• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pull-in Instability Analysis of Nanoelectromechanical Rectangular Plates Including the Intermolecular, Hydrostatic, and Thermal Actuations Using an Analytical Solution Methodology

    2019-03-12 02:41:50SamadaniAnsariHosseiniandZabihi
    Communications in Theoretical Physics 2019年3期

    F.Samadani, R.Ansari,K.Hosseini, and A.Zabihi

    1Department of Mechanical Engineering, University of Guilan, P.O.Box 3756, Rasht, Iran

    2Department of Mathematics, Rasht Branch, Islamic Azad University, Rasht, Iran

    3Department of Mechanical Engineering, Ahrar Institute of Technology & Higher Education, Rasht, Iran

    (Received May 10, 2018; revised manuscript received August 21, 2018)

    Abstract The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations.Based on the Kirchhoff theory along with Eringen’s nonlocal elasticity theory, a nonclassical model is developed.Using the Galerkin method (GM), the governing equation which is a nonlinear partial differential equation (NLPDE)of the fourth order is converted to a nonlinear ordinary differential equation (NLODE)in the time domain.Then, the reduced NLODE is solved analytically by means of the homotopy analysis method.At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored.

    Key words: Nanoelectromechanical rectangular plates,Pull-in instability,Kirchhoff theory,Eringen’s nonlocal elasticity theory, Homotopy analysis method

    1 Introduction

    Numerous applications of micro- and nano-electromechanical systems (MEMS/NEMS)have motivated researchers to study their performance in various situations.Because the classical continuum theories cannot consider the size effects in the mechanical analysis of nanostructures,[1?4]some size-dependent continuum theories like Eringen’s nonlocal elasticity theory,[5]the couple stress elasticity theory,[6]the Gurtin-Murdoch continuum elasticity theory,[7?11]the strain gradient elasticity theory,[12]and the stress-driven nonlocal model[13]were proposed to consider the size effects.In the classical theories, the stress state at a given point is determined only by the strain state at that point, but in Eringen’s nonlocal elasticity theory, the stress state at a given point is determined by the strain states of all points in the body.The first use of Eringen’s nonlocal elasticity theory to nanotechnology was proposed by Peddiesonet al.,[14]followed by many other researchers.[15?19]One of the important designing considerations in MEMS/NEMS is the pull-in instability.[20]The pull-in instability happens when the internal and applied external forces surpass the elastic restoring force of the nanostructures, leading to contact between the movable and substrate electrodes.When the rate of applied voltage variation is significant,the effect of inertia is considered.In this case, the pull-in instability is referred to as the dynamic pull-in instability.

    Once the space of movable and bottom electrodes is less than the plasma wavelength or the absorption wavelength of the ingredient material of surfaces, the intermolecular force is considered as the van der Waals (vdW)attraction.In this situation, there is a small separation regime such that the vdW force is the dominant attraction and it is proportional to the inverse cube of the separation.Nevertheless, when the separation is adequately large (typically above 20 nm)the intermolecular interaction is referred to as the Casimir force.[21]In this case,there is a large separation regime in which the Casimir force is dominant(typically above several tens of nanometers)and it is proportional to the inverse fourth power of the separationπ2hc/240g4, in whichh=1.055×10?34is Planck’s constant divided by 2πandc=2.998×108m/s is the speed of light.[21]The reader is referred to Refs.[22–30]as some important papers and books about the Casimir effect.One of the most remarkable predictions of quantum electrodynamics (QED), obtained by Casimir in 1948, is that two parallel, closely spaced, conducting plates will be mutually attracted.[31]This measurement, as reported by Sparnaay in 1958, confirmed the formula.[32]A closely related effect, the attraction of a neutral atom to a conducting plate, has been also measured.[33]

    In the past few years, many researchers have focused on the pull-in instability of nanoplates.For instance, based on a modified continuum model, Ansariet al.[34]studied the size-dependent pull-in behavior of electrostatically and hydrostatically actuated rectangular nanoplates considering the surface stress effects.Ebrahimi and Hosseini[35]investigated the effect of temperature on pull-in voltage and nonlinear vibration of nanoplatebased NEMS under hydrostatic and electrostatic actuations.Mirkalantariet al.[36]studied the pull-in instability of rectangular nanoplates based on the strain gradient theory taking the surface stress effects into account.Shokravi[37]analyzed the dynamic pull-in of viscoelastic nanoplates under the electrostatic and Casimir forces.The interested reader is referred to Refs.[38–44].

