• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pull-in Instability Analysis of Nanoelectromechanical Rectangular Plates Including the Intermolecular, Hydrostatic, and Thermal Actuations Using an Analytical Solution Methodology

    2019-03-12 02:41:50SamadaniAnsariHosseiniandZabihi
    Communications in Theoretical Physics 2019年3期

    F.Samadani, R.Ansari,K.Hosseini, and A.Zabihi

    1Department of Mechanical Engineering, University of Guilan, P.O.Box 3756, Rasht, Iran

    2Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

    3Department of Mechanical Engineering, Ahrar Institute of Technology & Higher Education, Rasht, Iran

    (Received May 10, 2018; revised manuscript received August 21, 2018)

    Abstract The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations.Based on the Kirchhoff theory along with Eringen’s nonlocal elasticity theory, a nonclassical model is developed.Using the Galerkin method (GM), the governing equation which is a nonlinear partial differential equation (NLPDE)of the fourth order is converted to a nonlinear ordinary differential equation (NLODE)in the time domain.Then, the reduced NLODE is solved analytically by means of the homotopy analysis method.At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored.

    Key words: Nanoelectromechanical rectangular plates,Pull-in instability,Kirchhoff theory,Eringen’s nonlocal elasticity theory, Homotopy analysis method

    1 Introduction

    Numerous applications of micro- and nano-electromechanical systems (MEMS/NEMS)have motivated researchers to study their performance in various situations.Because the classical continuum theories cannot consider the size effects in the mechanical analysis of nanostructures,[1?4]some size-dependent continuum theories like Eringen’s nonlocal elasticity theory,[5]the couple stress elasticity theory,[6]the Gurtin-Murdoch continuum elasticity theory,[7?11]the strain gradient elasticity theory,[12]and the stress-driven nonlocal model[13]were proposed to consider the size effects.In the classical theories, the stress state at a given point is determined only by the strain state at that point, but in Eringen’s nonlocal elasticity theory, the stress state at a given point is determined by the strain states of all points in the body.The first use of Eringen’s nonlocal elasticity theory to nanotechnology was proposed by Peddiesonet al.,[14]followed by many other researchers.[15?19]One of the important designing considerations in MEMS/NEMS is the pull-in instability.[20]The pull-in instability happens when the internal and applied external forces surpass the elastic restoring force of the nanostructures, leading to contact between the movable and substrate electrodes.When the rate of applied voltage variation is significant,the effect of inertia is considered.In this case, the pull-in instability is referred to as the dynamic pull-in instability.

    Once the space of movable and bottom electrodes is less than the plasma wavelength or the absorption wavelength of the ingredient material of surfaces, the intermolecular force is considered as the van der Waals (vdW)attraction.In this situation, there is a small separation regime such that the vdW force is the dominant attraction and it is proportional to the inverse cube of the separation.Nevertheless, when the separation is adequately large (typically above 20 nm)the intermolecular interaction is referred to as the Casimir force.[21]In this case,there is a large separation regime in which the Casimir force is dominant(typically above several tens of nanometers)and it is proportional to the inverse fourth power of the separationπ2hc/240g4, in whichh=1.055×10?34is Planck’s constant divided by 2πandc=2.998×108m/s is the speed of light.[21]The reader is referred to Refs.[22–30]as some important papers and books about the Casimir effect.One of the most remarkable predictions of quantum electrodynamics (QED), obtained by Casimir in 1948, is that two parallel, closely spaced, conducting plates will be mutually attracted.[31]This measurement, as reported by Sparnaay in 1958, confirmed the formula.[32]A closely related effect, the attraction of a neutral atom to a conducting plate, has been also measured.[33]

    In the past few years, many researchers have focused on the pull-in instability of nanoplates.For instance, based on a modified continuum model, Ansariet al.[34]studied the size-dependent pull-in behavior of electrostatically and hydrostatically actuated rectangular nanoplates considering the surface stress effects.Ebrahimi and Hosseini[35]investigated the effect of temperature on pull-in voltage and nonlinear vibration of nanoplatebased NEMS under hydrostatic and electrostatic actuations.Mirkalantariet al.[36]studied the pull-in instability of rectangular nanoplates based on the strain gradient theory taking the surface stress effects into account.Shokravi[37]analyzed the dynamic pull-in of viscoelastic nanoplates under the electrostatic and Casimir forces.The interested reader is referred to Refs.[38–44].

