• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Femtosecond enhancement cavity with kilowatt average power?

    2019-04-13 01:14:28JinZhang張津LinQiangHua華林強ShaoGangYu余少剛ZhongChen陳忠andXiaoJunLiu柳曉軍
    Chinese Physics B 2019年4期
    關(guān)鍵詞:陳忠華林

    Jin Zhang(張津),Lin-Qiang Hua(華林強),Shao-Gang Yu(余少剛),Zhong Chen(陳忠)and Xiao-Jun Liu(柳曉軍)

    1.Introduction

    Extending the wavelength of optical frequency comb to extreme ultraviolet(XUV)region has attracted a great deal of attention since XUV comb provides a promising tool in precision spectroscopic measurements below 100 nm.[1–12]The advance in XUV comb technology will pave the way for measuring narrow atomic transitions,e.g.,the 1S-2S transition of He at 120nm,[13,14]He+at 61nm,[15,16]and Li+at40.7nm,[17,18]in the XUV region.These transitions are important not only in testing quantum electrodynamics(QED),[16]but also in testing the variation of the fine structure constant.[18]However,building an XUV comb is confronted with one major difficulty:no suitable laser medium in the solid or liquid phase is currently available.In order to overcome this problem,intense femtosecond laser driven high-order harmonic generation(HHG)with noble gases is adopted to realize the wavelength conversion.[1,2]

    As well studied both in theory and experiment,a laser intensity above 1013W/cm2is needed to realize an efficient HHG process with noble gas atoms.[19]This intensity can be easily achieved by focusing a several-mJ femtosecond laser pulse to a radius of tens ofμm.However,these lasers always operate at a repetition rate ranging from a few Hz to several kHz.This feature makes the comb structure hard to be resolved since the carrier-envelope offset(CEO)frequency f0sometimes can be as wide as 200 kHz.[20]Usually,the repetition rate frof the optical frequency comb is~100 MHz,resulting in a dramatic decay of single pulse energy with same average power of kHz lasers.Therefore,it becomes necessary to enhance the laser power from high-repetition-rate IR optical frequency comb by using,e.g.,a femtosecond enhancement cavity(fsEC),to achieve this requirement.

    In this paper,we report our recent progresses in building a fsEC on kilowatt level average power,with the aim of realization of intracavity HHG and extension of the wavelength of optical frequency comb from infrared to extreme ultraviolet.We are able to achieve an intracavity average power of 6.08 kW and the corresponding buildup is 225.After introducing noble gas of Xe into the focus region,clear sign of plasma has been observed.The generated HHG is also coupled out from the fsEC using a sapphire plate.

    2.Experimental setup and results

    The principle of fsEC is similar to that of continuous wave(CW)enhancement cavity.Considering that a CW laser beam propagates in an enhancement cavity,the phase shift of the laser field after the beam travelling one round trip in the cavity is φ = ωcw·L/c,where ωcwis the carrier frequency of incident laser,L is the length of cavity,c is the speed of light.If the phase shift is an integer multiple of 2π,the intracavity field will constructively interfere.This can also be understood in frequency domain:the carrier frequency of the CW laser matches with one of the resonance frequencies of the fsEC.However,different from CW laser with only single mode,optical frequency comb with broad spectrum has~106modes.This feature makes the situation much more complex.For a femtosecond optical frequency comb,the optical frequency f of any mode can be represented as:

    where m is a large integer(~106).This means that the modes of optical frequency comb sit on a series of evenly spaced points in frequency domain.Similarly,the resonance frequencies of an fsEC are also evenly spaced in frequency domain.Therefore,in order to enhance all modes of optical frequency comb,the following three conditions have to be met:(i)the free spectral range(FSR)of the fsEC has to be the same as the repetition rate of the optical frequency comb;(ii)the CEO frequency of the optical frequency comb is properly adjusted,so that the evenly spaced comb modes are exactly matched with the resonance modes of the fsEC;(iii)the intracavity dispersion has to be compensated.These conditions can also be described in the time domain:i)the pulse after travelling one round trip in the cavity has to be overlapped with the next pulse;ii)the phases of the two overlapped pulses have to be identical;iii)the envelope of the circulating pulse has to be the same.With these conditions satisfied,the femtosecond pulses can be properly enhanced in an fsEC.

    Fig.1.Schematic view of the six-mirror bowtie fsEC setup.The inset at the upper right shows the IR-viewer photograph of the fsEC under air condition.The acronyms in the figure are given by:HV,high voltage;FG,function generator;PZT,piezo transducer;CCD,charge coupled device;PD,photodetector;IC,input coupler;PID,the proportional-integral-derivative circuit;MA(MF),mirror A(mirror F).