    Moreover,different methods have been used for the vibration analysis of rectangular nanoplates.For example,Aghababaei and Reddy[45]presented the Navier solutions for the vibrations of rectangular plates based on the nonlocal third-order shear deformation plate theory.Also,Pradhan and Phadikar[46]used the same solution technique for addressing the vibration problem of rectangular plates with simply-supported boundary conditions in the context of Eringen’s nonlocal model,the classical and firstorder shear deformation plate theories.Another application of the Navier-type method to the vibration problem of nonlocal plates can be found in Ref.[47].Aksencer and Aydogdu[48]employed the Levy-type solution method for the vibration analysis of nanoplates based on the nonlocal elasticity theory.Ansariet al.[49?50]used the generalized differential quadrature method to numerically solve the free vibration problem of rectangular Mindlin-type plates with various boundary conditions.The Galerkin method was applied by Shakouriet al.[51]for the vibrational analysis of nonlocal Kirchhoff plates with different edge supports.

    The classical analytical methods cannot handle the strongly nonlinear differential equations.In this regard,Liao[52]developed an efficient technique called the homotopy analysis method (HAM), which can be adopted for solving ordinary and partial differential equations with different nonlinearities.For example, Samadaniet al.[53]applied HAM for the pull-in and nonlinear vibration analysis of nanobeams using a nonlocal Euler-Bernoulli beam model.Moghimi Zand and Ahmadian[54]used HAM in studying the dynamic pull-in instability of microsystems.Also, Miandoabet al.[55]utilized this method for the forced vibration analysis of a nano-resonator with cubic nonlinearities.

    In the present paper, HAM is used to study the static and dynamic pull-in instabilities of rectangular nanoplates using the nonlocal Kirchhoff plate theory.The rest of paper is organized as follows: In Sec.2,using Eringen’s nonlocal elasticity and the Kirchhoff plate theory, the nonlinear equation of motion subjected to fully clamped boundary condition (CCCC)is derived.In Secs.3 and 4, the governing equation of motion is reduced to an NLODE in the time domain by the Galerkin method.Then, HAM is adopted to solve the obtained nonlinear equation.The effects of intermolecular, hydrostatic, and thermal actuations as well as the nonlocal parameter on the deflection,nonlinear frequency, and the critical voltage of dynamic pull-in instability (Vpdyn)are investigated in Sec.5.At the end, the main findings of the paper is given in Sec.6.

    2 Problem Formulation

    2.1 Nonlocal Elasticity Theory

    Based on Eringen’s nonlocal elasticity theory,[3]the stress at a reference point depends on the strain at all points in the body.The constitutive equation of the nonlocal elasticity can be written as

    whereσij,tij,e0,andaare the nonlocal stress tensor,the classical stress tensor, nonlocal elasticity constant appropriate to each material and internal characteristic length scale (e.g.atomistic distance), respectively.e0can be obtained from experiments or through comparisons between the results of nonlocal continuum model and the ones from lattice dynamics.Eringen[3]estimated the value ofe0equal to 0.31 based on the comparison of Rayleigh surface wave using the nonlocal theory and lattice dynamics.Whene0is zero,the constitutive relations of the local theories are obtained.Also,?2is the Laplacian operator which in the Cartesian coordinate can be expressed as

    2.2 Kirchhoff Thin Plate Theory

    Based on the Kirchhoff thin plate theory, the strains in the plate are

    wherewis the transverse deflection of plate, respectively.The relations of bending moment are given by

    wherehis the thickness of plate.

    Under plane stress conditions, one has

    where?andEare Poisson’s ratio and Young’s modulus of the plate.By substituting Eqs.(3)and(5)into Eq.(4),one obtains

    whereD=Eh3/12(1??2)is the classical bending stiffness of the plate.By inserting Eqs.(1)and (4), one can arrive at

    Hamilton’s principle is given in the following form

    whereK,U, andWdenote the kinetic energy, strain energy and work of external forces and thermal actuation,respectively.The first variation of strain energy is presented as

    in whichSsignifies the area of plate.The first variation of the work of the external forces and thermal actuation is expressed as

    where the termsNxx,Nyy,Nxy,andqare determined by the thermal and external forces.It should be mentioned that the thermal force caused by the uniform temperature variation,θ=T ?T0, is described by[56]

    where the termαindicates the coefficient of thermal expansion.

