zehnder interference(MZI),[12–14]directional coupling(DC)and multimode interference(MMI)type,[15–19]etc.Compared with the other structural TO waveguide switches,the MMI TO waveguide switches with high integration and lower process tolerance are more suitable to realizing N×N multi-channel integrated switching matrixes for high-quality photonic chips.[20–22]Presently,functional polymers as waveguide materials have been widely adopted for the MMI TO switch with large TO coefficient,tunable refractive index and flexible fabrication process rather than inorganic waveguide materials such as silicon,InP and SOI,etc.[23–27]It can be predicted that the polymer MMI TO waveguide switches may play a significant role in improving the performances of the high-integration photonic circuits for highspeed optical cross-connect system.

    In this work,a highly compact 2×2 dual-side parabolic structural MMI TO waveguide switch with larger extinction ratio and lower driving power consumption than the traditional dual-side linear structure of MMI is designed and fabricated based on low-loss fluorinated photopolymer materials.The thermal stability of the waveguide material is analyzed and the optical characteristics of the switching chip are simulated.The structural morphologies of the actual waveguide MMI region and electrode heater are characterized.The actual performances of the entire MMI switches proposed are measured.The types of the MMI TO switches are very suitable for serving as switching matrix of photonic integrated circuits.

    2.Experiment

    2.1.Waveguide material

    To realize the DSPS MMI switches,the low-loss fluorinated photopolymers are synthesized as the core waveguide materials.The functional polymers are composed of fluorinated epoxy resin(FSU-8)and fluorinated epoxy-terminated polycarbonates(FBPA-PC EP).The refractive indices and cross-linking densities of the fluorinated photopolymers can be tuned and controlled by changing the dose of the FSU-8.The waveguide materials are prepared by mixing FSU-8 and FBPA-PC EP with the solvent and a photoinitiator.The molecular structure of FSU-8 and FBPA-PC EP are shown in Fig.1(a).Comparing with the common waveguide materials,C–H bonds replaced by C–F bonds in the photopolymer can reduce the intrinsic optical absorption loss of this waveguide material in the near-infrared wavelength region between 1310 nm and 1550 nm.The near-infrared absorption spectrum of the fluorinated photopolymer film is shown in Fig.1(b).It can be obviously observed that the mixture of FSU-8 and FBPA-PC EP has almost no optical absorption in a range from 400 nm to 2000 nm compared with the commercial photoresist SU-8.

    It can be explained that the material absorption loss of SU-8 is mainly due to C–H bond vibration absorption in the near-infrared wavelength region.The model of the vibration absorption can be approximately regarded as simple harmonic motion,and the vibration rate equation is given as

    where ω is the vibration base-band of the C–H bond,κ is a chemical constant,μ is the reduced mass of C–H atomic pair,m1and m2are the atomic weight of carbon atom and hydrogen atom,respectively.

    The υ-th(υ is quantum number)vibration frequency of diatomic molecule defined υυcan be expressed as

    where B is a constant.When the hydrogen atom is replaced with larger relative atomic mass,such as fluorine atom,The molecular mass can be increased and it makes all harmonic frequency reduced.Thus the low loss wave band will have a red shift.So the resonance and coupled vibration absorption of C–F bonds are smaller than those of C–H bonds in near infrared region.[28]The FSU-8 material can significantly reduce the absorption loss.

    The refractive index of the cross-linked fluorinated mixture can be tuned from 1.495 to 1.565 at 1550-nm wavelength when the content of FSU-8 is changed from 10 mol%to 75 mol%.The thermal stability of the fluorinated photopolymer is characterized.Tg of this fluorinated polymer,as glass transition temperature,is measured to be 142?C by differential scanning calorimetry(DSC).The temperature Td for 5%weight loss of the epoxy cross-linked polymer is obtained to be 303?C by thermo gravity analysis(TGA).Poly(methyl methacrylate)(PMMA)as a mature material for plastic optical fiber(POF)system is synthesized and used as the cladding material.The refractive index of the PMMA is measured to be 1.480 by ellipsometer.The merits of these functional polymer waveguide materials can provide adequate guarantee for realizing the new dual-side parabolic structural MMI switches with high performances.

    Fig.1.(a)Molecular structure of fluorinated photopolymer(FBPAPC EP and FSU-8);(b)Near-infrared absorption spectrum of FSU-8(25%)/FBPA-PC EP and Commercial SU-8.

    2.2.Design of 2×2 parabolic MMI-TO switch

    The schematic diagram of the DSPS MMI TO waveguide switch is shown in Fig.2(a).The largest width(Wl)of MMI region connecting to input and output channel is 50μm.The narrowest width(Wn)in the middle of MMI region is 35μm.The length(Lm)of entire MMI region is 1610μm.The electrode heater upon the cladding PMMA is set to be in the center of the MMI region.The width(We)and the length(Le)of the electrode are designed to be 25μm and 400μm,respectively.The width of input and output channel waveguide are both 5μm,and the width of the taper waveguide connecting to the MMI region is enlarged to 10μm for enhancing coupling efficiency.The transitional length for the taper structure is 500μm.The cross-sectional waveguide structure with the electrode is shown in Fig.2(b).The size of the core waveguide is 3μm×5μm.The thickness of SiO2buffer layer on silicon substrate as lower cladding is 5μm and that of the PMMA upper cladding is 2μm.The thickness of the Al electrode is 60 nm.The refractive index of the fluorinated photopolymer,PMMA-GMA and SiO2substrate are 1.526,1.485,and 1.444,respectively.The TO coefficient of the fluorinated photopolymer is?1.85×1?4m?1·K?1.