    A schematic view of our experimental setup is shown in Fig.1.The fsEC is pumped with a high-power Yb-doped fibre optical frequency comb,which provides 100-fs pulses with a repetition rate of 100 MHz and a center wavelength of 1038 nm.This IR comb,with its transverse mode manipulated by a mode-matching unit,is guided into the fsEC.ThefsEC is composed of six high-reflectivity mirrors.Five of them,labeled as MA–ME in Fig.1,have a reflectivity higher than 99.95%.The input coupler,noted as MF(IC),has a reflectivity of 99.2%.The dispersions of all mirrors are less than 20 fs2in the wavelength range of 1010 nm–1065 nm.With this design,the finesse of the cavity is expected to be about 600 and the theoretical buildup is 290.In order to achieve the coherent addition of the IR driving laser,the FSR of the fsEC has to be the same as the repetition rate of the optical frequency comb,i.e.,FSR=c/L=100 MHz.Thus,the length of the cavity is set to be 3 meters.In order to realize a fine adjustment of the cavity length,ME is mounted on a translation stage with piezo transducers(PZT).A feedback loop(the shade region labeled with “l(fā)ocking electronics”)is also used,and the detail will be elaborated in following paragraphs.The entire fsEC is placed in a vacuum chamber in order to avoid the influence of air or dust.The chamber is evacuated with a 250-l/min dry pump(Anest Iwata ISP-250C)and a 250-l/s turbo pump(Pfeiffer HiPace300),and a background pressure as low as 10?4Pa can be achieved.

    The intracavity peak intensity of the IR laser can be calculated as:

    where Pincis the average power of the incident laser,β is the buildup,τ is the pulse duration,r is the beam radius at the focus.To attain a high peak intensity inside the cavity,we intentionally design the cavity to have a beam radius as small as~20μm in the focus region.This is achieved by using two concave mirrors(CM),which have radii of curvature(ROC)of 10 cm(MB)and 15 cm(MA),respectively.With this design,the beam size at the focus as a function of mirror separation between MA and MB is calculated,as shown in Fig.2.A beam radius of~20μm in the focus region can be achieved by setting the mirror separation to be 12.7 cm.Under this condition,an intracavity peak intensity of 8×1013W/cm2can be achieved if we assume Pinc=50 W,β=200,fr=100 MHz,τ=100 fs.Thus,noble gases,such as Xe,Kr,Ar,are proper gas targets for intracavity HHG.

    Fig.2.Theoretical beam radius at the focus as a function of concave mirror separation calculated by ABCD matrix method.

    With the aid of ABCD matrix theory,the beam size of the transverse eigen mode inside the cavity is simulated,as shown by the red line in Fig.3.In order to achieve an efficient coupling between the IR laser and the fsEC,mode-matching outside the cavity has to be optimized.This is achieved by the mode matching unit,as shown in Fig.1.The mode matching unit is composed of two lenses with focus lengths of f1=1000 mm and f2=?500 mm,respectively.They are mounted on translation stages for distance optimization.The separation of them is set to be 40 cm under our experimental condition.The measured beam size after the mode matching is also shown in Fig.3.The evolution trend of the beam size matches the prediction qualitatively.

    Fig.3.Simulated and measured beam radii at each position of the fsEC with the separation of the CMs of 12.7 cm.The red curve is the theoretical value while the blue dots are the measured values.The red triangles denote the positions of the six cavity mirrors.

    The beam radii in Fig.3 are measured in the beam path and can be considered as the results of a single pass in the fsEC(no enhancement yet).Fine adjustment is necessary because the real beam radii in the fsEC are the results of multiround trips,and they can be affected by displacement of lens positions,misalignment of the laser beam,etc.In the experiment,optimization of the mode matching can be realized by fine adjustment of the positions of the two lenses relative to the IC,while monitoring the resonance mode of the incident laser during the cavity-length scanning process.Figure 4(a)shows the observed transmitted signal before optimization of the mode matching.Clear sign of higher-order mode is observed,as indicated by the arrows in the figure.Figure 4(b)shows the result of transmitted signal after optimization of the mode matching.Signals of higher-order mode are much weaker,and the buildup related to the TEM00mode becomes much higher.

    As can be clearly seen in Fig.4(b),there are a series of positions where enhancement can be observed.However,there is only one position where the highest enhancement is reached.The further away from this position,the lower the enhancement factor is.This feature is very different from the case of a CW enhancement cavity,for which the laser can be enhanced to the same extent every time the length of the cavity is changed by a wavelength of the incident laser.For an fsEC,however,the increasing number of modes make the situation more complex.As explained in the previous part,a femtosecond laser is composed of a series of comb lines that are equally spaced by frin the frequency domain.Taking our pump IR laser for example,the number of comb lines is about 106,which means that 106CW lasers have to be enhanced simultaneously,as schematically shown in Fig.5(a).However,it is possible that only a portion of the comb lines will overlap with the cavity modes.As a consequence,a series of side peaks with a reduced buildup is observed,as shown in Fig.5(b).

    Fig.4.(a)The intensity of transmission while scanning the cavity length before mode-matching optimization.(b)Same as in panel(a)but after mode matching optimization.

    Those side peaks in Fig.5(b)can also be understood in the time domain.The reason that the femtosecond pulse can be enhanced is that the reflected pulse is overlapped in time with the following incident pulse.This means not only their shape of envelope but also the inner electric field are completely overlapped.If the length of the fsEC changes by a wavelength of the incident laser,the pulse after travelling one round trip in the cavity will not overlap with the next pulse completely,even though the phase of electric field inside envelope keeps the same.Under this condition,only a portion of each pulse contributes to the coherent addition,giving rise to a reduced buildup.Similarly,if the length of cavity changes by more than one wavelength,the overlapping portion of pulses further reduces,so does the buildup.

    Fig.5.(a)Ideal enhancement can be reached when all the laser modes match the resonance modes of the fsEC.(b)Less enhancement appears when some of the laser modes match the resonance modes of the fsEC.(c)The effect of f0on the enhancement.