    The first variation of kinetic energy is

    in whichρshows the density of plate.

    By inserting Eqs.(9)–(12)in Eq.(8), then integrating by parts and setting the coefficientδwto zero, one can reach the governing equation as

    Now, by means of the nonlocal bending moment equations given in Eq.(7)and expanding Eq.(13), one will arrive at the governing equation of motion in the following form

    Note that the governing equation of local model is obtained by settinge0a=0.

    3 Mathematical Modeling of the Problem

    A schematic of nanoelectromechanical rectangular plate with lengthlaand widthlb, including a pair of parallel electrodes with the distancegis given in Fig.1.The upper movable electrode is assumed to be under the influence of intermolecular, hydrostatic, and thermal actuations.

    It is noted that the movable electrode pulls down the fixed electrode by applying the DC voltage between two electrodes.Once the applied voltage approaches the critical point (pull-in voltage), the structure becomes unstable.[57]

    The electrostatic force per unit area of nanoplate can be described as[39]

    whereε0=8.854×10?12C2N?1·m?2is the vacuum permittivity,gis the air initial gap of nanoplates, andVdcis the direct current voltage as illistrated in Fig.1.The van dar Waals effect per unit area of nanoplate can be written as[39]

    whereAhis the Hamaker constant in the range of [0.4?4]×10?19.

    Fig.1 Schematic of fully clamped nanoelectromechanical rectangular plates under intermolecular, hydrostatic and thermal actuations.

    In the following analyses, it is assumed that

    whereFhstands for the hydrostatic actuation.By substituting Eqs.(15)and (16)into Eq.(17)and then inserting the resulting equation in Eq.(14),the following governing equation of motion is obtained

    with the following fully clamped boundary conditions

    By considering the following nondimensional variables

    and using the Taylor expansion(see Appendix),the nondimensional form of governing equation can be derived as

    with the following boundary conditions

    Here,GM is utilized to reduce Eq.(21)to an NLODE.To this end, it is considered that

    whereφ1(X,Y)= sin2(πX)sin2(πY)is the first eigenmode of fully clamped nanoplate andW1(X,Y,T)=u(T)sin2(πX)sin2(πY).[58]

    By insertingW1(X,Y,T)in Eq.(21),multiplying it byφ1(X,Y)and then integrating twice from zero to one, the following NLODE is obtained

    where the parametersa0,a1,a2,a3,a4, andMare given in Appendix.

    4 Implementation of the HAM to the Reduced Equation

    Now, using the transformationτ= ?pT, the existing reduced problem

    is changed into

    where the oscillation nonlinear frequency ?pis expressed as

    In a manner similar to that performed in Ref.[53],one can obtain ? andu(T)for vibrating actuated fully clamped nanoplate as below

    5 Results and Discussion

    The current section provides numerical results to show the effects of intermolecular, hydrostatic, and thermal actuations as well as the nonlocal parameterμon the deflection, nonlinear frequency, andVpdyn.For producing the results, the following parameters are selected:h=21 nm,la=lb=30h,g=1.2h,?=0.35, andE=68.5 GPa (Al alloy).

    In Fig.2,the nondimensional center point deflection of nanoplate obtained using HAM is compared to that calculated using the Runge-Kutta method.It is seen that there is an excellent agreement between the results of two methods.

    Fig.2 HAM results versus those of the Runge-Kutta method.

    Figure 3 shows the change in amplitude of vibration against the nondimensional time.In this case, the dynamic pull-in voltage is 22.540.TheVpdynobtained in the absence of the intermolecular and thermal parameters agrees well with those reported in Refs.[34, 59] (in Ref.[34]Vpdyn= 22.5 and in Ref.[59]Vpdyn= 22.38).The amplitude enhances with the increase of time and the nanoplate experiences a harmonic motion.Also, the nanoplate collapses onto the bottom, when the pull-in happens.

    Fig.3 Centerpoint deflection of a fully clamped nanoplate at Nthermal=R3=0.

