• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gauge Transformation for BCr-KP Hierarchy and Its Compatibility with Additional Symmetry?

    2019-03-12 02:41:06LuMinGeng耿露敏HuiZhanChen陳慧展NaLi李娜andJiPengCheng程紀鵬
    Communications in Theoretical Physics 2019年3期
    關鍵詞:李娜

    Lu-Min Geng (耿露敏), Hui-Zhan Chen (陳慧展), Na Li (李娜), and Ji-Peng Cheng (程紀鵬)

    School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

    (Received July 1, 2018)

    Abstract The BCr-KP hierarchy is an important sub-hierarchy of the KP hierarchy.In this paper, the BCr-KP hierarchy is investigated from three aspects.Firstly, we study the gauge transformation for the BCr-KP hierarchy.Different from the KP hierarchy, the gauge transformation must keep the constraint of the BCr-KP hierarchy.Secondly,we study the gauge transformation for the constrained BCr-KP hierarchy.In this case, the constraints of the Lax operator must be invariant under the gauge transformation.At last, the compatibility between the additional symmetry and the gauge transformation for the BCr-KP hierarchy is explored.

    Key words: the BCr-KP hierarchy, gauge transformation, additional symmetry

    1 Introduction

    The Kadomtsev-Petviashvili (KP in short)hierarchy[1?2]is an important research area in the integrable systems.There is a kind of sub-hierarchy of the KP hierarchy studied by Dateet al.in Ref.[3], which can be viewed as the generalization of the BKP and CKP hierarchies.[1,3?5]In Ref.[4],Zuoet al.made a slight modification for the sub-KP hierarchy of Ref.[3], and called it theBCr-KP hierarchy, to ensure its consistence with the CKP and BKP hierarchy in the case ofr=0 andr=1 respectively.In Ref.[4], Zuoet al.not only constructed the additional symmetries of theBCr-KP hierarchy and its constrained case, but also showed that the corresponding additional symmetries form a-algebra and a Witt algebra respectively.In this paper, we will consider the gauge transformations and its relation with the additional symmetry of theBCr-KP hierarchy.

    The gauge transformation[6?8]is an efficient way to construct solutions for integrable hierarchies.Its initial ideal dates back to the gauge equivalence with the different integrable models.The gauge transformation operators of the KP hierarchy[6?7]mainly included the differential typeTDand the integral typeTI.Now, the gauge transformations of many important integrable hierarchies have been constructed.For instance, the KP and modified KP hierarchies,[6?11]the BKP and CKP hierarchies,[12?14]theq-KP and modifiedq-KP hierarchies,[15?18]the discrete KP and modified discrete KP hierarchies.[19?21]In this paper, we focus on the gauge transformation operators of theBCr-KP hierarchy and its constrained case.Different from the KP hierarchy, the gauge transformations of theBCr-KP hierarchy must keep theBCr-constraint invariant, besides keeping the Lax equation.It is found in this paper that the combination ofTDandTIis the suitable choice of the gauge transformation for theBCr-KP hierarchy.As for the constrained case, the corresponding gauge transformations have to ensure the constrained form of the Lax operator unchanged,besides the two conditions in unconstrained case.In fact, this can be done, by choosing the eigenfunction in the negative part of the Lax operator as the generating function in the gauge transformation operators.What is more, the successive applications of the corresponding gauge transformation operators are considered in this paper.

    Another topic in this paper is the additional symmetry.[1?2,22?24]The additional symmetries are from thew∞algebra[24]or the so-called centerlessW1+∞-algebra,which are an exceptional kind of symmetries relying explicitly on the space and time variables.[25?28]Nowdays, there are many important results on the additional symmetries.[4,29?35]In this paper, we will study the compatibility of the additional symmetries and the gauge transformation for theBCr-KP hierarchy.It is an interesting question to discuss the changes of the additional symmetries under the gauge transformations.For theBCr-KP hierarchy after the gauge transformation,we find that the additional symmetries remain the ones, which shows some compatibilities of the additional symmetry and the gauge transformation.

    The organization of this paper is as follows.In Sec.2,some backgrounds of theBCr-KP hierarchy are introduced.In Sec.3, the gauge transformations for theBCr-KP hierarchy are given to keep theBCr-constraint.In Sec.4,the gauge transformation for the constrainedBCr-KP hierarchy on the Lax operator are investigated.In Sec.5, we focus on the compatibility of the gauge transformations and the additional symmetries.