    Moreover,different methods have been used for the vibration analysis of rectangular nanoplates.For example,Aghababaei and Reddy[45]presented the Navier solutions for the vibrations of rectangular plates based on the nonlocal third-order shear deformation plate theory.Also,Pradhan and Phadikar[46]used the same solution technique for addressing the vibration problem of rectangular plates with simply-supported boundary conditions in the context of Eringen’s nonlocal model,the classical and firstorder shear deformation plate theories.Another application of the Navier-type method to the vibration problem of nonlocal plates can be found in Ref.[47].Aksencer and Aydogdu[48]employed the Levy-type solution method for the vibration analysis of nanoplates based on the nonlocal elasticity theory.Ansariet al.[49?50]used the generalized differential quadrature method to numerically solve the free vibration problem of rectangular Mindlin-type plates with various boundary conditions.The Galerkin method was applied by Shakouriet al.[51]for the vibrational analysis of nonlocal Kirchhoff plates with different edge supports.

    The classical analytical methods cannot handle the strongly nonlinear differential equations.In this regard,Liao[52]developed an efficient technique called the homotopy analysis method (HAM), which can be adopted for solving ordinary and partial differential equations with different nonlinearities.For example, Samadaniet al.[53]applied HAM for the pull-in and nonlinear vibration analysis of nanobeams using a nonlocal Euler-Bernoulli beam model.Moghimi Zand and Ahmadian[54]used HAM in studying the dynamic pull-in instability of microsystems.Also, Miandoabet al.[55]utilized this method for the forced vibration analysis of a nano-resonator with cubic nonlinearities.

    In the present paper, HAM is used to study the static and dynamic pull-in instabilities of rectangular nanoplates using the nonlocal Kirchhoff plate theory.The rest of paper is organized as follows: In Sec.2,using Eringen’s nonlocal elasticity and the Kirchhoff plate theory, the nonlinear equation of motion subjected to fully clamped boundary condition (CCCC)is derived.In Secs.3 and 4, the governing equation of motion is reduced to an NLODE in the time domain by the Galerkin method.Then, HAM is adopted to solve the obtained nonlinear equation.The effects of intermolecular, hydrostatic, and thermal actuations as well as the nonlocal parameter on the deflection,nonlinear frequency, and the critical voltage of dynamic pull-in instability (Vpdyn)are investigated in Sec.5.At the end, the main findings of the paper is given in Sec.6.

    2 Problem Formulation

    2.1 Nonlocal Elasticity Theory

    Based on Eringen’s nonlocal elasticity theory,[3]the stress at a reference point depends on the strain at all points in the body.The constitutive equation of the nonlocal elasticity can be written as

    whereσij,tij,e0,andaare the nonlocal stress tensor,the classical stress tensor, nonlocal elasticity constant appropriate to each material and internal characteristic length scale (e.g.atomistic distance), respectively.e0can be obtained from experiments or through comparisons between the results of nonlocal continuum model and the ones from lattice dynamics.Eringen[3]estimated the value ofe0equal to 0.31 based on the comparison of Rayleigh surface wave using the nonlocal theory and lattice dynamics.Whene0is zero,the constitutive relations of the local theories are obtained.Also,?2is the Laplacian operator which in the Cartesian coordinate can be expressed as

    2.2 Kirchhoff Thin Plate Theory

    Based on the Kirchhoff thin plate theory, the strains in the plate are

    wherewis the transverse deflection of plate, respectively.The relations of bending moment are given by

    wherehis the thickness of plate.

    Under plane stress conditions, one has

    where?andEare Poisson’s ratio and Young’s modulus of the plate.By substituting Eqs.(3)and(5)into Eq.(4),one obtains

    whereD=Eh3/12(1??2)is the classical bending stiffness of the plate.By inserting Eqs.(1)and (4), one can arrive at

    Hamilton’s principle is given in the following form

    whereK,U, andWdenote the kinetic energy, strain energy and work of external forces and thermal actuation,respectively.The first variation of strain energy is presented as

    in whichSsignifies the area of plate.The first variation of the work of the external forces and thermal actuation is expressed as

    where the termsNxx,Nyy,Nxy,andqare determined by the thermal and external forces.It should be mentioned that the thermal force caused by the uniform temperature variation,θ=T ?T0, is described by[56]

    where the termαindicates the coefficient of thermal expansion.

    The first variation of kinetic energy is

    in whichρshows the density of plate.

    By inserting Eqs.(9)–(12)in Eq.(8), then integrating by parts and setting the coefficientδwto zero, one can reach the governing equation as

    Now, by means of the nonlocal bending moment equations given in Eq.(7)and expanding Eq.(13), one will arrive at the governing equation of motion in the following form

    Note that the governing equation of local model is obtained by settinge0a=0.

    3 Mathematical Modeling of the Problem

    A schematic of nanoelectromechanical rectangular plate with lengthlaand widthlb, including a pair of parallel electrodes with the distancegis given in Fig.1.The upper movable electrode is assumed to be under the influence of intermolecular, hydrostatic, and thermal actuations.