    Figure 4 presents the normalized fundamental frequency of nanoplate with respect to the electrostatic parameterβ.It is observed that the normalized fundamental frequency becomes zero when the applied voltage reachesVpdyn.

    Figure 5 indicates that the pull-in time decreases (11 percent)by increasingμ(0.01 per unit).By decreasingμ,the pull-in phenomenon occurs later in this model.

    Fig.4 Relation between the normalized fundamental frequency and the electrostatic force parameter.

    Fig.5 Effect of the parameter μ on the pull-in and deflection time.

    Fig.6 Effect of the parameters μ and Vpdyn on the fundamental frequency.

    The variations of fundamental frequencies againstVpdynare illustrated in Fig.6 for different values of nonlocal parameter.It is observed that by increasingμ(0.02 per unit), the fundamental frequency decreases (2 percent).For example,whenμis considered to be 0.06,Vpdynoccurs at 21.

    Figure 7 demonstrates the variations of fundamental frequencies against the hydrostatic pressure parameter for different values of nonlocal parameter.The increase ofNhydroleads to the decrease of fundamental frequency.

    Fig.7 Effect of the nondimensional hydrostatic pressure on the fundamental frequency.

    Fig.8 Effect of the nondimensional thermal actuation on the pull-in frequency.

    Fig.9 Effect of the intermolecular actuation on the pull-in frequency.

    The variations of fundamental frequencies against the nondimensional thermal parameter are illustrated in Fig.8 for various values ofμ.One can find that via increasingNthermal, the fundamental frequency gets larger.

    Figure 9 shows the variations of fundamental natural frequency versusAfor a number of vdW parameters.It is seen that by increasingA, the nonlinear frequency of vibration diminishes.For instance, whenR3is equal to 5,the pull-in phenomenon happens atA=1.

    Fig.10 Variations of static pull-in deflection of the nanoplate versus the μ.

    Fig.11 Comparison of the static and dynamic pullvoltage parameter versus g in μ=0.01.

    Fig.12 Evaluation of the static and dynamic pullvoltage against Nthermal in μ=0.01.

    The influence ofla/lbon the static nondimensional deflection versus the nonlocal parameter is highlighted in Fig.10.According to this figure, the pull-in instability is suspended asλincreases.The influences of distance of parallel electrodes, thermal and nonlocal parameters on the static and dynamic pull-in voltage parameter are compared in Figs.11–13, respectively.Based on Fig.11,the pull-in voltage is postponed as the distance increases.Also, Fig.12 indicates that as the thermal parameter increases, the pull-in voltage is delayed.Finally, Fig.13 shows that by increasing the nonlocal parameter,the pullin voltage decreases.

    Fig.13 Comparision of dynamic and static pull-in voltage parameter of the nanoplate versus the μ.

    6 Conclusion

    In the present research, the dynamic pull-in of CCCC plate-type nanosensor, subjected to electrostatic, intermolecular, hydrostatic and thermal actuations was analyzed based on the nonlocal theory.GM was utilized for reducing the governing NLPDE to an NLODE in the time domain.HAM was also applied for solving the NLODE.The outcomes reveal that:

    (i)By increasingA,Vpdyndecreases.

    (ii)With the increase ofμ, vdW, andβ, the fundamental frequency diminishes.

    (iii)Vpdyndecreases as the vdW,μ, andAincrease;also, it increases as the thermal and hydrostatic parameters increase.

    (iv)? decreases as the pull-in voltage,R3,hydrostatic,nonlocal parameters, andAincrease; but, it increases as the thermal parameter rises.

    (v)The softening effect detected qualitatively is in agreement with that in the bending and vibrations of the nonlocal Kirchhoff model.