    In order to enhance all the comb lines in the fsEC,as discussed in previous sections,both f0and frhave to be matched with each other precisely.frcan be roughly determined by setting the cavity length to be 3 m.After observing the resonance,a proper frcan be determined according to the position where the center peak in Fig.4(b)is the highest.f0can also be well determined after frand mode matching are properly optimized.In our experiment,the role of f0is clearly demonstrated when we set f0to be,e.g.,20 MHz and 40 MHz,respectively,as shown in Fig.5(c).As we can see,not only the height of the center peak,but also the height of the sidebands,are affected by f0.Thus,by observing this difference,the proper value of f0,i.e.,40 MHz,is determined under our experimental condition.

    Through the above steps,the fsEC is optimized to the conditions that the coherent addition of the laser field inside the fsEC is most efficient.To get a stable intracavity power,we also need to lock the length of the cavity.Here the Pound–Drever–Hall(PDH)technique[21,22]is adopted.In our experiment,we have attained the differential signal of the reflected dip by modulating sidebands,as shown in Fig.1.The fastloop PZT(Thorlabs PA4HKW,pasted behind ME)is driven with a modulation signal at 850 kHz by a function generator,which generates two sidebands at 850 kHz on both sides of the repetition frequency.These sidebands are detected by the photodiode after the grating,and then mixed with the modulation source.The mixer would output the differential signal of the reflected dip,i.e.,the PDH error signal,as shown in Fig.6(a).The PDH error signal is processed by the loop filter and the proportional-integral-derivative(PID)circuit.The output is then divided into two channels.One channel is directly sent to the fast-loop PZT,and the other one is amplified by the HV driver and then acts on the slow-loop PZT(Thorlabs AE0505D08F,mounted on the translation stage).In this way,the cavity can be locked for more than one hour.After locking,the intensity of the transmitted laser maintains the maximum of the transmitted peak,as shown in Fig.6(b).

    Fig.6.(a)PDH error signal and the intensity of transmission when the length of the cavity is slowly swept.(b)After locking,the intensity of transmission maintains maximum and the PDH error signal becomes a flat line.

    After locking the fsEC,we have measured the spectra of the incident laser(about 3 W)and the transmission from the fsEC,and the results are shown in Fig.7.One can find that,by employing low dispersion cavity mirrors,the shapes of the two spectra are very similar to each other,indicating that most of the driving optical frequency comb teeth are enhanced.However,a significant difference near 1035 nm is still noticeable.This difference is mostly likely due to high order dispersion induced in the fsEC.

    Fig.7.The spectra of the incident and transmitted signal with incident power of~3 W.

    According to the design of our fsEC,the femtosecond pulses have to travel in the fsEC for more than a few hundred times.This feature makes the dispersion of the cavity mirrors important.Actually,the bandwidth and buildup of the fsEC have been proved to be affected by dispersion.[9,23,24]The total phase shift φd(ω)induced by dispersive elements is expressed as the sum of different orders of dispersion with Taylor expansion:

    Here,ωcis the center frequency with zero dispersion.Each dispersion order affects the intracavity laser pulse differently.φ0will cause a phase shift of the electric field but will not affect the position of the envelope.φ1will cause a translation of envelope,but the inner phase will not change.φ2will broaden the pulse symmetrically in time.φ3and higher order terms will distort the pulse in a more complex way.φ0and φ1can be compensated by changing the repetition rate and the CEO frequency of the incident laser,but the higher order terms cannot.Suppose the phase shift due toφ0and φ1are well compensated,the buildup can be expressed as:

    where ticand ricare the transmissivity and the reflectivity of the IC,respectively;rcavis the total reflectivity of other cavity mirrors;m is an integer;and φ0d= φ2×(ω ?ωc)2+φ3×(ω ?ωc)3+···Thus,the further away from the center frequency with zero dispersion,the less it can be enhanced.This is in line with our observation,since the center wavelength with zero dispersion is 1040 nm for our cavity mirrors.

    Finally,we have increased the incident power and measured the corresponding intracavity power,as shown in Fig.8.When an incident power has reached 27 W,a transmitted power of 51.4 mW has been obtained.The average transmissivity of the high-reflectivity mirrors was calibrated to be 8.46×10?6.During the calibration process, five random mirrors were chosen and the scattering light was eliminated by a 20-cm-long tube that mounted between the mirror and the power meter.Thus,an intracavity average power of 6.08 kW and a buildup of 225 have been achieved.Suppose that the pulse duration inside the enhancement cavity is 100 fs and the beam radius at the focus is~20μm,an intensity as high as 4.8×1013W/cm2has been achieved.

    Fig.8.The intracavity power as a function of incident power.The inset shows the photograph of the focus region of the fsEC.Xe gas is injected to the focus region using a gas nozzle.A sapphire plate is placed behind the focus at Brewster’s angle for the fundamental laser.The out-coupled HHG is diffracted by a grating,and detected by a sodium salicylate plate.

    In order to verify the peak intensity we have achieved,Xe gas is injected to the focus region using a gas nozzle with a 150-μm inner diameter.The typical backing pressure is about 1 atm,with<1 Pa of background pressure for the vacuum chamber.To couple the copropagating HHG light out of the cavity,a 350-μm-thick sapphire plate is placed behind the focus at Brewster’s angle for the fundamental laser.The outcoupled HHG is diffracted by a grating,and detected by a sodium salicylate plate.Bright fluorescence on the sodium salicylate plate was observed,as shown in the inset of Fig.8,indicating that HHG in the fsEC was generated.With a band pass filter,the third harmonic was selected from the leakage of the cavity mirror and measured to be 8.9μW.After considering the reflectivity and transmission of all optics,the power of the generated third harmonics was estimated to be 260.4μW inside the enhancement cavity.Suppose the power in the plateau region is 2 orders of magnitude lower than the third harmonic,[25]a fewμW power is believed to be generated in the XUV region.