    It is noted that the movable electrode pulls down the fixed electrode by applying the DC voltage between two electrodes.Once the applied voltage approaches the critical point (pull-in voltage), the structure becomes unstable.[57]

    The electrostatic force per unit area of nanoplate can be described as[39]

    whereε0=8.854×10?12C2N?1·m?2is the vacuum permittivity,gis the air initial gap of nanoplates, andVdcis the direct current voltage as illistrated in Fig.1.The van dar Waals effect per unit area of nanoplate can be written as[39]

    whereAhis the Hamaker constant in the range of [0.4?4]×10?19.

    Fig.1 Schematic of fully clamped nanoelectromechanical rectangular plates under intermolecular, hydrostatic and thermal actuations.

    In the following analyses, it is assumed that

    whereFhstands for the hydrostatic actuation.By substituting Eqs.(15)and (16)into Eq.(17)and then inserting the resulting equation in Eq.(14),the following governing equation of motion is obtained

    with the following fully clamped boundary conditions

    By considering the following nondimensional variables

    and using the Taylor expansion(see Appendix),the nondimensional form of governing equation can be derived as

    with the following boundary conditions

    Here,GM is utilized to reduce Eq.(21)to an NLODE.To this end, it is considered that

    whereφ1(X,Y)= sin2(πX)sin2(πY)is the first eigenmode of fully clamped nanoplate andW1(X,Y,T)=u(T)sin2(πX)sin2(πY).[58]

    By insertingW1(X,Y,T)in Eq.(21),multiplying it byφ1(X,Y)and then integrating twice from zero to one, the following NLODE is obtained

    where the parametersa0,a1,a2,a3,a4, andMare given in Appendix.

    4 Implementation of the HAM to the Reduced Equation

    Now, using the transformationτ= ?pT, the existing reduced problem

    is changed into

    where the oscillation nonlinear frequency ?pis expressed as

    In a manner similar to that performed in Ref.[53],one can obtain ? andu(T)for vibrating actuated fully clamped nanoplate as below

    5 Results and Discussion

    The current section provides numerical results to show the effects of intermolecular, hydrostatic, and thermal actuations as well as the nonlocal parameterμon the deflection, nonlinear frequency, andVpdyn.For producing the results, the following parameters are selected:h=21 nm,la=lb=30h,g=1.2h,?=0.35, andE=68.5 GPa (Al alloy).

    In Fig.2,the nondimensional center point deflection of nanoplate obtained using HAM is compared to that calculated using the Runge-Kutta method.It is seen that there is an excellent agreement between the results of two methods.

    Fig.2 HAM results versus those of the Runge-Kutta method.

    Figure 3 shows the change in amplitude of vibration against the nondimensional time.In this case, the dynamic pull-in voltage is 22.540.TheVpdynobtained in the absence of the intermolecular and thermal parameters agrees well with those reported in Refs.[34, 59] (in Ref.[34]Vpdyn= 22.5 and in Ref.[59]Vpdyn= 22.38).The amplitude enhances with the increase of time and the nanoplate experiences a harmonic motion.Also, the nanoplate collapses onto the bottom, when the pull-in happens.

    Fig.3 Centerpoint deflection of a fully clamped nanoplate at Nthermal=R3=0.

    Figure 4 presents the normalized fundamental frequency of nanoplate with respect to the electrostatic parameterβ.It is observed that the normalized fundamental frequency becomes zero when the applied voltage reachesVpdyn.

    Figure 5 indicates that the pull-in time decreases (11 percent)by increasingμ(0.01 per unit).By decreasingμ,the pull-in phenomenon occurs later in this model.

    Fig.4 Relation between the normalized fundamental frequency and the electrostatic force parameter.

    Fig.5 Effect of the parameter μ on the pull-in and deflection time.

    Fig.6 Effect of the parameters μ and Vpdyn on the fundamental frequency.

    The variations of fundamental frequencies againstVpdynare illustrated in Fig.6 for different values of nonlocal parameter.It is observed that by increasingμ(0.02 per unit), the fundamental frequency decreases (2 percent).For example,whenμis considered to be 0.06,Vpdynoccurs at 21.

    Figure 7 demonstrates the variations of fundamental frequencies against the hydrostatic pressure parameter for different values of nonlocal parameter.The increase ofNhydroleads to the decrease of fundamental frequency.

    Fig.7 Effect of the nondimensional hydrostatic pressure on the fundamental frequency.

    Fig.8 Effect of the nondimensional thermal actuation on the pull-in frequency.

    Fig.9 Effect of the intermolecular actuation on the pull-in frequency.