    Appendix

    亚洲四区av| 免费观看av网站的网址| 国产男女超爽视频在线观看| 国产av精品麻豆| 亚洲av欧美aⅴ国产| 99国产精品免费福利视频| 如何舔出高潮| 亚洲美女视频黄频| 黑人猛操日本美女一级片| 国产亚洲最大av| 亚洲av男天堂| 亚洲av福利一区| 欧美少妇被猛烈插入视频| 中文字幕最新亚洲高清| 18禁裸乳无遮挡动漫免费视频| 亚洲av男天堂| 国产片内射在线| 黄色怎么调成土黄色| 久久精品国产综合久久久| 9热在线视频观看99| 亚洲欧美日韩另类电影网站| 亚洲国产色片| 在现免费观看毛片| av国产久精品久网站免费入址| 国产 精品1| 久久国产精品男人的天堂亚洲| 在线天堂最新版资源| 欧美日韩一级在线毛片| 99久久综合免费| 纯流量卡能插随身wifi吗| 亚洲,欧美,日韩| 日韩av在线免费看完整版不卡| 亚洲国产av新网站| 亚洲美女黄色视频免费看| 黑人巨大精品欧美一区二区蜜桃| 欧美成人午夜精品| 亚洲国产精品成人久久小说| 精品久久久精品久久久| 国产精品无大码| 欧美黄色片欧美黄色片| 日本91视频免费播放| 亚洲av免费高清在线观看| 18禁裸乳无遮挡动漫免费视频| 五月伊人婷婷丁香| 观看av在线不卡| 这个男人来自地球电影免费观看 | 一区二区三区四区激情视频| 日本vs欧美在线观看视频| 少妇人妻久久综合中文| 多毛熟女@视频| 毛片一级片免费看久久久久| 亚洲欧洲国产日韩| 久久国产精品男人的天堂亚洲| 伊人久久大香线蕉亚洲五| 日日啪夜夜爽| 三级国产精品片| 亚洲欧美清纯卡通| 春色校园在线视频观看| 日韩 亚洲 欧美在线| 中文字幕av电影在线播放| 成人漫画全彩无遮挡| 精品久久蜜臀av无| 可以免费在线观看a视频的电影网站 | 久久99蜜桃精品久久| 国产熟女午夜一区二区三区| 一本色道久久久久久精品综合| 成人影院久久| 丝袜美足系列| 一二三四在线观看免费中文在| 国产欧美日韩一区二区三区在线| 国产日韩欧美亚洲二区| 在线观看一区二区三区激情| 国产成人一区二区在线| 伦理电影大哥的女人| 午夜福利网站1000一区二区三区| 国产极品粉嫩免费观看在线| 亚洲av福利一区| 黑人猛操日本美女一级片| 国产精品久久久久久av不卡| 欧美精品国产亚洲| 色婷婷av一区二区三区视频| 亚洲一区二区三区欧美精品| 男女啪啪激烈高潮av片| 黑丝袜美女国产一区| 熟女av电影| 人妻一区二区av| 99精国产麻豆久久婷婷| 香蕉国产在线看| 免费久久久久久久精品成人欧美视频| 久久精品国产综合久久久| 老熟女久久久| 99国产精品免费福利视频| 一区二区三区精品91| 欧美中文综合在线视频| 99久久精品国产国产毛片| 精品亚洲乱码少妇综合久久| 看十八女毛片水多多多| 国产极品粉嫩免费观看在线| 天堂8中文在线网| 99热全是精品| 国产av一区二区精品久久| 你懂的网址亚洲精品在线观看| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费鲁丝| 97人妻天天添夜夜摸| 自线自在国产av| 国产精品国产av在线观看| 国产精品一区二区在线观看99| 伊人亚洲综合成人网| 观看av在线不卡| 777米奇影视久久| 人妻人人澡人人爽人人| 青春草国产在线视频| 日本欧美视频一区| 九草在线视频观看| 天天操日日干夜夜撸| 成人国产麻豆网| 国产一区二区 视频在线| 日本欧美国产在线视频| 亚洲国产成人一精品久久久| 国产淫语在线视频| 十八禁网站网址无遮挡| 国产极品粉嫩免费观看在线| 黄色视频在线播放观看不卡| 深夜精品福利| 性少妇av在线| 免费黄色在线免费观看| 久久久久精品人妻al黑| 亚洲av国产av综合av卡| 亚洲av.av天堂| 亚洲精品国产一区二区精华液| 国产日韩一区二区三区精品不卡| 