    3.Conclusion

    In conclusion,we have successfully built a six-mirror bowtie fsEC that works jointly with our pump IR laser.The measured transmitted spectra indicate that high order dispersion plays a non-negligible role in the enhancement process.After optimization of the cavity-length and the mode-matching of the fsEC,the cavity can be locked to maintain the maximum intracavity power through the PDH technique.With a pump power of 27 W,we have achieved an intracavity power of 6.08 kW and the corresponding buildup is 225.After introducing Xe to the focus region,HHG has been observed and coupled out of the fsEC,paving the way for the realization of an XUV comb in the near future.This fsEC also enables intra-cavity high harmonic generation and related studies,e.g.,mixing gas experiments,[7,26]multi-color experiments,[27]etc.

    [1]Jones R J,Moll K D,Thorpe M J and Ye J 2005 Phys.Rev.Lett.94 193201

    [2]Gohle C,Udem T,Herrmann M,Rauschenberger J,Holzwarth R,Schuessler H A,Krausz F and Hansch T W 2005 Nature 436 234

    [3]Cingoz A,Yost D C,Allison T K,Ruehl A,Fermann M E,Hartl I and Ye J 2012 Nature 482 68

    [4]Pupeza I,Holzberger S,Eidam T,Carstens H,Esser D,Weitenberg J,Russbuldt P,Rauschenberger J,Limpert J,Udem T,Tunnermann A,Hansch T W,Apolonski A,Krausz F and Fill E 2013 Nat.Photon.7 608

    [5]Benko C,Allison T K,Cingoz A,Hua L,Labaye F,Yost D C and Ye J 2014 Nat.Photon.8 530

    [6]Ozawa A and Kobayashi Y 2013 Phys.Rev.A 87 022507

    [7]Porat G,Heyl C M,Schoun S B,Benko C,Dorre N,Corwin K L and Ye J 2018 Nat.Photon.12 387

    [8]Hogner M,Tosa V and Pupeza I 2017 New J.Phys.19 033040

    [9]Lilienfein N,Hofer C,Holzberger S,Matzer C,Zimmermann P,Trubetskov M,Pervak V and Pupeza I 2017 Opt.Lett.42 271

    [10]Winkler G,Fellinger J,Seres J,Seres E and Schumm T 2016 Opt.Express 24 5253

    [11]Ozawa A,Zhao Z,Kuwata-Gonokami M and Kobayashi Y,et al.2015 Opt.Express 23 15107

    [12]Carstens H,Lilienfein N,Holzberger S,Jocher C,Eidam T,Limpert J,Tunnermann A,Weitenberg J,Yost D C,Alghamdi A,Alahmed Z,Azzeer A,Apolonski A,Fill E,Krausz F and Pupeza I 2014 Opt.Lett.39 2595

    [13]Eyler E E,Chieda D E,Stowe M C,Thorpe M J,Schibli T R and Ye J 2008 Eur.Phys.J.D 48 43

    [14]Bergeson S D,Balakrishnan A,Baldwin K G H,Lucatorto T B,Marangos J P,McIlrath T J,O’Brian T R,Rolston S L,Sansonetti C J,Wen J,Westbrook N,Cheng C H and Eyler E E 1998 Phys.Rev.Lett.80 3475

    [15]Haas M,Jentschura U D,Keitel C H,Kolachevsky N,Herrmann M,Fendel P,Fischer M,Udem T,Holzwarth R,Hansch T W,Scully M O and Agarwal G S 2006 Phys.Rev.A 73 052501

    [16]Herrmann M,Haas M,Jentschura U D,Kottmann F,Leibfried D,Saathoff G,Gohle C,Ozawa A,Batteiger V,Knunz S,Kolachevsky N,Schussler H A,Hansch T W and Udem T 2009 Phys.Rev.A 79 052505

    [17]Prior M H and Shugart H A 1971 Phys.Rev.Lett.27 902

    [18]Semczuk M 2009 “An ion trap for laser spectroscopy on lithium ions”,MS Thesis(Warsaw:University of Warsaw)

    [19]Ferray M,Lhuillier A,Li X F,Lompre L A,Mainfray G and Manus C 1988 J.Phys.B:At.Mol.Opt.Phys.21 L31

    [20]Cundiff S T 2002 J.Phys.D:Appl.Phys.35 R43

    [21]Black E D 2001 Am.J.Phys.69 79

    [22]Zhang J W,Han H N,Hou L,Zhang L,Yu Z J,Li D H and Wei Z Y 2016 Chin.Phys.B 25 014205

    [23]Moll K D,Jones R J and Ye J 2005 Opt.Express 13 1672

    [24]Han H N,Zhang J W,Zhang Q,Zhang L and Wei Z Y 2012 Acta Phys.Sin.61 164206(in Chinese)

    [25]Ozawa A,Rauschenberger J,Gohle C,Herrmann M,Walker D R,Pervak V,Fernandez A,Graf R,Apolonski A,Holzwarth R,Krausz F,Hansch T W and Udem T 2008 Phys.Rev.Lett.100 253901