    The variations of fundamental frequencies against the nondimensional thermal parameter are illustrated in Fig.8 for various values ofμ.One can find that via increasingNthermal, the fundamental frequency gets larger.

    Figure 9 shows the variations of fundamental natural frequency versusAfor a number of vdW parameters.It is seen that by increasingA, the nonlinear frequency of vibration diminishes.For instance, whenR3is equal to 5,the pull-in phenomenon happens atA=1.

    Fig.10 Variations of static pull-in deflection of the nanoplate versus the μ.

    Fig.11 Comparison of the static and dynamic pullvoltage parameter versus g in μ=0.01.

    Fig.12 Evaluation of the static and dynamic pullvoltage against Nthermal in μ=0.01.

    The influence ofla/lbon the static nondimensional deflection versus the nonlocal parameter is highlighted in Fig.10.According to this figure, the pull-in instability is suspended asλincreases.The influences of distance of parallel electrodes, thermal and nonlocal parameters on the static and dynamic pull-in voltage parameter are compared in Figs.11–13, respectively.Based on Fig.11,the pull-in voltage is postponed as the distance increases.Also, Fig.12 indicates that as the thermal parameter increases, the pull-in voltage is delayed.Finally, Fig.13 shows that by increasing the nonlocal parameter,the pullin voltage decreases.

    Fig.13 Comparision of dynamic and static pull-in voltage parameter of the nanoplate versus the μ.

    6 Conclusion

    In the present research, the dynamic pull-in of CCCC plate-type nanosensor, subjected to electrostatic, intermolecular, hydrostatic and thermal actuations was analyzed based on the nonlocal theory.GM was utilized for reducing the governing NLPDE to an NLODE in the time domain.HAM was also applied for solving the NLODE.The outcomes reveal that:

    (i)By increasingA,Vpdyndecreases.

    (ii)With the increase ofμ, vdW, andβ, the fundamental frequency diminishes.

    (iii)Vpdyndecreases as the vdW,μ, andAincrease;also, it increases as the thermal and hydrostatic parameters increase.

    (iv)? decreases as the pull-in voltage,R3,hydrostatic,nonlocal parameters, andAincrease; but, it increases as the thermal parameter rises.

    (v)The softening effect detected qualitatively is in agreement with that in the bending and vibrations of the nonlocal Kirchhoff model.