啦啦啦中文免费视频观看日本| 国产黄色视频一区二区在线观看| 老熟女久久久| 精品少妇黑人巨大在线播放| 五月开心婷婷网| 永久网站在线| 国产国语露脸激情在线看| 97在线视频观看| 精品久久久精品久久久| 人妻少妇偷人精品九色| 亚洲av在线观看美女高潮| 国产精品二区激情视频| 丝袜美腿诱惑在线| 欧美日韩一级在线毛片| 在线观看国产h片| 不卡av一区二区三区| 亚洲国产精品国产精品| 亚洲精品一区蜜桃| 男女无遮挡免费网站观看| 国产精品二区激情视频| 肉色欧美久久久久久久蜜桃| 汤姆久久久久久久影院中文字幕| 大片电影免费在线观看免费| 国产成人免费无遮挡视频| 人妻少妇偷人精品九色| 国产精品一二三区在线看| 男人添女人高潮全过程视频| 亚洲成人av在线免费| 国产 一区精品| 男女边吃奶边做爰视频| 老司机亚洲免费影院| 欧美成人午夜免费资源| 国产探花极品一区二区| 国产精品无大码| 亚洲精品国产一区二区精华液| 日韩制服丝袜自拍偷拍| 久久久久久久大尺度免费视频| 久久久a久久爽久久v久久| 亚洲精品一区蜜桃| 赤兔流量卡办理| a级片在线免费高清观看视频| 国产在线免费精品| 日韩中字成人| 在线观看美女被高潮喷水网站| 性色avwww在线观看| 国产男人的电影天堂91| 久久精品久久久久久噜噜老黄| 日日撸夜夜添| av免费观看日本| 视频区图区小说| 丰满乱子伦码专区| 男男h啪啪无遮挡| 久久久精品区二区三区| 日本91视频免费播放| 国产精品.久久久| 久久国产精品大桥未久av| 热re99久久国产66热| 久久人人爽人人片av| 韩国高清视频一区二区三区| 一区福利在线观看| 免费观看av网站的网址| 免费久久久久久久精品成人欧美视频| 亚洲国产色片| 日韩一区二区视频免费看| 精品人妻偷拍中文字幕| 中文精品一卡2卡3卡4更新| 午夜日韩欧美国产| 精品少妇内射三级| 婷婷成人精品国产| 免费大片黄手机在线观看| 久久精品亚洲av国产电影网| 国产精品欧美亚洲77777| av不卡在线播放| 最近手机中文字幕大全| 卡戴珊不雅视频在线播放| 亚洲欧美一区二区三区国产| 成年人免费黄色播放视频| 美女大奶头黄色视频| 午夜久久久在线观看| 97人妻天天添夜夜摸| 国产毛片在线视频| 91aial.com中文字幕在线观看| 黄片播放在线免费| 性色av一级| 看免费成人av毛片| 国产成人91sexporn| 毛片一级片免费看久久久久| 999久久久国产精品视频| 尾随美女入室| 日产精品乱码卡一卡2卡三| 亚洲精品国产一区二区精华液| av电影中文网址| 成年av动漫网址| 尾随美女入室| 国产黄色免费在线视频| 国产亚洲午夜精品一区二区久久| 人妻少妇偷人精品九色| 午夜免费观看性视频| 精品人妻偷拍中文字幕| 欧美精品国产亚洲| 亚洲四区av| 男女午夜视频在线观看| 黄色配什么色好看| 波多野结衣一区麻豆| 亚洲国产精品一区三区| 九色亚洲精品在线播放| 精品酒店卫生间| 丰满乱子伦码专区| 精品亚洲成a人片在线观看| 汤姆久久久久久久影院中文字幕| 成年人午夜在线观看视频| 国产一区二区激情短视频 | 国产日韩欧美视频二区| 中文字幕另类日韩欧美亚洲嫩草| 国产成人精品婷婷| 午夜福利视频精品| 18禁裸乳无遮挡动漫免费视频| 中文字幕最新亚洲高清| 一本久久精品| 国产精品久久久av美女十八| 亚洲精华国产精华液的使用体验| 伦理电影大哥的女人| 久久久精品国产亚洲av高清涩受| 天堂8中文在线网| 蜜桃国产av成人99| www.