    2 Background on the BCr-KP Hierarchy

    In this section, we will review the backgrounds on theBCr-KP hierarchy,[4]based upon the pseudo-differental operators.The multiplication of?iwith thefobeys the Leibnitz rule[2]

    Forwe denoteandA?=What is more,AforA·fmeans that the multiplication ofAandf, whileA(f)denotes the action ofAonf.The conjugate operation?obeys the following rules: (AB)?=B?A?,??=??,f?=f, for any pseudo-differential operatorsAandBand any functionf.

    Let us introduce the KP hierarchy[1?2]firstly, sinceBCr-KP hierarchy is a kind of sub-hierarchy of the KP hierarchy.The Lax equation of the KP hierarchy is defined by

    Here the Lax operator is given by

    andS= 1 +s1??1+s2??2+s3??3+···is called the dressing operator.And the coefficientss1,s2,s3,...are the functions of infinitely many variablest= (t1=x,t2,t3,...).The Lax equation (2)is equivalent to the Sato’s equation:

    The eigenfunction?and the adjoint eigenfunctionψof the KP hierarchy are defined by

    respectively.

    Next introduce

    whereSis the dressing operator of the KP hierarchy.Generally, theBCr-KP hierarchy[3?4]can be defined by imposing the condition below on the dressing operatorS,

    which means thatQis anr-order differential operator satisfyingQ?= (?1)rQ.Further according to Eqs.(3)and(4), one can find

    and by talking the negative part and usingQ=Q+, one gets 1 + (?1)n= 0.Therefore, theBCr-KP hierarchy only has odd flows.

    By summarizing the results above, theBCr-KP hierarchy is defined by

    and the Lax operatorLin Eq.(3)has the reduction condition (7)or (8).Notice that

    (i)BC0-KP is the CKP hierarchy.Whenr= 0, one can findQ=1 andL?=?L.

    (ii)BC1-KP is the BKP hierarchy.Whenr= 1, one can findQ=?andL?=??L??1.

    According to Eqs.(5)and (8), it can be found that the adjoint eigenfunction of theBCr-KP hierarchy can be expressed byQ(?), where?is an eigenfunction.The constrainedBCr-KP hierarchy[4]is defined by imposing the below constraints on the Lax operator ofBCr-KP hierarchy

    where?1iand?2iare two eigenfunctions of theBCr-KP hierarchy.

    3 The Gauge Transformation for the BCr-KP Hierarchy

    In this section, we will consider the gauge transformation of theBCr-KP hierarchy.

    Firstly, let us review the gauge transformation of the KP hierarchy.[6?7]Assume thatTis a pseudo-differential operator andLis the Lax operator of the KP hierarchy.DenoteL(1)=TLT?1andB(1)n ≡(L(1))n+.If?tnL(1)=[B(1)n ,L(1)]still holds,thenTis called the gauge transformation operator for the KP hierarchy.There are two elementary types of the gauge transformation operator in the KP case.

    where?andψare the eigenfunction and adjoint eigenfunction respectively.

    Given eigenfunction?iand adjoint eigenfunctionψifori= 1,2,...,n, consider the following chain of the gauge transformation operatorsTD(?)andTI(ψ).

    Denote

    The next proposition will give the explicit form ofTn+n.For this, the generalized Wronskian determinant[9]will be needed, which is defined by

    Proposition 1[9]Tn+nandT?1n+nhave the following forms Before further discussing, the next lemma will be needed.

    Lemma 1[7,11]For any functionsfand any pseudo differential operator

    After the above preparation, we begin to consider the gauge transformations of theBCr-KP hierarchy.The gauge transformation operatorTof theBCr-KP hierarchy must satisfy the following two conditions, which are different from the KP hierarchy, that is

    (i)Keeping the Lax equation:?t2n+1= [2n+1,],where=TLT?1and2n+1≡()2n+1+.

    (ii)Keeping theBCr-constraint:= ()+, where=(T?1)?QT?1.