    Appendix

    欧美精品啪啪一区二区三区| 99热网站在线观看| 亚洲 国产 在线| 久久久久视频综合| 国产精品久久久久久人妻精品电影 | 国产精品亚洲一级av第二区| 精品欧美一区二区三区在线| videosex国产| 美女福利国产在线| 久久性视频一级片| 91麻豆精品激情在线观看国产 | 日韩免费av在线播放| 黑人欧美特级aaaaaa片| 1024视频免费在线观看| 精品视频人人做人人爽| av不卡在线播放| 一区二区av电影网| 1024香蕉在线观看| 亚洲精品成人av观看孕妇| 精品亚洲成国产av| 国产亚洲精品一区二区www | 国产成人啪精品午夜网站| 国产精品一区二区在线不卡| 久久99一区二区三区| 99re6热这里在线精品视频| 黑人巨大精品欧美一区二区mp4| 91麻豆av在线| 大型av网站在线播放| 无遮挡黄片免费观看| 妹子高潮喷水视频| 午夜91福利影院| 精品欧美一区二区三区在线| a在线观看视频网站| 他把我摸到了高潮在线观看 | 中文亚洲av片在线观看爽 | 在线 av 中文字幕| av国产精品久久久久影院| 法律面前人人平等表现在哪些方面| 91国产中文字幕| 成在线人永久免费视频| 丝袜喷水一区| 精品欧美一区二区三区在线| 99国产综合亚洲精品| 久久久水蜜桃国产精品网| 黄频高清免费视频| 亚洲天堂av无毛| av片东京热男人的天堂| 国产日韩一区二区三区精品不卡| 精品久久久精品久久久| 亚洲精品成人av观看孕妇| 午夜免费成人在线视频| 他把我摸到了高潮在线观看 | 亚洲av美国av| 一区二区三区乱码不卡18| 黑丝袜美女国产一区| 国产av国产精品国产| 在线永久观看黄色视频| 国产97色在线日韩免费| 精品亚洲成国产av| 日韩中文字幕视频在线看片| 欧美激情 高清一区二区三区| 99精品在免费线老司机午夜| 精品一品国产午夜福利视频| 自拍欧美九色日韩亚洲蝌蚪91| 超碰97精品在线观看| 1024视频免费在线观看| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 久久影院123| 国产精品二区激情视频| 午夜91福利影院| 精品免费久久久久久久清纯 | 国产精品久久久久久人妻精品电影 | www.精华液| 考比视频在线观看| 一级毛片女人18水好多| www.999成人在线观看| 久久性视频一级片| 婷婷成人精品国产| 91成年电影在线观看| 精品人妻在线不人妻| 色老头精品视频在线观看| 男女下面插进去视频免费观看| 国产精品香港三级国产av潘金莲| 制服诱惑二区| 亚洲国产精品一区二区三区在线| 国产三级黄色录像| 欧美黄色片欧美黄色片| 午夜福利欧美成人| 日韩欧美国产一区二区入口| 亚洲三区欧美一区| 色老头精品视频在线观看| 国产成人免费无遮挡视频| 欧美大码av| 人妻久久中文字幕网| 一区在线观看完整版| 18禁黄网站禁片午夜丰满| 777米奇影视久久| 国产精品美女特级片免费视频播放器 | 亚洲精品在线观看二区| 色婷婷久久久亚洲欧美| 精品高清国产在线一区| 法律面前人人平等表现在哪些方面| 一进一出抽搐动态| 久久天躁狠狠躁夜夜2o2o| 欧美+亚洲+日韩+国产| 黄色成人免费大全| 欧美日韩国产mv在线观看视频| 欧美精品av麻豆av| 亚洲成人手机| 香蕉久久夜色| 99国产精品99久久久久| 久久午夜综合久久蜜桃| 久久精品国产99精品国产亚洲性色 | 少妇精品久久久久久久| 亚洲少妇的诱惑av| 午夜福利影视在线免费观看| 国产亚洲一区二区精品| 精品一品国产午夜福利视频| 俄罗斯特黄特色一大片| 午夜精品久久久久久毛片777| 国产成人欧美在线观看 | 女人精品久久久久毛片| 欧美久久黑人一区二区| 亚洲自偷自拍图片 自拍| 大片免费播放器 马上看| 欧美另类亚洲清纯唯美| 一本—道久久a久久精品蜜桃钙片| 最新的欧美精品一区二区| 亚洲成人手机| 精品少妇黑人巨大在线播放| 亚洲欧美日韩另类电影网站| 老司机午夜福利在线观看视频 | 丁香欧美五月| 高清欧美精品videossex| 操美女的视频在线观看| 国产伦人伦偷精品视频| 在线观看人妻少妇| 亚洲欧美激情在线| 一区二区三区激情视频| 一区二区三区激情视频| 久久久久久人人人人人| 97在线人人人人妻| 日韩 欧美 亚洲 中文字幕| 午夜福利乱码中文字幕| 国产欧美日韩一区二区三| 99精国产麻豆久久婷婷| 一进一出抽搐动态| 午夜福利视频精品| 亚洲国产欧美日韩在线播放| 国产主播在线观看一区二区| 大陆偷拍与自拍| 久久九九热精品免费| av又黄又爽大尺度在线免费看| 青青草视频在线视频观看| 一本久久精品| 