自偷自拍.com| 久久久久国产网址| 黄片无遮挡物在线观看| 免费观看性生交大片5| 99久久人妻综合| 永久网站在线| 国产男女内射视频| 日韩一区二区三区影片| 亚洲精品一二三| 亚洲第一区二区三区不卡| 成人国产麻豆网| 国产高清国产精品国产三级| 久久精品夜色国产| 少妇精品久久久久久久| 老司机影院毛片| av免费在线看不卡| 欧美 亚洲 国产 日韩一| 亚洲国产看品久久| 精品人妻偷拍中文字幕| 亚洲情色 制服丝袜| 热re99久久精品国产66热6| 久久久久精品人妻al黑| 日韩伦理黄色片| 亚洲欧美一区二区三区久久| 巨乳人妻的诱惑在线观看| 男的添女的下面高潮视频| 久久ye,这里只有精品| 久久精品夜色国产| 黑人巨大精品欧美一区二区蜜桃| 熟女av电影| 在线观看免费日韩欧美大片| 中国国产av一级| 一边亲一边摸免费视频| 丝袜脚勾引网站| 欧美日韩av久久| 日韩三级伦理在线观看| 亚洲国产色片| 黄色毛片三级朝国网站| 久久久久久人人人人人| 久久久国产精品麻豆| 婷婷色综合大香蕉| 在线观看免费高清a一片| 蜜桃国产av成人99| 久久久久国产网址| 26uuu在线亚洲综合色| av不卡在线播放| 80岁老熟妇乱子伦牲交| 亚洲色图 男人天堂 中文字幕| 咕卡用的链子| 各种免费的搞黄视频| 一级片'在线观看视频| 日韩一区二区三区影片| 久久狼人影院| 国产一区二区三区av在线| 欧美国产精品va在线观看不卡| 热99久久久久精品小说推荐| 久久这里只有精品19| 国产黄色视频一区二区在线观看| 日韩,欧美,国产一区二区三区| 极品人妻少妇av视频| 人妻少妇偷人精品九色| 国产一区二区三区综合在线观看| av片东京热男人的天堂| 精品卡一卡二卡四卡免费| 侵犯人妻中文字幕一二三四区| 欧美黄色片欧美黄色片| 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 欧美在线黄色| 只有这里有精品99| av国产精品久久久久影院| 老女人水多毛片| 日韩中字成人| 亚洲精品成人av观看孕妇| 捣出白浆h1v1| 久久久久人妻精品一区果冻| 国产又色又爽无遮挡免| 精品一区在线观看国产| 赤兔流量卡办理| 国产激情久久老熟女| 高清在线视频一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲综合色网址| 久久久久久久久久久久大奶| 国产 一区精品| 久久午夜福利片| 中文字幕亚洲精品专区| 人妻 亚洲 视频| 欧美bdsm另类| 日韩免费高清中文字幕av| 在线观看www视频免费| 日韩熟女老妇一区二区性免费视频| 久久久久久伊人网av| 少妇 在线观看| 五月开心婷婷网| 又粗又硬又长又爽又黄的视频| 天堂俺去俺来也www色官网| 女性生殖器流出的白浆| 欧美另类一区| 亚洲伊人色综图| 少妇人妻 视频| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 久久久久久久国产电影| 成人国产麻豆网| 成年av动漫网址| 又大又黄又爽视频免费| 国产乱人偷精品视频| 精品一区二区免费观看| 狂野欧美激情性bbbbbb| 黑丝袜美女国产一区| 国产综合精华液| 丝袜喷水一区| 欧美日韩成人在线一区二区| 天美传媒精品一区二区| 日韩视频在线欧美| 一区在线观看完整版| 国产片特级美女逼逼视频| 久久久久精品人妻al黑| 777米奇影视久久| 国产成人欧美| 免费女性裸体啪啪无遮挡网站| 9色porny在线观看| 日韩制服丝袜自拍偷拍| 视频在线观看一区二区三区| 午夜日韩欧美国产| 人人妻人人爽人人添夜夜欢视频| 少妇的丰满在线观看| 亚洲一区中文字幕在线| 亚洲欧美一区二区三区久久| tube8黄色片| 香蕉国产在线看| a 毛片基地| 精品一品国产午夜福利视频| 制服诱惑二区| 亚洲色图 男人天堂 中文字幕| 精品国产国语对白av| 日韩精品免费视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 啦啦啦视频在线资源免费观看| 亚洲三级黄色毛片| 