    [26]Jin C,Zhou X X and Zhao S F 2010 Chin.Phys.Lett.27 033301

    [27]Zhang H D,Guo J,Shi Y,Du H,Liu H F,Huang X R,Liu X S and Jing J 2017 Chin.Phys.Lett.34 014206

    猜你喜歡
    陳忠華林
    情人送她一套房,孰料背后是個坑
    婦女生活(2020年11期)2020-11-23 06:32:16
    華林 加速全球布局
    問學之路(中篇小說)
    長城(2018年3期)2018-09-20 02:46:14
    華林 向愛而行
    華林 修身立德 以道致遠
    華林 一企千人助萬家
    華林 行穩(wěn)致遠
    誰偷了我的樹苗
    故事林(2017年9期)2017-05-20 06:52:17
    各界群眾前來省作協(xié)吊唁陳忠實先生1
    延河(2016年6期)2016-08-04 19:43:28
    各界群眾前來省作協(xié)吊唁陳忠實先生2
    延河(2016年6期)2016-08-04 19:43:28
    老女人水多毛片| 天天操日日干夜夜撸| 日韩中字成人| 久久人人爽av亚洲精品天堂| 高清欧美精品videossex| 狠狠精品人妻久久久久久综合| 18+在线观看网站| 边亲边吃奶的免费视频| 色哟哟·www| 欧美日韩视频精品一区| 久久99热这里只频精品6学生| 国产黄色视频一区二区在线观看| 日韩一区二区视频免费看| 你懂的网址亚洲精品在线观看| 日韩精品有码人妻一区| 两个人看的免费小视频| 啦啦啦中文免费视频观看日本| 国产精品女同一区二区软件| 国产免费视频播放在线视频| 精品久久久精品久久久| 亚洲国产精品成人久久小说| 在线免费观看不下载黄p国产| 女的被弄到高潮叫床怎么办| 日韩制服丝袜自拍偷拍| 国产日韩欧美在线精品| 国产午夜精品一二区理论片| 免费大片黄手机在线观看| 在线天堂最新版资源| 男女下面插进去视频免费观看| 中文欧美无线码| www.精华液| 久久国内精品自在自线图片| 啦啦啦啦在线视频资源| 日韩视频在线欧美| 国产一区二区激情短视频 | 丝袜人妻中文字幕| 亚洲av成人精品一二三区| 国产激情久久老熟女| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 国产午夜精品一二区理论片| 国产 一区精品| 国产精品女同一区二区软件| 精品99又大又爽又粗少妇毛片| 精品人妻熟女毛片av久久网站| 国产黄频视频在线观看| 免费观看无遮挡的男女| 日本91视频免费播放| 99精国产麻豆久久婷婷| av免费在线看不卡| 国产精品久久久久成人av| 精品亚洲成国产av| 伊人亚洲综合成人网| 久久久久国产一级毛片高清牌| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| 亚洲av电影在线进入| 久久久精品国产亚洲av高清涩受| 2021少妇久久久久久久久久久| 精品亚洲成国产av| 你懂的网址亚洲精品在线观看| 国产精品亚洲av一区麻豆 | av在线老鸭窝| 满18在线观看网站| 国产精品一区二区在线不卡| 精品少妇一区二区三区视频日本电影 | 精品久久久精品久久久| h视频一区二区三区| 母亲3免费完整高清在线观看 | 少妇精品久久久久久久| av网站免费在线观看视频| 2018国产大陆天天弄谢| 777久久人妻少妇嫩草av网站| 精品视频人人做人人爽| 国产精品成人在线| 午夜日韩欧美国产| 日韩视频在线欧美| 欧美精品人与动牲交sv欧美| av天堂久久9| 青春草国产在线视频| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 最近最新中文字幕大全免费视频 | 国产成人免费观看mmmm| 老司机影院成人| 国产淫语在线视频| 香蕉国产在线看| 黄色怎么调成土黄色| 国产精品久久久久久久久免| 一级毛片黄色毛片免费观看视频| 97在线视频观看| 亚洲五月色婷婷综合| 国产xxxxx性猛交| 免费黄网站久久成人精品| 99热网站在线观看| 国产麻豆69| 大码成人一级视频| 婷婷色综合www| 国产精品麻豆人妻色哟哟久久| 日本免费在线观看一区| 成人影院久久| 成年av动漫网址| 精品国产一区二区三区久久久樱花| av免费在线看不卡| 亚洲三区欧美一区| 波野结衣二区三区在线| 国产激情久久老熟女| 侵犯人妻中文字幕一二三四区| 一区二区日韩欧美中文字幕| 久久久久国产一级毛片高清牌| 观看av在线不卡| 伊人亚洲综合成人网| 少妇人妻久久综合中文| 制服人妻中文乱码| 亚洲av免费高清在线观看| 中文字幕制服av| 成年人免费黄色播放视频| 汤姆久久久久久久影院中文字幕| 