    However in theBCr-KP hierarchy, singleTDorTIcan not ensure theBCr-constraint invariant.Fortunately,it is found that the combination ofTDandTI, i.e.,T1+1=TI((Q(?))(1))TD(?), can satisfy the two conditions above.We will show this fact below.

    Proposition 2 T1+1=TI((Q(?))(1))TD(?)is the gauge transformation of theBCr-KP hierarchy, where?is the eigenfunctionThat is to say,

    ProofFirstly by using (?Q(?)dx)· ?=? ·(∫?Q(?)dx)??Q(?),

    Similarly

    therefore

    Then according to Eqs.(22), (24)and Lemma 1,

    Further according to Lemma 1

    By subsituting Eq.(26)into Eq.(25)and using the relationQ?=(?1)rQ, one can at last obtain Eq.(21).□

    Remark 1The results in Proposition 3 contain the gauge transformation operators of the CKP and BKP hierarchies:[12?14]

    (i)The CKP hierarchy:T1+1=1?(??1x ?2)?1???.

    (ii)The BKP hierarchy:T1+1=1?2??1??1?x.

    Remark 2In generalQ1+1≠ Q, thoughQ1+1=Q,whenr=0 orr=1.

    4 The Gauge Transformation for the Constrained BCr-KP Hierarchy

    In this section, we will consider the gauge tranformation of the constrainedBCr-KP hierarchy.Before doing this, let us review some results on the gauge transformations of the constrained KP hierarchy first.

    Proposition 3[10,13]For the constrained KP hierarchy

    under the gauge transformationwe have

    where

    Here

    As for the case of theBCr-KP hierarchyL=the corresponding gauge transformation operatorThas to satisfy the following conditions:

    (i)Keeping the Lax equation:whereand

    (ii)Keeping theBCr-KP constraint:where

    (iii)Keeping the form of Lax operator:

    The required gauge tranformation operatorTis given in the next proposition.

    Proposition 4For the constrainedBCr-KP hierarchy

    the gauge transformation operator is given byT1+1=TI((Q(?11))(1))TD(?11).Under the gauge transformationT1+1, the Lax operatorLwill become into

    where

    ProofIn order to proveT1+1is the gauge transformation of the constrainedBCr-KP hierarchy, we only need to show

    wherei=1,2,...,m.

    Wheni=1, according to Proposition 3,

    where we have usedtheBCr-KP constraint (8)and

    Fori≠1 andj=1,2,

    According to Proposition 1 and 4, we can know that

    Proposition 5For the constrainedBCr-KP hierarchyundern-step gauge transformationsTn+n, we have

    where

    Remark 3Whenr= 0 andr= 1, the corresponding results in Proposition 5 are consistent with the cases in Ref.[13].

    5 The Additional Symmetry and the Gauge Transformation for the BCr-KP Hierarchy

    In this section, we will discuss the compatibility of the additional symmetry and the gauge transformation operators for theBCr-KP hierarchy.

    At first,additional symmetries for theBCr-KP hierarchy[4]will be introduced.Denote

    which satisfies?t2j?1M= [B2j?1,M] and [L,M]= 1.And let

    satisfying

    Some lemmas will be needed when we consider the additional symmetries under the gauge transformations for theBCr-KP hierarchy.

    Lemma 2For the eigenfunction?of theBCr-KP hierarchy

    ProofBy the following direct computations

    Lemma 3For the eigenfunction?of theBCr-KP hierarchy

    whereQ(?)(1)=?(T?1D(?))?(Q(?))=TI(?)(Q(?)).

    ProofAccording to Eqs.(18), (48), and (50)

    Therefore

    With these preparations, we can get the following results.

    Proposition 6For theBCr-KP hierarchy,the additional symmetry flows can commute with the gauge transformationsT1+1=TI(Q(?)(1))TD(?), that is

    if and only if the eigenfunction?transforms under the additional symmetries in the following way

    ProofFirstly, according to Eq.(49)

    On the other hand

    thus Eq.(55)holds, which means

    By Eqs.(18), (19), and (52)