    Fig.2.(a)Overall structure of DSPS MMI TO waveguide switch,and(b)cross-sectional waveguide structure with electrode.

    2.2.1.Small size of compact MMI region

    Compared with the traditional dual-side linear structure of MMI,the DSPS MMI is given in Fig.3(a).It can be found that for the same waveguide material and size,the length Lmof MMI region can be effectively reduced to 38.0%,less than the length of traditional DSLS MMI structure for realizing a similar coupling function.

    Based on the self-image principle of MMI,the dispersion relation at any position z of DSPS MMI can be expressed as

    where Kxv(z)and βv(z)are the lateral wavenumber and propagation constant of the mode v at position z,respectively;W(z)is the effective MMI width at the position z of DSPS MMI,and v is a mode number such as 0,1,...,m?1,m,where m is the number of effective modes.and nris the effective index of the traditional MMI region.The propagation constant spacing from the v-th mode to the fundamental one with propagation constants of βv(z)and β (z)can be expressed as

    where Wlis the traditional width of traditional MMI region and λ is the signal wavelength.

    For the DSPS MMI proposed,the varying width W(z)of the DSPS MMI region can be given as

    For the DSLS MMI,the beat length Lπis defined as

    where Li(z)is defined as the length of DSPS MMI region,corresponding to different positions;Lmis the total length of the DSPS MMI region;Wlis the largest width of DSPS MMI region connecting to input and output channels,which is also the same as the traditional width of the traditional MMI region;Wnis the narrowest width in the middle of DSPS MMI region at Li=Lm/2.

    For the beat length of DSPS MMI region,the formulas are shown as

    where nrand ncare the effective in dices of the DSPS MMI region for different widths atW=Wland W=Wn,respectively;Wgdenotes the Goos–Hanchen shift.[16]The factor σ =0 and σ=1 correspond to transverse electric(TE)mode and transverse magnetic(TM)mode,respectively.Because α>1 in the calculating process,the length of the DSPS MMI is shorter than that of the DSLS MMI device as indicated by comparing Eq.(6)with Eq.(8).

    According to Eq.(8),it can be obviously indicated that the beat length Lpπof DSPS MMI region is equivalent to Lπ/α,where Lπis the beat length of traditional DSLS MMI in the same condition.As shown in Fig.3(b),it can be depicted that the value of α declines exponentially with Wn/Wlincreasing.Considering the actual fabrication tolerance of electrode heater,the value of Wn/Wlis selected in a range from 0.5 to 1.0.

    In the actual designing of DSPS MMI,the radian(C)of the parabolic curve is an important parameter and it is directly related to α.The parameter C plays a key role in reducing the interaction length and scattering loss of MMI region.The relationship between α and C is given in Fig.3(c).From Fig.3(c),it can be found that with α increasing,C becomes large.To control the interaction length and scattering loss effectively,according to the actual experimental parameters,the value of α is optimized to be 1.6.when Wn/Wlis chosen to be 0.7,C is set to be 2.296×10?5μm?1.So Wnand Wlare determined to be 35μm and 50μm,respectively.In this case,the length of DSPS MMI region is only 62.5%of the length of the traditional DSLS MMI region.

    Fig.3.(a)Comparison of length between the traditional DSLS MMI and DSPS MMI;(b)relation between α andWn/Wlof DSPS MMI;(c)relation between α and C of DSPS MMI.

    Fig.4.Curves of bar and cross port output power versus Lmfor(a)DSPS MMI device and(b)traditional DSLS MMI device.

    When the width Wlis set to be 50μm,the optimized length of DSPS MMI and traditional DSLS MMI region are simulated by the beam propagation method(BPM),and the results are shown in Fig.4.It is demonstrated that as given in Fig.4(a),the optimized length Lmof the DSPS MMI region is 1610μm directly corresponding to the cross state with the output optical normalized power of 83%as shown in Fig.4(b),and the optimized length Lmof DSLS MMI is 2580μm with the output power of 81%in the same state.For the bar states,the output power of DSPS and DSLS MMI approximate to zero.Comparing with the traditional DSLS MMI,the optimized length of DSPS MMI can be effectively shortened by 37.6%in the same case.The wavelength-dependent characteristic of DSPS MMI is analyzed,and the results are shown in Fig.5(a).It can be found that the optical output normalized power of DSPS MMI directly at cross state exhibits good stability in a wavelength range from 1545 nm to 1565 nm in C-band.The relationship between the output power and the width Wlof the DSPS MMI is also calculated in Fig.5(b).It can be observed that when Wlis selected to be 50μm,the output power reaches a maximum value.It is identified that the DSPS MMI can provide small size and high stability for achieving compact photonic integration.

    Fig.5.Curves of bar and cross port output power versus(a)wavelength and(b)Wlfor DSPS MMI device.