在线亚洲精品国产二区图片欧美| 国产在线一区二区三区精| 午夜福利欧美成人| 国产在线免费精品| 狠狠婷婷综合久久久久久88av| 久久天躁狠狠躁夜夜2o2o| 中文字幕人妻熟女乱码| 国产成人欧美在线观看 | 波多野结衣一区麻豆| av又黄又爽大尺度在线免费看| 91大片在线观看| netflix在线观看网站| 国产精品免费视频内射| 不卡一级毛片| 999久久久国产精品视频| 欧美黑人精品巨大| 国产一区二区激情短视频| 性色av乱码一区二区三区2| 免费看十八禁软件| 国产成人av教育| 色婷婷av一区二区三区视频| 成年女人毛片免费观看观看9 | 少妇裸体淫交视频免费看高清 | www.999成人在线观看| 日韩欧美三级三区| 天堂动漫精品| 成人免费观看视频高清| 纵有疾风起免费观看全集完整版| 一边摸一边抽搐一进一小说 | 久久久久久久精品吃奶| 国产精品美女特级片免费视频播放器 | 伦理电影免费视频| 亚洲 欧美一区二区三区| 美国免费a级毛片| 国产精品熟女久久久久浪| 超色免费av| 精品久久久精品久久久| 精品人妻1区二区| 在线天堂中文资源库| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲欧洲精品一区二区精品久久久| 久久国产精品影院| 他把我摸到了高潮在线观看 | 精品午夜福利视频在线观看一区 | 成在线人永久免费视频| 日韩人妻精品一区2区三区| 国产欧美日韩综合在线一区二区| 99热网站在线观看| 亚洲精品国产一区二区精华液| 久久午夜综合久久蜜桃| 99国产精品99久久久久| 国产老妇伦熟女老妇高清| 日本黄色视频三级网站网址 | 日本黄色视频三级网站网址 | 99精品在免费线老司机午夜| 在线十欧美十亚洲十日本专区| 麻豆乱淫一区二区| 中文字幕制服av| 国产精品久久久av美女十八| 在线观看免费视频网站a站| 国产一卡二卡三卡精品| 国产精品.久久久| 肉色欧美久久久久久久蜜桃| 亚洲精品自拍成人| 操出白浆在线播放| 在线av久久热| 黄片播放在线免费| 中文字幕av电影在线播放| 高清av免费在线| 精品少妇久久久久久888优播| 美女福利国产在线| 国产片内射在线| 9色porny在线观看| 国产精品一区二区免费欧美| 啦啦啦在线免费观看视频4| 国产老妇伦熟女老妇高清| 亚洲精品中文字幕在线视频| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av香蕉五月 | 国产精品国产av在线观看| 国产在线视频一区二区| 国产男女超爽视频在线观看| 久久久久久久精品吃奶| 精品国产乱码久久久久久小说| 国产高清国产精品国产三级| 制服人妻中文乱码| 热re99久久国产66热| 欧美 日韩 精品 国产| 在线观看免费视频网站a站| 狠狠狠狠99中文字幕| 国产欧美日韩综合在线一区二区| 2018国产大陆天天弄谢| 色综合婷婷激情| 动漫黄色视频在线观看| 国产av一区二区精品久久| 欧美黄色片欧美黄色片| 国产精品久久久久久人妻精品电影 | 夫妻午夜视频| 亚洲av成人一区二区三| 亚洲五月色婷婷综合| 99国产极品粉嫩在线观看| 欧美激情 高清一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 大香蕉久久成人网| 多毛熟女@视频| 精品国产国语对白av| 亚洲熟女毛片儿| 欧美精品高潮呻吟av久久| 国产欧美日韩精品亚洲av| 一夜夜www| 亚洲天堂av无毛| 欧美精品av麻豆av| 欧美人与性动交α欧美软件| 亚洲五月色婷婷综合| videos熟女内射| 欧美黄色片欧美黄色片| 国产免费福利视频在线观看| 中文欧美无线码| 国产亚洲午夜精品一区二区久久| 亚洲色图综合在线观看| 激情在线观看视频在线高清 | 在线观看免费视频日本深夜| 午夜免费成人在线视频| 女性生殖器流出的白浆| 一边摸一边抽搐一进一小说 | 久久久精品国产亚洲av高清涩受| 热99久久久久精品小说推荐| 啦啦啦 在线观看视频| 久久精品91无色码中文字幕| 亚洲成a人片在线一区二区| 国产免费视频播放在线视频| 自线自在国产av| 国产精品自产拍在线观看55亚洲 | 国产极品粉嫩免费观看在线| 久久午夜综合久久蜜桃| 成年人午夜在线观看视频| 手机成人av网站| 国产男靠女视频免费网站| 久久久久精品人妻al黑| 汤姆久久久久久久影院中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 黄色毛片三级朝国网站| 麻豆成人av在线观看| 久久国产精品男人的天堂亚洲| 久久国产精品大桥未久av| 