    According to Eqs.(61), (62), Eq.(60)is true if and only if

    猜你喜歡
    李娜
    Characteristics of cell motility during cell collision
    李娜作品
    大眾文藝(2022年22期)2022-12-01 11:52:58
    Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy
    《榜樣》:藝術創(chuàng)作的一次“出圈”表達
    Wave–activity relation containing wave–basic flow interaction based on decomposition of general potential vorticity?
    Application research of bamboo materials in interior design
    Relationship between characteristic lengths and effective Saffman length in colloidal monolayers near a water-oil interface?
    Analysis of the Effects of Introversion and Extroversion Personality Traits on Students’ English Reading And Writing Abilities with its Relevant Teaching Advice
    李娜作品
    藝術家(2017年2期)2017-11-26 21:26:20
    新年音樂會上的歡呼
    日韩精品有码人妻一区| 黄色一级大片看看| 网址你懂的国产日韩在线| 国产亚洲5aaaaa淫片| 免费不卡的大黄色大毛片视频在线观看 | 国产色爽女视频免费观看| 欧美日本视频| 神马国产精品三级电影在线观看| 国产精品日韩av在线免费观看| 久久国内精品自在自线图片| 国产 一区 欧美 日韩| 国产白丝娇喘喷水9色精品| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 亚洲成人久久爱视频| 亚洲在线自拍视频| 一级黄色大片毛片| 丰满人妻一区二区三区视频av| 毛片一级片免费看久久久久| 日韩欧美国产在线观看| 精品熟女少妇av免费看| 欧美精品国产亚洲| 国产精品美女特级片免费视频播放器| 午夜免费男女啪啪视频观看| 国产亚洲5aaaaa淫片| 九九热线精品视视频播放| 欧美色视频一区免费| 乱码一卡2卡4卡精品| 精品酒店卫生间| 哪个播放器可以免费观看大片| 中国国产av一级| 51国产日韩欧美| 亚洲av成人精品一区久久| 夫妻性生交免费视频一级片| 婷婷色综合大香蕉| 天美传媒精品一区二区| 精品99又大又爽又粗少妇毛片| 特级一级黄色大片| 亚洲欧美精品专区久久| 成人午夜高清在线视频| 国产av一区在线观看免费| 亚洲av二区三区四区| 久久精品国产自在天天线| 搡老妇女老女人老熟妇| 99热这里只有精品一区| 日韩国内少妇激情av| 欧美日韩综合久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 久久精品人妻少妇| 久久精品人妻少妇| 欧美日本亚洲视频在线播放| eeuss影院久久| 26uuu在线亚洲综合色| 亚洲18禁久久av| 国产亚洲91精品色在线| 狂野欧美激情性xxxx在线观看| 久久精品综合一区二区三区| av视频在线观看入口| 亚洲国产最新在线播放| 久99久视频精品免费| 国产乱来视频区| 国产精品伦人一区二区| 中文字幕人妻熟人妻熟丝袜美| 久久精品熟女亚洲av麻豆精品 | 国产精品一区www在线观看| 午夜激情欧美在线| av在线亚洲专区| 久久久久网色| 久久久国产成人精品二区| 