    2.2.2.Low power consumption and large extinction ratio

    For the driving power consumption of the TO waveguide switch,the relevant equation is given as

    where Leand Weare the length and width of the electrode heater,respectively;H is the thickness of the upper cladding;K is the thermal conductivity and its value is 0.27 W·m?1·K?1for the SiO2cladding,0.2 W·m?1·K?1for the PMMA cladding,and 0.16 W·m?1·K?1for the fluorinated photopolymer;?T is the temperature change of the electrode heater.As the optimized values,Le,We,and H are set to be 400,25,and 2μm,respectively.The TO coefficient of fluorinated photopolymer,PMMA and SiO2are measured to be?1.85×10?4K?1and?1.2×10?4K?1.Based on these designing and experimental data,the optical transmission fields of DSPS MMI switching response from cross to bar state are simulated,and the results are shown in Figs.6(a)and 6(b),respectively.The driving electric power consumption is obtained to be 14 mW.In contrast,the optical transmission fields of DSLS MMI switching response from cross to bar state are analyzed,and the results are displayed in Figs.6(c)and 6(d),respectively.The driving electric power consumption is calculated to be 17.5 mW.It can be demonstrated that the DSPS MMI TO switch,rather than the DSLS MMI TO switch,needs lower driving electric power.Because the effective width of DSPS MMI is narrower than that of DSLS MMI,the optical modes’distribution is more compact.The lower temperature change and shorter interaction length of DSPS MMI is required to drive the power to the bar output port.The relationship between?T of the electrode and the output power of DSPS TO switch is shown in Fig.7(a)and that of the DSLS TO switch is given in Fig.7(b).It can be found that when?T for the DSPS MMI and DSLS MMI are 18 K and 21 K,respectively,the bar output port has a maximum output optical power and the cross port has a minimum value.Besides,the effective width of electrode obtained on the DSPS MMI is narrower than that on the DSLS MMI,which means that Wecan be defined as a smaller value.From Eq.(9),the DSPS MMI TO switch can realize lower power consumption than the DSLS MMI TO switch.The optical field distribution of the waveguide and the thermal field distribution of the electrode heater for the DSPS MMI TO waveguide switch are also simulated,and the results are given in Figs.6(e)and 6(f),respectively.About 93.3%of the normalized optical power is confined into the waveguide core,and the driving temperature?T of the electrode heater is obtained to be 18 K.

    Fig.6.(a)Simulations of optical field transmission for (a) DSPS MMI TO waveguide switch with no modulation, (b) DSPS MMI TO waveguide switch with 14-mW driving power TO modulation,(c)traditional DSLS MMI TO waveguide switch with no modulation,(d)traditional DSLS MMI TO waveguide switch with 17.5-mW driving power TO modulation,(e)optical field of input waveguide for DSPS MMI TO waveguide switch,(f)thermal field distribution of MMI region of DSPS MMI TO waveguide switch with 14-mW driving power modulation.

    Fig.7.Output power of bar and cross port versus temperature of electrode(?T)for(a)DSPS MMI TO switch and(b)DSLS MMI TO switch.

    Fig.8.Curves of output power of bar and cross port versus driving power for(a)DSPS MMI TO switch and(b)traditional DSLS MMI TO switch.

    The curves for output power of bar and cross port versus driving electric power of DSPS switch and DSLS MMI TO switch are given in Figs.8(a)and 8(b),respectively.The extinction ratio of the DSPS TO switch is 31.2 dB and that of the DSLS TO switch is 27.1 dB.It can be found that the DSPS TO switch,rather than that of the DSLS TO switch,exhibits lager extinction ratio.It can be identified that the DSPS MMI can provide low power consumption and large extinction ratio for realizing high-quality integrated switching matrixes.

    2.3.Fabrication and measurement of DSPS MMI TO switch

    The DSPS MMI TO waveguide switch is fabricated by direct UV writing technique.The detailed process is shown in Fig.9,similar to those in Refs.[29]and[30]The resistance of the Al electrode heater is measured to be 200 ?.The profiles of MMI waveguide and electrode heater are given in Figs.10(a)and 10(b)by optical microscope(×200),respectively.It can be seen that the size of the waveguide and electrode can fit well to the parameters designed.

    Fig.9.Fabrication process of DSPS MMI TO switch.

    The experimental measurement system for the device is shown in Fig.11(a).A tunable laser source(Santec TSL-210)with a wavelength range of 1510 nm–1590 nm is used as a signal source.The DSPS MMI TO switch is modulated by electric signal generated from a signal generator loaded on the electrode heater.The output signal light is coupled by the photodiode detector into the oscilloscope for observing TO response.The insertion loss of the device is measured to be 7 dB at 1550 nm wavelength by the optical power meter.The transmission loss of the waveguide is obtained to be 1 dB/cm through the cut-back method.The TO switch response of the device is measured in Fig.11(b).The rise and fall time for the square-wave voltage at a frequency of 500 Hz are 240μs and 340μs.The actual curves for driving electric power and output optical power between cross and bar states are shown in Fig.11(c).It can be found that when the power consumption is 15.0 mW,the largest extinction ratio is 28.1 dB.The stability of the device with the temperature increasing is given in Fig.11(d).It can be observed that when the temperature of the controller under the device varies from 0?C to 50?C,the change for the insertion loss of the DSPS MMI switch is less than 0.5 dB.

    Fig.10.(a)Profile of DSPS MMI waveguide region and(b)profile of electrode heater.

    Fig.11.(a)Experimental setup for measuring DSPS MMI TO waveguide switch;(b)switch response of dual-size parabolic structural MMI TO waveguide switches;(c)actual curves of output optical power versus driving electric power for cross and bar states of the DSPS MMI TO waveguide switch at 1550 nm;(d)curve of insertion loss varying with temperature.