亚洲av.av天堂| 亚洲综合色网址| 国产精品av久久久久免费| 国产精品偷伦视频观看了| 欧美另类一区| 春色校园在线视频观看| 黑人巨大精品欧美一区二区蜜桃| 精品一品国产午夜福利视频| 国产在线免费精品| a级毛片在线看网站| 亚洲精品视频女| av片东京热男人的天堂| 国产精品欧美亚洲77777| 一区二区三区四区激情视频| 老司机亚洲免费影院| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品一二三| 你懂的网址亚洲精品在线观看| 看非洲黑人一级黄片| 亚洲精品国产色婷婷电影| 亚洲成人手机| 另类精品久久| h视频一区二区三区| 你懂的网址亚洲精品在线观看| 又大又黄又爽视频免费| 久久青草综合色| 免费黄色在线免费观看| 看十八女毛片水多多多| 亚洲欧洲日产国产| 久久久久久人人人人人| 欧美精品一区二区大全| 午夜日韩欧美国产| 国产又色又爽无遮挡免| 精品国产一区二区久久| 9热在线视频观看99| 尾随美女入室| 一区二区av电影网| 曰老女人黄片| 亚洲中文av在线| 在线观看三级黄色| 久久久久久久大尺度免费视频| 国产高清不卡午夜福利| 男女国产视频网站| 欧美日韩亚洲高清精品| 欧美日韩综合久久久久久| 午夜激情久久久久久久| 亚洲成人一二三区av| 最近中文字幕2019免费版| 欧美日韩亚洲国产一区二区在线观看 | 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区| 99久久精品国产国产毛片| 日韩欧美一区视频在线观看| 国产国语露脸激情在线看| 女性被躁到高潮视频| 熟女av电影| 最黄视频免费看| 亚洲国产欧美网| a 毛片基地| 一级毛片电影观看| 国产精品久久久久久精品电影小说| 久久这里只有精品19| 亚洲av中文av极速乱| 激情五月婷婷亚洲| 我要看黄色一级片免费的| 丝袜在线中文字幕| 香蕉精品网在线| 黄色视频在线播放观看不卡| 日韩免费高清中文字幕av| 欧美亚洲日本最大视频资源| 青春草视频在线免费观看| 肉色欧美久久久久久久蜜桃| av在线观看视频网站免费| 国产黄色免费在线视频| 青草久久国产| av又黄又爽大尺度在线免费看| 国产女主播在线喷水免费视频网站| 国产成人91sexporn| 久久久久视频综合| 伦理电影免费视频| 日韩大片免费观看网站| 日本av手机在线免费观看| 亚洲,一卡二卡三卡| 一边摸一边做爽爽视频免费| 欧美97在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | freevideosex欧美| 国产激情久久老熟女| 免费在线观看视频国产中文字幕亚洲 | 在线观看www视频免费| 午夜免费男女啪啪视频观看| 91精品三级在线观看| 久久精品人人爽人人爽视色| 成人黄色视频免费在线看| 国产精品 欧美亚洲| 一本久久精品| av线在线观看网站| av有码第一页| 欧美日韩一级在线毛片| xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 国产免费现黄频在线看| 亚洲国产av影院在线观看| 我的亚洲天堂| 热99国产精品久久久久久7| 免费播放大片免费观看视频在线观看| 国产精品av久久久久免费| 亚洲av日韩在线播放| 人人妻人人澡人人看| 男人爽女人下面视频在线观看| 精品人妻熟女毛片av久久网站| 777米奇影视久久| 蜜桃国产av成人99| 欧美精品人与动牲交sv欧美| 日韩av免费高清视频| 免费观看无遮挡的男女| 亚洲综合色网址| 精品卡一卡二卡四卡免费| 国产精品国产三级国产专区5o| 丁香六月天网| 熟女电影av网| 日本wwww免费看| 免费观看无遮挡的男女| 欧美激情 高清一区二区三区| 成人国语在线视频| 乱人伦中国视频| 大香蕉久久成人网| 九色亚洲精品在线播放| 永久网站在线| 天天躁日日躁夜夜躁夜夜| 欧美老熟妇乱子伦牲交| 亚洲精品国产一区二区精华液| 国产精品蜜桃在线观看| 日韩av不卡免费在线播放| 午夜福利视频精品| 国产毛片在线视频| √禁漫天堂资源中文www| 伊人久久大香线蕉亚洲五| 久久免费观看电影| 久久国内精品自在自线图片| 90打野战视频偷拍视频| 最近中文字幕高清免费大全6| 欧美97在线视频| 久久久精品国产亚洲av高清涩受| 欧美日韩亚洲高清精品| 如日韩欧美国产精品一区二区三区| 国产老妇伦熟女老妇高清| 国产精品.