国产欧美日韩精品一区二区| 寂寞人妻少妇视频99o| 久久久久久伊人网av| 搡老妇女老女人老熟妇| 久久99热6这里只有精品| 国产成人午夜福利电影在线观看| 黄色一级大片看看| 日产精品乱码卡一卡2卡三| 爱豆传媒免费全集在线观看| 国产精品精品国产色婷婷| 床上黄色一级片| 性插视频无遮挡在线免费观看| 国产69精品久久久久777片| 国产 一区 欧美 日韩| 亚洲人成网站在线观看播放| 在线播放国产精品三级| 日韩视频在线欧美| 久久久久久久久中文| 国产三级中文精品| 女人十人毛片免费观看3o分钟| 欧美极品一区二区三区四区| 你懂的网址亚洲精品在线观看 | 国产高清三级在线| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 亚洲国产精品久久男人天堂| 小说图片视频综合网站| 国产一区二区亚洲精品在线观看| 国产一级毛片在线| 国产精品久久久久久久电影| 男女国产视频网站| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 国产国拍精品亚洲av在线观看| 久99久视频精品免费| 在线播放无遮挡| 91aial.com中文字幕在线观看| 久久99热这里只频精品6学生 | 亚洲精品,欧美精品| 观看美女的网站| 中文字幕制服av| 免费看光身美女| 热99在线观看视频| 午夜福利在线观看吧| 久久人妻av系列| 身体一侧抽搐| 嫩草影院精品99| 又爽又黄无遮挡网站| 久久鲁丝午夜福利片| 热99在线观看视频| 在线免费十八禁| 欧美高清成人免费视频www| 中文欧美无线码| 欧美zozozo另类| 18禁动态无遮挡网站| 精品久久久久久久久久久久久| 青春草视频在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久九九精品二区国产| 美女黄网站色视频| 插阴视频在线观看视频| 男人和女人高潮做爰伦理| 成人亚洲精品av一区二区| 尾随美女入室| 精品人妻视频免费看| 99九九线精品视频在线观看视频| 亚洲va在线va天堂va国产| 亚洲图色成人| 欧美激情久久久久久爽电影| 久久久久精品久久久久真实原创| 69人妻影院| 亚洲一区高清亚洲精品| 久久久欧美国产精品| 在线观看66精品国产| 亚洲美女视频黄频| 成人午夜高清在线视频| 婷婷色av中文字幕| 国产午夜精品论理片| 亚洲精品,欧美精品| 激情 狠狠 欧美| 精品人妻熟女av久视频| 久久这里有精品视频免费| 日本黄大片高清| 日本猛色少妇xxxxx猛交久久| 人妻少妇偷人精品九色| 国产欧美日韩精品一区二区| 日韩欧美 国产精品| 国产黄a三级三级三级人| 日韩亚洲欧美综合| 国产探花在线观看一区二区| 中文字幕av成人在线电影| 久久久精品94久久精品| 午夜爱爱视频在线播放| 99热这里只有精品一区| 日韩国内少妇激情av| 国产三级中文精品| 国产精品一及| 岛国在线免费视频观看| 99在线视频只有这里精品首页| 国产高清三级在线| 99视频精品全部免费 在线| 美女大奶头视频| 中文字幕熟女人妻在线| 韩国av在线不卡| 日韩一区二区视频免费看| 日本黄色视频三级网站网址| 亚洲综合色惰| 美女cb高潮喷水在线观看| av黄色大香蕉| 老司机影院毛片| 国产精品av视频在线免费观看| 亚洲国产精品成人综合色| 九九爱精品视频在线观看| 国产老妇女一区| 97超视频在线观看视频| 国产免费视频播放在线视频 | 中文字幕久久专区| av在线蜜桃| 久久人人爽人人爽人人片va| 麻豆成人午夜福利视频| 中文在线观看免费www的网站| 欧美最新免费一区二区三区| 一区二区三区高清视频在线| av国产免费在线观看| 嫩草影院新地址| 99久国产av精品国产电影| 午夜久久久久精精品| 91精品一卡2卡3卡4卡| 国内精品美女久久久久久| 七月丁香在线播放| 嫩草影院入口| 午夜久久久久精精品| 中文天堂在线官网| 97在线视频观看| 一级黄片播放器| 99久久精品一区二区三区| 日产精品乱码卡一卡2卡三| 成人漫画全彩无遮挡| 