    The comparisons of performance between fabricated switch and other reported MMI TO switches are listed in Table 1.It can be observed that our fabricated DSPS MMI TO waveguide switch can achieve larger extinction ratio and lower power consumption.

    Table 1.Comparisons between our results and other published results for MMI switch.

    3.Conclusions and perspectives

    In this work,a DSPS MMI TO waveguide switch is designed and fabricated by using the low-loss fluorinated photopolymer materials.Comparing with the traditional DSLS MMI device,the effective length of the MMI coupling region proposed can be effectively reduced by 40%.The actual performances of the MMI switch are measured:the insertion loss is 7 dB,the switching power is 15 mW,and the extinction ratio is 28 dB.In contrast to the traditional MMI optical switches,the new type of parabolic structural MMI TO waveguide switch exhibits lower power consumption and larger extinction ratio.The compact fluorinated polymer MMI TO switches as elements are suitable well for realizing minia-turization,high-properties,and lower cost of photonic integrated circuits.

    [1]Depizzol D B,Montalv?ao J B,Lima F O,Paiva M H M and Segatto M E V 2018 Expert Syst.Appl.107 72

    [2]Gou P Q,Kong M,Yang G M,Guo Z H,Zhang J,Han X F,Xiao J N and Yu J J 2018 Opt.Commun.424 159

    [3]Forni F,Shi Y,Tran N C,Boom H P A,Tangdiongga E and KoonenA M J 2018 J.Lightwave Technol.36 3444

    [4]Li X Y,Qin L,Li X Y,Zhang J S,Ren M Z,An J M,Yang X H and Xu X S 2017 Chin.Phys.Lett.34 034211

    [5]Zhang Z J,Yang J B,He X,Han Y X,Zhang J J,Huang J,Chen D B and Xu S Y 2018 Opt.Commun.425 196

    [6]Herbert D,Kumar S,Cristina L A,Mikael D,Guy L,Peter V,Jan W and Dries V T 2018 IEEE Photon.Technol.Lett.30 1258

    [7]Deng Y G,Yako M,Zhang Z Y and Wada K 2018 IEEE J.Sel.Top.Quantum Electron.24 8300505

    [8]Huang B J,Tsai C T,Lin Y H,Cheng C H,Wang H Y,Chi Y C,Chang P H,Wu C I and Lin G R 2018 ACS Photon.5 2251

    [9]Liu Y,Sun Y,Yi Y Y,Tian L,Cao Y,Chen C M,Sun X Q and Zhang D M 2017 Chin.Phys.B 26 124215

    [10]Sakamaki T,Narita Y,Tsuda H,Nakajima S and Kawanishi T 2010 IEICE Electronic.Express 7 360

    [11]Shin J S,Park T H,Oh M C,Chu W S,Lee C H and Shin S Y 2015 Opt.Express 23 17223

    [12]Soref R A,Francesco D L and Vittorio M N P 2018 Opt.Express 26 14879

    [13]Richard A S,Francesco D L and Vittorio M N P 2018 Opt.Express 26 14959

    [14]Rizal C S and Niraula B 2018 Opt.Commun.410 947

    [15]Pan P,An J M and Wang H J 2015 Opt.Commun.351 63

    [16]Li H Q,Dong X Y and Li E 2013 Opt.&Laser Technol.47 366

    [17]Liang Y X,Zhao M S,Luo Y Q,Gu Y Y,Zhang Y,Wang L H,Han X Y and Wu Z L 2016 Opt.Eng.55 117102

    [18]Guo F,Lu D,Zhang R K,Wang H T,Wang W and Chen J 2016 Chin.Phys.Lett.33 024203

    [19]Ghanshyam S,Ashok S and Seema V 2013 IETE J.Res.59 479

    [20]Xiao H F,Deng L,Zhao G L,Liu Z L,Meng Y H,Guo X N,Liu G P,Liu S,Ding J F and Tian Y H 2017 J.Opt.19 025802

    [21]Zhang S C,Ji W,Yin R,Li X,Gong Z Y and Lv L Y 2018 IEEE Photon.Technol.Lett.30 107

    [22]Le D T,Truong C D and Le T T 2017 Opt.Commun.387 148

    [23]Chaudhuri R R,Amarachukwu N E,Youngsik S and Seo S W 2018 Opt.Commun.418 1

    [24]Han H L,Le H,Zhang X P,Liu A,Lin T Y,Chen Z,Lv H B,Lu M H,Liu X P and Chen Y F 2018 Opt.Express 26 25602

    [25]Zhang Z D,Ma L J,Gao F,Zhang Y J,Tang J,Cao H L,Zhang B Z,Wang J C,Yan S B and Xue C Y 2017 Chin.Phys.B 26 124212

    [26]Zhang Z D,Zhao Y N,Lu D,Xiong Z H and Zhang Z Y 2012 Acta Phys.Sin.61 187301(in Chinese)

    [27]Yu Y Y,Sun X Q,Ji L T,He G B,Wang X B,Yi Y J,Chen C M,Wang F and Zhang D M 2016 Chin.Phys.B 25 054101

    [28]Kim J P,Lee W Y,Kang J W,Kwon S K,Kim J J and Lee J S 2001 Macromolecules 34 7817