国产欧美日韩综合在线一区二区| 亚洲国产欧美网| 精品亚洲成国产av| 欧美日韩中文字幕国产精品一区二区三区 | 搡老熟女国产l中国老女人| 纯流量卡能插随身wifi吗| 在线天堂中文资源库| 精品国产乱码久久久久久小说| 免费在线观看日本一区| 亚洲国产成人一精品久久久| 男女床上黄色一级片免费看| 最近最新免费中文字幕在线| 人人妻人人添人人爽欧美一区卜| 美女国产高潮福利片在线看| 在线观看一区二区三区激情| 亚洲九九香蕉| 两人在一起打扑克的视频| 日日摸夜夜添夜夜添小说| 国产无遮挡羞羞视频在线观看| 久久天堂一区二区三区四区| 亚洲av第一区精品v没综合| e午夜精品久久久久久久| 丁香六月欧美| 热re99久久精品国产66热6| 一本一本久久a久久精品综合妖精| 老鸭窝网址在线观看| 老司机福利观看| 国产成+人综合+亚洲专区| 亚洲伊人色综图| 视频区欧美日本亚洲| 桃红色精品国产亚洲av| 久久人妻av系列| 午夜两性在线视频| 宅男免费午夜| 欧美亚洲 丝袜 人妻 在线| 在线播放国产精品三级| 国产精品99久久99久久久不卡| 国产野战对白在线观看| 久久人妻福利社区极品人妻图片| 女警被强在线播放| 午夜免费鲁丝| 美女视频免费永久观看网站| 一进一出好大好爽视频| 男女边摸边吃奶| 精品久久蜜臀av无| 国产精品久久久久久精品古装| 狠狠狠狠99中文字幕| 老司机午夜福利在线观看视频 | 国产免费av片在线观看野外av| 精品熟女少妇八av免费久了| 女同久久另类99精品国产91| 久久中文字幕人妻熟女| 一本—道久久a久久精品蜜桃钙片| 九色亚洲精品在线播放| 亚洲精品国产精品久久久不卡| 国产麻豆69| 免费在线观看视频国产中文字幕亚洲| 国产精品香港三级国产av潘金莲| 69精品国产乱码久久久| 久久 成人 亚洲| 精品国产一区二区三区四区第35| 国产黄频视频在线观看| 国产精品熟女久久久久浪| 日韩视频在线欧美| 十八禁网站免费在线| 一本色道久久久久久精品综合| 五月天丁香电影| 中文字幕人妻丝袜一区二区| 久久久久久亚洲精品国产蜜桃av| 美国免费a级毛片| 巨乳人妻的诱惑在线观看| 久久天躁狠狠躁夜夜2o2o| 国产日韩一区二区三区精品不卡| 国产精品一区二区精品视频观看| 欧美老熟妇乱子伦牲交| 久久午夜亚洲精品久久| 国产精品电影一区二区三区 | 亚洲午夜精品一区,二区,三区| 国产淫语在线视频| av超薄肉色丝袜交足视频| 丰满迷人的少妇在线观看| 国产精品98久久久久久宅男小说| 考比视频在线观看| 桃红色精品国产亚洲av| 久久热在线av| 精品国产亚洲在线| 日本黄色日本黄色录像| 久9热在线精品视频| 窝窝影院91人妻| 老熟女久久久| 叶爱在线成人免费视频播放| 国产区一区二久久| 免费日韩欧美在线观看| 在线观看免费视频网站a站| 一边摸一边抽搐一进一小说 | 丰满少妇做爰视频| 美女高潮喷水抽搐中文字幕| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区mp4| 国产一卡二卡三卡精品| 中文字幕人妻熟女乱码| 精品高清国产在线一区| videos熟女内射| 亚洲av日韩在线播放| 欧美中文综合在线视频| 亚洲精品成人av观看孕妇| 人妻一区二区av| av福利片在线| 黑人操中国人逼视频| 宅男免费午夜| 欧美人与性动交α欧美精品济南到| 午夜福利视频精品| 少妇精品久久久久久久| 男女下面插进去视频免费观看| 高清在线国产一区| 妹子高潮喷水视频| 国产午夜精品久久久久久| 18禁黄网站禁片午夜丰满| 欧美日韩国产mv在线观看视频| 最近最新免费中文字幕在线| 青青草视频在线视频观看| 999久久久国产精品视频| 大陆偷拍与自拍| 日韩中文字幕视频在线看片| 777久久人妻少妇嫩草av网站| 18禁国产床啪视频网站| bbb黄色大片| 亚洲自偷自拍图片 自拍| 欧美变态另类bdsm刘玥| 欧美日韩视频精品一区| 咕卡用的链子| 两个人免费观看高清视频| 后天国语完整版免费观看| 丝袜美足系列| 在线观看一区二区三区激情| 亚洲精品久久午夜乱码| av免费在线观看网站| 人人妻人人爽人人添夜夜欢视频| 在线观看免费午夜福利视频| www日本在线高清视频| 欧美激情 高清一区二区三区| 国产麻豆69| 12—13女人毛片做爰片一| 超色免费av| 色老头精品视频在线观看| 成在线人永久免费视频| 久久国产精品人妻蜜桃| 欧美av亚洲av综合av国产av| 亚洲色图 男人天堂 中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美大码av| www.