三级国产精品片| 国产亚洲精品av在线| 久久99蜜桃精品久久| 亚洲最大成人av| 国产v大片淫在线免费观看| 日韩,欧美,国产一区二区三区 | 在线免费观看不下载黄p国产| 欧美变态另类bdsm刘玥| 中文天堂在线官网| 床上黄色一级片| 精品人妻熟女av久视频| 久久久欧美国产精品| 亚洲乱码一区二区免费版| 视频中文字幕在线观看| 99久国产av精品国产电影| 精品无人区乱码1区二区| 天堂网av新在线| 国产激情偷乱视频一区二区| 亚洲精品,欧美精品| 99九九线精品视频在线观看视频| 欧美成人精品欧美一级黄| 国产黄片美女视频| 高清日韩中文字幕在线| 欧美色视频一区免费| 国产成人午夜福利电影在线观看| 国产午夜精品久久久久久一区二区三区| 国产高清视频在线观看网站| 毛片女人毛片| 青春草视频在线免费观看| 亚洲精品日韩在线中文字幕| 我要看日韩黄色一级片| 18禁动态无遮挡网站| 少妇熟女aⅴ在线视频| av免费观看日本| 69人妻影院| 蜜桃久久精品国产亚洲av| 国产老妇女一区| av又黄又爽大尺度在线免费看 | 国产精品一二三区在线看| 国产免费男女视频| 久久久久精品久久久久真实原创| 丰满少妇做爰视频| 成人综合一区亚洲| 亚洲经典国产精华液单| 欧美日韩在线观看h| 男女国产视频网站| 精品无人区乱码1区二区| 亚洲欧美成人精品一区二区| 欧美日韩精品成人综合77777| 免费看美女性在线毛片视频| 国产乱来视频区| 国产免费男女视频| 一区二区三区高清视频在线| 亚洲欧美日韩无卡精品| av视频在线观看入口| 欧美高清性xxxxhd video| 日本黄色视频三级网站网址| 日本免费一区二区三区高清不卡| av免费在线看不卡| 我要搜黄色片| 老司机福利观看| 成人亚洲欧美一区二区av| 国产精品一区二区三区四区久久| 99在线视频只有这里精品首页| 国产成人精品一,二区| 免费一级毛片在线播放高清视频| h日本视频在线播放| 亚洲成人中文字幕在线播放| 爱豆传媒免费全集在线观看| 国产成人a∨麻豆精品| 18禁动态无遮挡网站| 乱码一卡2卡4卡精品| 女人久久www免费人成看片 | 大香蕉97超碰在线| 啦啦啦韩国在线观看视频| 波多野结衣高清无吗| 舔av片在线| 桃色一区二区三区在线观看| 国产伦一二天堂av在线观看| 免费播放大片免费观看视频在线观看 | 精品国产露脸久久av麻豆 | 少妇熟女aⅴ在线视频| 黄片wwwwww| 亚洲精品国产av成人精品| 国产av一区在线观看免费| 91午夜精品亚洲一区二区三区| 丰满人妻一区二区三区视频av| 一区二区三区乱码不卡18| 又爽又黄a免费视频| 久久久久久九九精品二区国产| 久久综合国产亚洲精品| 午夜精品国产一区二区电影 | АⅤ资源中文在线天堂| 国内精品宾馆在线| 99热这里只有是精品50| 国产老妇女一区| 亚洲av福利一区| av女优亚洲男人天堂| 久久人妻av系列| 村上凉子中文字幕在线| 国产一区二区在线av高清观看| 97热精品久久久久久| 亚洲在线观看片| av国产免费在线观看| 国模一区二区三区四区视频| videos熟女内射| 国产av码专区亚洲av| 97热精品久久久久久| 国产乱来视频区| 欧美人与善性xxx| 国产欧美另类精品又又久久亚洲欧美| 久99久视频精品免费| 久久久久免费精品人妻一区二区| 午夜a级毛片| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 免费一级毛片在线播放高清视频| 在线观看av片永久免费下载| 国产视频首页在线观看| 最近的中文字幕免费完整| 久久精品熟女亚洲av麻豆精品 | 2021少妇久久久久久久久久久| 日韩视频在线欧美| 亚洲真实伦在线观看| 午夜福利在线观看吧| 国产大屁股一区二区在线视频| 成人毛片a级毛片在线播放| 青青草视频在线视频观看| 桃色一区二区三区在线观看| 亚洲人成网站高清观看| 我的老师免费观看完整版| 一级毛片久久久久久久久女| 高清毛片免费看| 特级一级黄色大片| 九九久久精品国产亚洲av麻豆| 国产精品熟女久久久久浪| 