    [29]He G B,Ji L T and Gao Y 2017 Opt.Commun.402 422

    [30]Wang J H,Chen C M,Zheng Y,Wang X B,Yi Y J,Sun X Q,Wang F and Zhang D M 2017 Chin.Phys.B 26 024212

    [31]Supaat A S M,Ibrahim M H,Mohammad A B,Kassim N M and Ghazali N E 2008 Am.J.Appl.5 1552

    [32]′Alvaro R,Ana G,Antoine B,Amadeu G and Pablo S2016Opt.Express 24 191

    [33]Wang S P and Dai D X 2018 Opt.Lett.43 2531

    猜你喜歡
    長鳴智勇春雪
    深山埋歷史 警鐘須長鳴
    High-performance and fabrication friendly polarization demultiplexer
    春雪
    警鐘須長鳴
    水上消防(2020年5期)2020-12-14 07:16:12
    薛從倫
    南風(2020年32期)2020-12-09 08:35:02
    清明國祭
    大江南北(2020年6期)2020-11-12 15:11:08
    春雪
    楊智勇藝術(shù)作品欣賞
    身家50億的智勇堅守
    華人時刊(2017年15期)2017-10-16 01:22:23
    《關(guān)中春雪》(油畫)
    海燕(2017年5期)2017-05-12 03:01:18
    97热精品久久久久久| 国产高清激情床上av| 久久久久久久久久成人| 国产大屁股一区二区在线视频| 亚洲精品456在线播放app | 国产精品一区二区免费欧美| 欧美丝袜亚洲另类 | 免费在线观看日本一区| 国产久久久一区二区三区| 91精品国产九色| 亚洲精品456在线播放app | 熟妇人妻久久中文字幕3abv| 精品久久久久久久人妻蜜臀av| 99热这里只有是精品50| 国产av麻豆久久久久久久| 精品久久久久久久久久久久久| 少妇人妻精品综合一区二区 | 亚洲午夜理论影院| 日日摸夜夜添夜夜添av毛片 | 99久久无色码亚洲精品果冻| 十八禁网站免费在线| 3wmmmm亚洲av在线观看| 亚洲精品456在线播放app | 嫁个100分男人电影在线观看| 色综合站精品国产| 在线免费观看的www视频| 99国产极品粉嫩在线观看| 国产高清不卡午夜福利| 日韩一区二区视频免费看| 别揉我奶头 嗯啊视频| 干丝袜人妻中文字幕| 一进一出抽搐动态| 亚洲va在线va天堂va国产| av视频在线观看入口| 亚洲国产欧美人成| 国产真实伦视频高清在线观看 | 国产精品人妻久久久影院| 草草在线视频免费看| 又粗又爽又猛毛片免费看| 女同久久另类99精品国产91| 成人国产综合亚洲| 久久久久久久久久成人| 午夜免费男女啪啪视频观看 | 国产日本99.免费观看| 岛国在线免费视频观看| 乱人视频在线观看| 有码 亚洲区| 深夜精品福利| 色综合亚洲欧美另类图片| 99视频精品全部免费 在线| 熟妇人妻久久中文字幕3abv| 久久久久久久久中文| 亚洲欧美精品综合久久99| aaaaa片日本免费| 亚洲av免费高清在线观看| 性色avwww在线观看| 中国美女看黄片| 最近中文字幕高清免费大全6 | 亚洲av熟女| 亚洲国产欧美人成| 亚洲av成人av| 91麻豆精品激情在线观看国产| 日本 av在线| av国产免费在线观看| 成年女人看的毛片在线观看| 国产白丝娇喘喷水9色精品| 久久久久久久久久成人| 如何舔出高潮| x7x7x7水蜜桃| x7x7x7水蜜桃| 国产视频内射| 狂野欧美白嫩少妇大欣赏| 少妇人妻精品综合一区二区 | 亚洲精品456在线播放app | 2021天堂中文幕一二区在线观| 精品人妻1区二区| 97碰自拍视频| 国产爱豆传媒在线观看| 国产乱人视频| 国产三级中文精品| 神马国产精品三级电影在线观看| 国产爱豆传媒在线观看| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久久久毛片| 特级一级黄色大片| 亚洲三级黄色毛片| 欧美潮喷喷水| 国产激情偷乱视频一区二区| 波多野结衣巨乳人妻| 午夜视频国产福利| netflix在线观看网站| 亚洲午夜理论影院| 韩国av一区二区三区四区| 色综合婷婷激情| 国产精品不卡视频一区二区| 午夜视频国产福利| 韩国av一区二区三区四区| 伦精品一区二区三区| 特级一级黄色大片| 欧美日韩瑟瑟在线播放| 亚洲色图av天堂| 在线a可以看的网站| 国产白丝娇喘喷水9色精品| 一个人看的www免费观看视频| 全区人妻精品视频| 欧美日韩综合久久久久久 | 亚洲性久久影院| 午夜视频国产福利| 91狼人影院| 真人做人爱边吃奶动态| 日本撒尿小便嘘嘘汇集6| 