久久久| 男女高潮啪啪啪动态图| 精品国产一区二区三区四区第35| 搡女人真爽免费视频火全软件| 国产精品久久久久久av不卡| 制服诱惑二区| 大香蕉久久成人网| 亚洲 欧美一区二区三区| 国产亚洲一区二区精品| 另类亚洲欧美激情| 交换朋友夫妻互换小说| 国产激情久久老熟女| 婷婷成人精品国产| 午夜福利网站1000一区二区三区| 可以免费在线观看a视频的电影网站 | 亚洲一码二码三码区别大吗| 高清av免费在线| 女的被弄到高潮叫床怎么办| 亚洲精品美女久久久久99蜜臀 | 18禁国产床啪视频网站| 亚洲熟女精品中文字幕| 亚洲欧美清纯卡通| 国产日韩欧美亚洲二区| 在线看a的网站| 国产成人免费观看mmmm| 久久午夜福利片| 国产毛片在线视频| 成人漫画全彩无遮挡| 精品一区二区三卡| 日韩伦理黄色片| 黄网站色视频无遮挡免费观看| 国产熟女欧美一区二区| 日韩欧美精品免费久久| 亚洲成人av在线免费| 高清不卡的av网站| 看免费成人av毛片| 亚洲精品久久午夜乱码| 亚洲,欧美,日韩| 亚洲一区二区三区欧美精品| 最近手机中文字幕大全| 国产av精品麻豆| 一区二区三区四区激情视频| 在线天堂中文资源库| 久久影院123| 两个人免费观看高清视频| 国产精品人妻久久久影院| 十八禁高潮呻吟视频| 26uuu在线亚洲综合色| 国产无遮挡羞羞视频在线观看| 母亲3免费完整高清在线观看 | 91精品三级在线观看| www.熟女人妻精品国产| 成人午夜精彩视频在线观看| 夫妻午夜视频| 秋霞伦理黄片| 多毛熟女@视频| 日韩视频在线欧美| 日韩大片免费观看网站| 国产乱人偷精品视频| 国产国语露脸激情在线看| 欧美亚洲日本最大视频资源| 欧美人与性动交α欧美精品济南到 | 日韩欧美一区视频在线观看| 国产精品欧美亚洲77777| 男人添女人高潮全过程视频| 国产男人的电影天堂91| 久久狼人影院| 一边亲一边摸免费视频| 一区二区日韩欧美中文字幕| 男女高潮啪啪啪动态图| 国产不卡av网站在线观看| 国产激情久久老熟女| 波多野结衣av一区二区av| 搡女人真爽免费视频火全软件| 老汉色∧v一级毛片| 国产熟女欧美一区二区| 国精品久久久久久国模美| 在线精品无人区一区二区三| 高清av免费在线| 亚洲国产欧美日韩在线播放| 波多野结衣一区麻豆| 国产精品一二三区在线看| 视频在线观看一区二区三区| 三级国产精品片| 亚洲激情五月婷婷啪啪| 黄网站色视频无遮挡免费观看| 亚洲av国产av综合av卡| 国产亚洲一区二区精品| 哪个播放器可以免费观看大片| 亚洲精品在线美女| 亚洲色图 男人天堂 中文字幕| 性色av一级| 超色免费av| 麻豆精品久久久久久蜜桃| 男女啪啪激烈高潮av片| 青春草国产在线视频| av在线观看视频网站免费| 青春草国产在线视频| 久久99精品国语久久久| 亚洲精品中文字幕在线视频| 男人操女人黄网站| 在线亚洲精品国产二区图片欧美| 日本wwww免费看| 亚洲精品一区蜜桃| 成人国产av品久久久| 免费看不卡的av| 亚洲欧洲精品一区二区精品久久久 | 丁香六月天网| 自拍欧美九色日韩亚洲蝌蚪91| 午夜影院在线不卡| 熟女少妇亚洲综合色aaa.| 久久狼人影院| 久久ye,这里只有精品| 午夜免费男女啪啪视频观看| 天堂8中文在线网| 国产毛片在线视频| 免费观看无遮挡的男女| 人体艺术视频欧美日本| 免费在线观看视频国产中文字幕亚洲 | 久久国产亚洲av麻豆专区| 国产精品.久久久| 99久久综合免费| 最近中文字幕2019免费版| 最近手机中文字幕大全| 亚洲av欧美aⅴ国产| 丝袜脚勾引网站| 欧美精品人与动牲交sv欧美| 黄网站色视频无遮挡免费观看| 欧美精品一区二区免费开放| 久久精品久久久久久久性| 成人手机av| 老汉色∧v一级毛片| 欧美日韩一级在线毛片| av在线app专区| 久久久久视频综合| 人妻 亚洲 视频| 制服人妻中文乱码| 在线精品无人区一区二区三| 精品少妇内射三级| 成年美女黄网站色视频大全免费| 国产成人aa在线观看| 亚洲精品久久久久久婷婷小说| 国产日韩欧美视频二区| 哪个播放器可以免费观看大片| 狠狠精品人妻久久久久久综合| 精品久久久久久电影网| 亚洲欧美色中文字幕在线| 一级片'在线观看视频| 精品视频人人做人人爽| www.熟女人妻精品国产| 国产毛片在线视频| av卡一久久| 精品国产乱码久久久久久男人| 国产精品嫩草影院av在线观看| 欧美精品人与动牲交sv欧美| 精品国产超薄肉色丝袜足j| 欧美日韩精品成人综合77777| 狠狠精品人妻久久久久久综合| 99热网站在线观看| 一区福利在线观看| 欧美日韩视频高清一区二区三区二| 九草在线视频观看| 午夜91福利影院| 寂寞人妻少妇视频99o| 久久久久精品性色| 国产精品无大码| 亚洲精品国产av蜜桃| 日日撸夜夜添| 久久久精品免费免费高清| 9色porny在线观看| 90打野战视频偷拍视频| 久久久久网色| 街头女战士在线观看网站| 999久久久国产精品视频| 桃花免费在线播放| 在线观看免费视频网站a站| 国产高清国产精品国产三级| 久久久久国产网址| av国产久精品久网站免费入址| 欧美日韩一区二区视频在线观看视频在线| 欧美日韩精品网址| 亚洲美女黄色视频免费看| 午夜精品国产一区二区电影| 成年女人毛片免费观看观看9 | 