大又大粗又爽又黄少妇毛片口| 2021天堂中文幕一二区在线观| 一夜夜www| 啦啦啦韩国在线观看视频| 纵有疾风起免费观看全集完整版 | 精品国产一区二区三区久久久樱花 | 久久久久久久久久成人| 国产欧美另类精品又又久久亚洲欧美| 国产精品一二三区在线看| 精品国产一区二区三区久久久樱花 | kizo精华| www日本黄色视频网| 亚洲国产色片| 亚洲av中文字字幕乱码综合| 三级国产精品欧美在线观看| 欧美一区二区亚洲| 99热这里只有精品一区| av天堂中文字幕网| 亚洲综合色惰| 一级毛片我不卡| 久久久久久久亚洲中文字幕| 2022亚洲国产成人精品| 69av精品久久久久久| 又爽又黄a免费视频| 国产精品无大码| 岛国在线免费视频观看| 国产又黄又爽又无遮挡在线| 日本免费在线观看一区| 又粗又硬又长又爽又黄的视频| 美女高潮的动态| 成人高潮视频无遮挡免费网站| 久久精品久久久久久噜噜老黄 | 久久久欧美国产精品| 日韩中字成人| 嫩草影院入口| 国产精品电影一区二区三区| 美女大奶头视频| 亚洲国产色片| 欧美最新免费一区二区三区| 97在线视频观看| 尤物成人国产欧美一区二区三区| 天堂中文最新版在线下载 | 在线播放无遮挡| 国产成年人精品一区二区| 女人被狂操c到高潮| 精品一区二区三区人妻视频| 99久久无色码亚洲精品果冻| 久久久久久久久久成人| АⅤ资源中文在线天堂| 99热这里只有精品一区| 日本免费一区二区三区高清不卡| 岛国在线免费视频观看| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 亚洲最大成人手机在线| 人妻制服诱惑在线中文字幕| av在线天堂中文字幕| 99久久成人亚洲精品观看| 日本与韩国留学比较| 中文乱码字字幕精品一区二区三区 | 亚洲av免费高清在线观看| 高清视频免费观看一区二区 | 免费看美女性在线毛片视频| 精品人妻一区二区三区麻豆| 在线观看av片永久免费下载| 美女cb高潮喷水在线观看| 白带黄色成豆腐渣| 国产精品国产三级国产av玫瑰| 久久久久性生活片| 你懂的网址亚洲精品在线观看 | 亚洲在久久综合| 黑人高潮一二区| 精品久久久久久成人av| 黄片无遮挡物在线观看| 九九热线精品视视频播放| 久久久久久久久久久丰满| 中文天堂在线官网| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 在线观看av片永久免费下载| 性插视频无遮挡在线免费观看| 国产伦理片在线播放av一区| 99在线人妻在线中文字幕| 在线播放国产精品三级| 亚洲欧美精品自产自拍| 乱人视频在线观看| 在线播放国产精品三级| 久久精品夜夜夜夜夜久久蜜豆| 18禁动态无遮挡网站| 中文字幕免费在线视频6| 欧美成人免费av一区二区三区| 亚洲精品乱码久久久久久按摩| 国产片特级美女逼逼视频| 国产黄片美女视频| 国产高清国产精品国产三级 | 国产在视频线在精品| 精品人妻偷拍中文字幕| 能在线免费看毛片的网站| 高清视频免费观看一区二区 | 水蜜桃什么品种好| 亚洲自拍偷在线| 在线免费观看不下载黄p国产| 国产精品一区二区性色av| 免费观看的影片在线观看| 网址你懂的国产日韩在线| 免费大片18禁| 亚洲成色77777| 国内精品宾馆在线| 国产av在哪里看| 久久精品国产99精品国产亚洲性色| 国产精品福利在线免费观看| 久久精品国产亚洲网站| 国产免费福利视频在线观看| 性色avwww在线观看| 秋霞伦理黄片| 亚洲av成人av| 观看免费一级毛片| 日韩精品有码人妻一区| 欧美丝袜亚洲另类| 国产毛片a区久久久久| 中文字幕熟女人妻在线| 啦啦啦韩国在线观看视频| 国产伦精品一区二区三区视频9| 热99re8久久精品国产| 国产午夜福利久久久久久| 亚洲国产最新在线播放| 成人高潮视频无遮挡免费网站| 嫩草影院新地址| 亚洲精华国产精华液的使用体验| av免费在线看不卡| 免费黄网站久久成人精品| eeuss影院久久| 欧美3d第一页| 国产爱豆传媒在线观看| 亚洲精品国产av成人精品| 