在线免费十八禁| 97热精品久久久久久| 成年人黄色毛片网站| 麻豆国产av国片精品| 人妻少妇偷人精品九色| 国产真实乱freesex| 欧美xxxx性猛交bbbb| 国产视频内射| 国产精品久久久久久久久免| 亚洲欧美精品综合久久99| 日韩欧美国产在线观看| 淫妇啪啪啪对白视频| 欧美潮喷喷水| 91在线观看av| 看免费成人av毛片| 成人国产综合亚洲| av福利片在线观看| 欧美三级亚洲精品| 身体一侧抽搐| 自拍偷自拍亚洲精品老妇| av国产免费在线观看| 少妇人妻一区二区三区视频| 亚洲精品成人久久久久久| 99久久精品热视频| 99热只有精品国产| 国产av不卡久久| 中文字幕熟女人妻在线| 一区二区三区四区激情视频 | 色av中文字幕| 老司机午夜福利在线观看视频| 桃色一区二区三区在线观看| 午夜激情欧美在线| 久久精品国产亚洲网站| aaaaa片日本免费| 老司机午夜福利在线观看视频| av黄色大香蕉| av专区在线播放| 亚洲av中文字字幕乱码综合| 国产精品亚洲美女久久久| 伊人久久精品亚洲午夜| 亚洲精品一卡2卡三卡4卡5卡| 成年版毛片免费区| 在线观看免费视频日本深夜| 中文资源天堂在线| 搡老熟女国产l中国老女人| 少妇熟女aⅴ在线视频| 国语自产精品视频在线第100页| 欧美最新免费一区二区三区| 国产高清视频在线播放一区| 久久热精品热| 精品一区二区三区人妻视频| 精品福利观看| 91在线观看av| 黄色配什么色好看| 在线观看66精品国产| av.在线天堂| 亚洲自拍偷在线| 国产精品av视频在线免费观看| 久久精品国产自在天天线| 久久中文看片网| 嫩草影院精品99| 毛片一级片免费看久久久久 | 日韩欧美免费精品| 国产高清有码在线观看视频| 午夜老司机福利剧场| 最近在线观看免费完整版| 亚洲成人久久爱视频| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩精品一区二区| 欧美不卡视频在线免费观看| 国产免费一级a男人的天堂| 国产精品福利在线免费观看| 国产午夜精品久久久久久一区二区三区 | 久久欧美精品欧美久久欧美| 国产免费av片在线观看野外av| 麻豆国产97在线/欧美| 欧美成人性av电影在线观看| 午夜免费激情av| 欧美中文日本在线观看视频| 真实男女啪啪啪动态图| 日韩欧美在线乱码| 成年女人看的毛片在线观看| 国产男靠女视频免费网站| 18禁黄网站禁片免费观看直播| 久久久久久伊人网av| 国产精品女同一区二区软件 | 日日摸夜夜添夜夜添av毛片 | 亚洲五月天丁香| 18禁黄网站禁片午夜丰满| 日本在线视频免费播放| 久久久久久久久久成人| 日本黄大片高清| 亚洲精品成人久久久久久| 麻豆国产97在线/欧美| 中亚洲国语对白在线视频| 99在线视频只有这里精品首页| 女人被狂操c到高潮| 老女人水多毛片| 国产午夜精品论理片| 99视频精品全部免费 在线| 日韩欧美精品v在线| 少妇的逼好多水| 欧美在线一区亚洲| 18禁黄网站禁片午夜丰满| 天堂影院成人在线观看| 亚洲性久久影院| 嫩草影视91久久| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩卡通动漫| 很黄的视频免费| 国产又黄又爽又无遮挡在线| 国产伦一二天堂av在线观看| 国产高潮美女av| 国产精品久久久久久精品电影| 亚州av有码| 嫩草影院新地址| 中文字幕精品亚洲无线码一区| 国产成人a区在线观看| 伦精品一区二区三区| 欧美最新免费一区二区三区| 久久久久久九九精品二区国产| 99久久精品热视频| 国内毛片毛片毛片毛片毛片| 午夜免费激情av| 99久国产av精品| 亚洲人成网站高清观看| 欧美人与善性xxx| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 偷拍熟女少妇极品色| 最近在线观看免费完整版| 观看免费一级毛片| 老司机深夜福利视频在线观看| 一进一出抽搐gif免费好疼| 亚洲综合色惰| 日日干狠狠操夜夜爽| 男人狂女人下面高潮的视频| 国产精品野战在线观看| 国产午夜福利久久久久久| 搡老岳熟女国产| 99九九线精品视频在线观看视频| 国产精品嫩草影院av在线观看 | 亚洲成av人片在线播放无| 亚洲国产高清在线一区二区三| www日本黄色视频网| 日韩欧美免费精品| 国产美女午夜福利| 又黄又爽又刺激的免费视频.| 中文字幕高清在线视频| 国产精品亚洲一级av第二区| 亚洲国产精品sss在线观看| 男女边吃奶边做爰视频| 男人的好看免费观看在线视频| 亚洲av电影不卡..