自偷自拍.com| 天天操日日干夜夜撸| 亚洲 欧美一区二区三区| 精品国产一区二区三区四区第35| 中文欧美无线码| 欧美精品啪啪一区二区三区| 男女床上黄色一级片免费看| 老司机午夜福利在线观看视频 | av在线播放免费不卡| 制服诱惑二区| 黄色视频在线播放观看不卡| 女性生殖器流出的白浆| 美女扒开内裤让男人捅视频| 午夜免费鲁丝| 自线自在国产av| 国产成人精品久久二区二区91| 国产在线精品亚洲第一网站| 久久精品国产a三级三级三级| 99在线人妻在线中文字幕 | 女人久久www免费人成看片| 菩萨蛮人人尽说江南好唐韦庄| 777久久人妻少妇嫩草av网站| 啦啦啦 在线观看视频| 国产高清videossex| 久久国产精品男人的天堂亚洲| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频不卡| 多毛熟女@视频| 欧美 日韩 精品 国产| 一夜夜www| 一级毛片精品| 久久天堂一区二区三区四区| 国产精品秋霞免费鲁丝片| 手机成人av网站| 性高湖久久久久久久久免费观看| 国产激情久久老熟女| 成人国产一区最新在线观看| 亚洲av日韩在线播放| 咕卡用的链子| 亚洲精品美女久久久久99蜜臀| 色尼玛亚洲综合影院| 亚洲成人免费av在线播放| 青草久久国产| 亚洲专区国产一区二区| 肉色欧美久久久久久久蜜桃| 亚洲色图综合在线观看| 成年动漫av网址| 国产区一区二久久| 欧美日韩黄片免| 亚洲av日韩在线播放| 日日爽夜夜爽网站| av在线播放免费不卡| 麻豆国产av国片精品| 国产老妇伦熟女老妇高清| 久久精品人人爽人人爽视色| av一本久久久久| 人人妻,人人澡人人爽秒播| 视频在线观看一区二区三区| 香蕉久久夜色| 亚洲久久久国产精品| 大码成人一级视频| 日本五十路高清| av福利片在线| 国产亚洲一区二区精品| 又大又爽又粗| 亚洲专区国产一区二区| 电影成人av| 成年人午夜在线观看视频| 国产精品.久久久| 9色porny在线观看| 日韩欧美一区视频在线观看| 欧美一级毛片孕妇| 午夜精品国产一区二区电影| 这个男人来自地球电影免费观看| 精品久久久精品久久久| 十八禁网站免费在线| 成人18禁在线播放| 无遮挡黄片免费观看| 国产熟女午夜一区二区三区| 麻豆乱淫一区二区| 中亚洲国语对白在线视频| 老司机亚洲免费影院| 90打野战视频偷拍视频| 亚洲 欧美一区二区三区| 热99久久久久精品小说推荐| 精品欧美一区二区三区在线| 国产亚洲精品第一综合不卡| 国产区一区二久久| 丁香六月天网| 精品久久久久久电影网| 久久久久久人人人人人| 18在线观看网站| 成年人午夜在线观看视频| 成在线人永久免费视频| 少妇猛男粗大的猛烈进出视频| 91精品三级在线观看| 国产高清videossex| 亚洲国产毛片av蜜桃av| 日韩一卡2卡3卡4卡2021年| 日韩免费av在线播放| 国产av又大| 一区二区三区激情视频| 中文字幕另类日韩欧美亚洲嫩草| 色视频在线一区二区三区| 免费在线观看完整版高清| 搡老乐熟女国产| 亚洲成人国产一区在线观看| 久久影院123| 国产不卡av网站在线观看| 久久久国产一区二区| 国产在线观看jvid| 日本vs欧美在线观看视频| 韩国精品一区二区三区| 热99re8久久精品国产| 亚洲全国av大片| 日韩有码中文字幕| 欧美亚洲日本最大视频资源| 中文字幕人妻丝袜制服| 国产成人精品久久二区二区免费| 国产在线视频一区二区| 久久青草综合色| 99在线人妻在线中文字幕 | 精品少妇黑人巨大在线播放| 男女高潮啪啪啪动态图| 久久狼人影院| 老司机福利观看| 久久久国产欧美日韩av| aaaaa片日本免费| 久久人人97超碰香蕉20202| 女警被强在线播放| 大型黄色视频在线免费观看| 午夜精品久久久久久毛片777| 亚洲精品国产区一区二| 黄片大片在线免费观看| 久久久精品区二区三区| 两性夫妻黄色片| 国产亚洲一区二区精品| 桃红色精品国产亚洲av| 亚洲精品成人av观看孕妇| 久久精品91无色码中文字幕| 亚洲欧美精品综合一区二区三区| 69av精品久久久久久 | 久久精品人人爽人人爽视色| 黄色毛片三级朝国网站| 19禁男女啪啪无遮挡网站| 99精品在免费线老司机午夜| 天堂动漫精品| 免费在线观看日本一区| 99在线人妻在线中文字幕 | 久久久久精品国产欧美久久久| 久久av网站| 欧美大码av| 精品少妇黑人巨大在线播放| av电影中文网址| 1024视频免费在线观看| 亚洲国产欧美日韩在线播放| 亚洲av国产av综合av卡| 久久久久久久国产电影| 久久精品国产99精品国产亚洲性色 | 色94色欧美一区二区| 亚洲成人手机| 久久中文字幕一级|