国产白丝娇喘喷水9色精品| 久久6这里有精品| 特级一级黄色大片| 搡老妇女老女人老熟妇| 少妇的逼水好多| 麻豆国产97在线/欧美| 高清在线视频一区二区三区 | 亚洲内射少妇av| 国产免费又黄又爽又色| 日韩欧美三级三区| 午夜精品一区二区三区免费看| 高清日韩中文字幕在线| 观看免费一级毛片| 亚洲av免费在线观看| 午夜精品一区二区三区免费看| 国产成人精品婷婷| 亚洲在线自拍视频| 精品午夜福利在线看| 黄色欧美视频在线观看| 99在线人妻在线中文字幕| 精品久久久噜噜| 国产男人的电影天堂91| 国产淫语在线视频| 有码 亚洲区| 国产欧美日韩精品一区二区| 亚洲欧洲日产国产| 夜夜爽夜夜爽视频| 久久久久久久久久黄片| 一级毛片aaaaaa免费看小| 国产一区二区亚洲精品在线观看| 国产午夜精品一二区理论片| 国产亚洲最大av| 日韩在线高清观看一区二区三区| 免费大片18禁| 国产精品乱码一区二三区的特点| 天美传媒精品一区二区| 精品少妇黑人巨大在线播放 | 亚洲国产日韩欧美精品在线观看| 深爱激情五月婷婷| 国产探花极品一区二区| 淫秽高清视频在线观看| 国产日韩欧美在线精品| 国产精品国产三级国产av玫瑰| videos熟女内射| 色吧在线观看| 中文字幕久久专区| 国产av不卡久久| 久久精品熟女亚洲av麻豆精品 | 九九久久精品国产亚洲av麻豆| 国产av一区在线观看免费| 亚洲国产精品专区欧美| 国产色爽女视频免费观看| 99久久中文字幕三级久久日本| 国产在视频线在精品| 97超视频在线观看视频| 亚洲天堂国产精品一区在线| 亚洲av.av天堂| 亚洲一区高清亚洲精品| 中文欧美无线码| 晚上一个人看的免费电影| 少妇丰满av| 亚洲不卡免费看| 成人国产麻豆网| 国产久久久一区二区三区| 日本wwww免费看| 国产大屁股一区二区在线视频| 亚州av有码| 国产 一区 欧美 日韩| 亚洲av.av天堂| 日本三级黄在线观看| 亚洲成人中文字幕在线播放| 精品无人区乱码1区二区| 亚洲国产精品sss在线观看| 中文字幕免费在线视频6| 久久久成人免费电影| 久久精品国产鲁丝片午夜精品| 26uuu在线亚洲综合色| 欧美另类亚洲清纯唯美| 男人舔女人下体高潮全视频| 久久久久久久国产电影| 在线观看一区二区三区| 亚洲精品456在线播放app| 在线观看一区二区三区| 99久久成人亚洲精品观看| 亚洲一级一片aⅴ在线观看| 国产一区有黄有色的免费视频 | 国产精品福利在线免费观看| 蜜桃亚洲精品一区二区三区| 亚洲成人精品中文字幕电影| 一卡2卡三卡四卡精品乱码亚洲| 久久亚洲精品不卡| 欧美极品一区二区三区四区| 高清日韩中文字幕在线| 九九爱精品视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 美女被艹到高潮喷水动态| 欧美性感艳星| 尾随美女入室| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩东京热| 观看美女的网站| 看十八女毛片水多多多| 2021少妇久久久久久久久久久| 国产av在哪里看| 直男gayav资源| 亚洲国产欧洲综合997久久,| 久久精品熟女亚洲av麻豆精品 | 国产一区二区亚洲精品在线观看| 久久精品国产亚洲av涩爱| 一区二区三区乱码不卡18| 日韩人妻高清精品专区| 成人二区视频| 97超视频在线观看视频| 欧美高清成人免费视频www| 色播亚洲综合网| 国产精品一区二区性色av| 免费看av在线观看网站| 国产精品一及| 少妇的逼水好多| 91久久精品国产一区二区成人| 身体一侧抽搐| 99久久成人亚洲精品观看| 菩萨蛮人人尽说江南好唐韦庄 | 两个人的视频大全免费| 亚洲一区高清亚洲精品| 色综合亚洲欧美另类图片| 99久久精品一区二区三区| 国产高清有码在线观看视频| 亚洲电影在线观看av| 免费在线观看成人毛片| 26uuu在线亚洲综合色| av在线老鸭窝| 国产精品精品国产色婷婷| 大香蕉久久网| 日本欧美国产在线视频| 国产 一区精品| 国产免费又黄又爽又色|