在线观看| 在线播放无遮挡| 嫩草影视91久久| 国产高清视频在线观看网站| 欧美在线一区亚洲| 欧美丝袜亚洲另类 | 亚洲美女视频黄频| 亚洲欧美精品综合久久99| 亚洲中文日韩欧美视频| 国产白丝娇喘喷水9色精品| www日本黄色视频网| 在线观看美女被高潮喷水网站| 可以在线观看的亚洲视频| 国产aⅴ精品一区二区三区波| 婷婷亚洲欧美| 亚洲国产精品sss在线观看| 国产精品女同一区二区软件 | 小说图片视频综合网站| 一区福利在线观看| 欧美日韩乱码在线| 亚洲一区高清亚洲精品| 国产av麻豆久久久久久久| 国产极品精品免费视频能看的| 在线观看一区二区三区| 亚洲av第一区精品v没综合| 又爽又黄无遮挡网站| 国产精品人妻久久久久久| 久久热精品热| 国国产精品蜜臀av免费| 久久久久九九精品影院| 中文在线观看免费www的网站| 伦理电影大哥的女人| 91av网一区二区| 69人妻影院| 亚洲成人久久爱视频| 欧美最黄视频在线播放免费| 精品一区二区三区视频在线观看免费| 黄色女人牲交| 亚洲五月天丁香| 久久久久精品国产欧美久久久| 免费看光身美女| 久久国产乱子免费精品| 国产精品自产拍在线观看55亚洲| 非洲黑人性xxxx精品又粗又长| 国产色爽女视频免费观看| 一区二区三区激情视频| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 久久草成人影院| 搞女人的毛片| 97人妻精品一区二区三区麻豆| 色播亚洲综合网| 亚洲av电影不卡..在线观看| 99久久九九国产精品国产免费| 午夜a级毛片| 性插视频无遮挡在线免费观看| 亚洲avbb在线观看| 日本成人三级电影网站| 国产高清激情床上av| 一区二区三区免费毛片| 午夜福利成人在线免费观看| 国产探花极品一区二区| av在线观看视频网站免费| 免费看美女性在线毛片视频| 在线免费观看不下载黄p国产 | 日韩欧美三级三区| 嫁个100分男人电影在线观看| 国产色爽女视频免费观看| 不卡一级毛片| 少妇的逼好多水| 51国产日韩欧美| 熟妇人妻久久中文字幕3abv| 无遮挡黄片免费观看| 男女之事视频高清在线观看| 中出人妻视频一区二区| 欧美激情久久久久久爽电影| 国产主播在线观看一区二区| 亚洲五月天丁香| 亚洲第一电影网av| 欧美不卡视频在线免费观看| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说| 亚洲图色成人| 99视频精品全部免费 在线| 99热只有精品国产| 国产欧美日韩一区二区精品| 免费在线观看日本一区| 日本免费一区二区三区高清不卡| 露出奶头的视频| 国产精品伦人一区二区| 亚洲av五月六月丁香网| 国产精品国产三级国产av玫瑰| 99在线视频只有这里精品首页| 小蜜桃在线观看免费完整版高清| 99国产极品粉嫩在线观看| 欧美精品国产亚洲| 国产成人aa在线观看| 午夜免费男女啪啪视频观看 | 国内少妇人妻偷人精品xxx网站| 九九热线精品视视频播放| 夜夜夜夜夜久久久久| 欧美+日韩+精品| 午夜福利欧美成人| 午夜老司机福利剧场| 欧美一级a爱片免费观看看| 大型黄色视频在线免费观看| 观看美女的网站| 99久久成人亚洲精品观看| 日韩精品中文字幕看吧| 九九久久精品国产亚洲av麻豆| 99riav亚洲国产免费| 国产av麻豆久久久久久久| 国产真实伦视频高清在线观看 | 天堂av国产一区二区熟女人妻| 一a级毛片在线观看| 91久久精品国产一区二区成人| 又爽又黄a免费视频| 国产一区二区三区视频了| 成年女人永久免费观看视频| 久久精品国产亚洲网站| 成年版毛片免费区| 免费av毛片视频| 国产亚洲av嫩草精品影院| 成人欧美大片| 亚洲精品在线观看二区| 制服丝袜大香蕉在线| 亚洲av不卡在线观看| 欧美不卡视频在线免费观看| 国产蜜桃级精品一区二区三区| 男插女下体视频免费在线播放| 啦啦啦韩国在线观看视频| 午夜福利在线在线| 一区二区三区四区激情视频 | 久久精品国产亚洲av涩爱 | 精品一区二区三区人妻视频| 久久精品综合一区二区三区| 国产视频内射| 精品福利观看| 国产私拍福利视频在线观看| 国产精品一区www在线观看 | 亚洲一级一片aⅴ在线观看| 男人舔奶头视频| 亚洲国产欧洲综合997久久,| 午夜激情福利司机影院| 中国美白少妇内射xxxbb| 3wmmmm亚洲av在线观看| 欧美成人一区二区免费高清观看| 国产av一区在线观看免费| 12—13女人毛片做爰片一| 国产精品三级大全| 99热6这里只有精品| 天天一区二区日本电影三级| 丰满的人妻完整版| 日本一二三区视频观看| 亚洲三级黄色毛片| 欧美+亚洲+日韩+国产| 国产精品爽爽va在线观看网站| 色av中文字幕| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 蜜桃亚洲精品一区二区三区| 在线a可以看的网站| 国产av不卡久久| 国产日本99.