麻豆精品久久久久久蜜桃| 观看av在线不卡| 肉色欧美久久久久久久蜜桃| 色婷婷久久久亚洲欧美| 超色免费av| 午夜精品国产一区二区电影| 精品久久蜜臀av无| 国产伦理片在线播放av一区| 亚洲国产欧美网| 久久99一区二区三区| 麻豆乱淫一区二区| 亚洲av成人精品一二三区| 国产精品麻豆人妻色哟哟久久| 欧美少妇被猛烈插入视频| 精品少妇黑人巨大在线播放| 一本久久精品| 欧美精品一区二区大全| 欧美亚洲日本最大视频资源| 最近最新中文字幕免费大全7| 成年动漫av网址| 国产成人av激情在线播放| 90打野战视频偷拍视频| 人妻少妇偷人精品九色| 久久久a久久爽久久v久久| 2018国产大陆天天弄谢| 国产探花极品一区二区| 又黄又粗又硬又大视频| 成人毛片60女人毛片免费| 国产亚洲一区二区精品| 色婷婷av一区二区三区视频| 亚洲精品久久成人aⅴ小说| 青青草视频在线视频观看| 久久国产精品大桥未久av| av女优亚洲男人天堂| 大香蕉久久成人网| 女人高潮潮喷娇喘18禁视频| 免费av中文字幕在线| 看免费成人av毛片| 亚洲精品日本国产第一区| 黄片无遮挡物在线观看| 精品亚洲成国产av| 国产日韩一区二区三区精品不卡| 色网站视频免费| 午夜激情av网站| 观看av在线不卡| 欧美精品高潮呻吟av久久| 国产亚洲最大av| 黄色一级大片看看| 老司机亚洲免费影院| 成人手机av| 国产亚洲精品第一综合不卡| 制服人妻中文乱码| 国产av精品麻豆| 在线免费观看不下载黄p国产| 国产极品粉嫩免费观看在线| 男女无遮挡免费网站观看| 久久久久久久精品精品| 免费女性裸体啪啪无遮挡网站| 亚洲精品第二区| 一区二区av电影网| 亚洲人成网站在线观看播放| 午夜日韩欧美国产| 亚洲精品自拍成人| www.自偷自拍.com| 欧美中文综合在线视频| 岛国毛片在线播放| 曰老女人黄片| 久久精品久久久久久噜噜老黄| 久久狼人影院| 日日摸夜夜添夜夜爱| 久久99一区二区三区| 国产成人欧美| 大码成人一级视频| 精品人妻熟女毛片av久久网站| 欧美 亚洲 国产 日韩一| 91aial.com中文字幕在线观看| 免费黄频网站在线观看国产| 久久人人爽av亚洲精品天堂| 免费女性裸体啪啪无遮挡网站| 久久精品久久久久久久性| 成人国产av品久久久| 成人毛片60女人毛片免费| 亚洲国产欧美日韩在线播放| 久久久国产一区二区| 国产成人一区二区在线| 我要看黄色一级片免费的| 两性夫妻黄色片| tube8黄色片| 综合色丁香网| 大话2 男鬼变身卡| 欧美亚洲日本最大视频资源| 欧美精品国产亚洲| 精品酒店卫生间| 亚洲一区中文字幕在线| 国产极品粉嫩免费观看在线| av视频免费观看在线观看| 91精品伊人久久大香线蕉| 91午夜精品亚洲一区二区三区| 欧美成人午夜免费资源| 国产高清国产精品国产三级| 国产有黄有色有爽视频| 亚洲精品中文字幕在线视频| 大片电影免费在线观看免费| 女性生殖器流出的白浆| 亚洲精品成人av观看孕妇| 日韩一卡2卡3卡4卡2021年| 久久亚洲国产成人精品v| 我要看黄色一级片免费的| 日本色播在线视频| 亚洲精品久久成人aⅴ小说| 在线观看免费高清a一片| 日韩人妻精品一区2区三区| 久久久久久人妻| 多毛熟女@视频| 久久久久久久久久人人人人人人| 韩国高清视频一区二区三区| 在线观看三级黄色| 成人免费观看视频高清| 国产日韩欧美视频二区| 中文字幕色久视频| 国产在线免费精品| 亚洲精品成人av观看孕妇| 一本色道久久久久久精品综合| 午夜福利,免费看| 99久久精品国产国产毛片| 99香蕉大伊视频| 赤兔流量卡办理| 午夜91福利影院| 黄片无遮挡物在线观看| 国产精品香港三级国产av潘金莲 | 久久青草综合色| 边亲边吃奶的免费视频| 久久精品国产亚洲av天美| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区黑人 | 成年女人毛片免费观看观看9 | 在线观看人妻少妇| 久久久久久久精品精品| 国产精品 国内视频| videos熟女内射| 久久青草综合色| 1024视频免费在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品av麻豆狂野| 这个男人来自地球电影免费观看 | 交换朋友夫妻互换小说| 国产乱人偷精品视频| 日韩成人av中文字幕在线观看| 成人毛片60女人毛片免费| 亚洲伊人色综图| 国产精品女同一区二区软件| 人成视频在线观看免费观看| 高清在线视频一区二区三区| 青青草视频在线视频观看| 久久久久久久久久久久大奶| 精品亚洲成a人片在线观看| 人人妻人人添人人爽欧美一区卜| 午夜福利网站1000一区二区三区| 久久精品国产鲁丝片午夜精品| 日韩成人av中文字幕在线观看| 久久免费观看电影| 国产一区有黄有色的免费视频| 国产成人a∨麻豆精品| av在线观看视频网站免费|