免费观看| 国产黄片美女视频| 国产91精品成人一区二区三区| 在现免费观看毛片| 少妇的逼水好多| 日本 av在线| 给我免费播放毛片高清在线观看| 亚洲精华国产精华液的使用体验 | 男女视频在线观看网站免费| 精品一区二区三区av网在线观看| 1000部很黄的大片| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| 22中文网久久字幕| 91在线精品国自产拍蜜月| 亚洲图色成人| 亚洲中文字幕一区二区三区有码在线看| 国产精品精品国产色婷婷| av黄色大香蕉| 精品人妻偷拍中文字幕| 男女之事视频高清在线观看| 一本精品99久久精品77| 成人三级黄色视频| videossex国产| 成人永久免费在线观看视频| 亚洲一级一片aⅴ在线观看| 中文字幕av成人在线电影| 成年女人永久免费观看视频| 国产精品久久电影中文字幕| 国产一区二区三区视频了| 免费看美女性在线毛片视频| 国产成人a区在线观看| 欧美日本亚洲视频在线播放| 午夜老司机福利剧场| 国产成人一区二区在线| 国产私拍福利视频在线观看| 免费在线观看成人毛片| 亚洲中文字幕日韩| 制服丝袜大香蕉在线| 亚洲三级黄色毛片| 久久精品夜夜夜夜夜久久蜜豆| 少妇人妻精品综合一区二区 | 精品久久久久久,| 春色校园在线视频观看| 搞女人的毛片| 国产一区二区在线av高清观看| 久久草成人影院| 国产爱豆传媒在线观看| 午夜老司机福利剧场| 成人永久免费在线观看视频| 国产成年人精品一区二区| 91麻豆av在线| 亚洲av中文av极速乱 | 成人高潮视频无遮挡免费网站| 日本精品一区二区三区蜜桃| 色视频www国产| 麻豆久久精品国产亚洲av| 欧美激情在线99| 人人妻人人看人人澡| 99热网站在线观看| 欧美3d第一页| 色哟哟哟哟哟哟| 色播亚洲综合网| 色5月婷婷丁香| 国产精品一及| 国产真实乱freesex| 国产精品98久久久久久宅男小说| a级毛片a级免费在线| 十八禁国产超污无遮挡网站| 18禁黄网站禁片免费观看直播| av女优亚洲男人天堂| 国产黄片美女视频| 免费大片18禁| 联通29元200g的流量卡| 丰满的人妻完整版| 欧美3d第一页| 久久精品人妻少妇| 久久久久国内视频| 成人国产综合亚洲| 狂野欧美激情性xxxx在线观看| av在线老鸭窝| 午夜a级毛片| 成人鲁丝片一二三区免费| 一进一出抽搐gif免费好疼| 欧美成人一区二区免费高清观看| 免费看光身美女| 色综合站精品国产| 啪啪无遮挡十八禁网站| 婷婷丁香在线五月| 日韩精品中文字幕看吧| www日本黄色视频网| 欧美成人a在线观看| 成人精品一区二区免费| 长腿黑丝高跟| 天堂影院成人在线观看| 国产精品亚洲美女久久久| 久久久久久久午夜电影| 免费观看精品视频网站| 久久婷婷人人爽人人干人人爱| 两人在一起打扑克的视频| 日本黄色视频三级网站网址| 欧美zozozo另类| 亚洲午夜理论影院| 精品久久国产蜜桃| 久久久久精品国产欧美久久久| 五月伊人婷婷丁香| 51国产日韩欧美| 国产一级毛片七仙女欲春2| 一边摸一边抽搐一进一小说| 一个人看视频在线观看www免费| a级毛片a级免费在线| 国产精品电影一区二区三区| 精品午夜福利在线看| 色尼玛亚洲综合影院| 亚洲成人中文字幕在线播放| 国产视频内射| 97碰自拍视频| 日韩 亚洲 欧美在线| 国产精品久久久久久亚洲av鲁大| 亚洲最大成人手机在线| 久久香蕉精品热| av在线天堂中文字幕| 99久久精品一区二区三区| 一进一出好大好爽视频| 国产久久久一区二区三区| 97人妻精品一区二区三区麻豆| 两人在一起打扑克的视频| 亚洲 国产 在线| 久久久国产成人免费| 永久网站在线| 国产精华一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 少妇猛男粗大的猛烈进出视频 | 国产在线精品亚洲第一网站| 黄色女人牲交| 亚洲男人的天堂狠狠| av国产免费在线观看| 最新在线观看一区二区三区| 99国产极品粉嫩在线观看| 亚洲av免费高清在线观看| 国产精品久久久久久久电影| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 91久久精品国产一区二区成人| 亚洲欧美日韩东京热| 日本免费a在线| 国产高清三级在线| 国产高清视频在线观看网站| 精品一区二区三区av网在线观看| 亚洲av美国av| 中文字幕免费在线视频6| 欧美bdsm另类| 别揉我奶头 嗯啊视频| 国产精品久久久久久精品电影| 亚洲第一电影网av| 久久精品国产亚洲av香蕉五月| 亚洲av不卡在线观看| 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 国产不卡一卡二| 免费看日本二区| 国产三级在线视频| 亚洲一区高清亚洲精品| 亚洲成人精品中文字幕电影| 国产69精品久久久久777片| 精品人妻1区二区| 夜夜夜夜夜久久久久| 亚洲 国产 在线| 亚洲人成伊人成综合网2020| av在线观看视频网站免费| 两人在一起打扑克的视频| 免费看a级黄色片| 国产视频内射| 精品久久久久久,| 男人狂女人下面高潮的视频| 精华霜和精华液先用哪个| 成年女人毛片免费观看观看9| 日本色播在线视频| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 国内久久婷婷六月综合欲色啪| 香蕉av资源在线| 久久久久久久亚洲中文字幕| 久久人人爽人人爽人人片va| 日韩大尺度精品在线看网址| 亚洲国产欧美人成| 免费av观看视频| 欧美性猛交黑人性爽|