婷婷色麻豆天堂久久| 欧美日韩国产mv在线观看视频| av视频免费观看在线观看| 久久精品国产自在天天线| 9热在线视频观看99| 看十八女毛片水多多多| 91久久精品国产一区二区三区| 波多野结衣av一区二区av| 国产一区二区三区av在线| 99久国产av精品国产电影| 少妇人妻精品综合一区二区| 青春草国产在线视频| 国产有黄有色有爽视频| √禁漫天堂资源中文www| 亚洲av免费高清在线观看| 国产精品国产av在线观看| 熟女av电影| 亚洲av中文av极速乱| 好男人视频免费观看在线| 老汉色av国产亚洲站长工具| 亚洲精品国产一区二区精华液| 精品亚洲成国产av| 欧美人与性动交α欧美精品济南到 | 伊人久久国产一区二区| 亚洲欧美一区二区三区黑人 | 飞空精品影院首页| 永久网站在线| 日韩成人av中文字幕在线观看| 日韩精品免费视频一区二区三区| 狠狠婷婷综合久久久久久88av| 97在线视频观看| 免费看av在线观看网站| 精品国产乱码久久久久久小说| 9色porny在线观看| 男人添女人高潮全过程视频| 精品一区二区免费观看| 亚洲精品第二区| 深夜精品福利| 国产精品亚洲av一区麻豆 | 国产成人免费无遮挡视频| 午夜免费观看性视频| 国产成人免费观看mmmm| 女的被弄到高潮叫床怎么办| 丝袜人妻中文字幕| 久久精品夜色国产| 亚洲欧美一区二区三区黑人 | 黄片小视频在线播放| 亚洲成国产人片在线观看| 久久久精品区二区三区| 大话2 男鬼变身卡| 亚洲,一卡二卡三卡| kizo精华| 国产亚洲欧美精品永久| 超碰97精品在线观看| 久久精品亚洲av国产电影网| 免费日韩欧美在线观看| 精品国产露脸久久av麻豆| 毛片一级片免费看久久久久| 制服丝袜香蕉在线| 国产精品国产三级国产专区5o| 国产极品天堂在线| 亚洲av免费高清在线观看| 熟妇人妻不卡中文字幕| 午夜精品国产一区二区电影| 电影成人av| 热re99久久国产66热| 亚洲国产精品999| 久久久国产一区二区| av在线老鸭窝| 一级毛片 在线播放| 十八禁高潮呻吟视频| 久久精品亚洲av国产电影网| 午夜激情av网站| 天堂中文最新版在线下载| av电影中文网址| 丝袜美腿诱惑在线| 国精品久久久久久国模美| 久久狼人影院| 99香蕉大伊视频| 久久久久久久精品精品| 国产免费又黄又爽又色| 成人国产av品久久久| 久久久久久久亚洲中文字幕| 各种免费的搞黄视频| 亚洲少妇的诱惑av| 精品久久蜜臀av无| 亚洲国产精品999| 日日爽夜夜爽网站| 国产成人精品久久久久久| 免费黄色在线免费观看| 免费播放大片免费观看视频在线观看| 国产成人精品一,二区| 国产片内射在线| 九草在线视频观看| 高清欧美精品videossex| 久久国产精品大桥未久av| 一区二区三区四区激情视频| 亚洲精品美女久久久久99蜜臀 | 久久久国产精品麻豆| 日本av手机在线免费观看| 大陆偷拍与自拍| 国产成人aa在线观看| 日本午夜av视频| 老女人水多毛片| 国产视频首页在线观看| 女人久久www免费人成看片| 亚洲四区av| 亚洲一码二码三码区别大吗| 热99国产精品久久久久久7| av.在线天堂| 午夜激情av网站| 五月伊人婷婷丁香| 国产xxxxx性猛交| 青青草视频在线视频观看| 久久久国产精品麻豆| 国产精品久久久久久精品电影小说| 欧美精品一区二区免费开放| 91成人精品电影| 成人影院久久| videosex国产| 国产精品99久久99久久久不卡 | 啦啦啦在线免费观看视频4| 天堂中文最新版在线下载| 亚洲欧美中文字幕日韩二区| 中文天堂在线官网| 亚洲欧美中文字幕日韩二区| 永久免费av网站大全| 老司机亚洲免费影院| 男女免费视频国产| av女优亚洲男人天堂| 视频在线观看一区二区三区| 秋霞在线观看毛片| 黄片无遮挡物在线观看| 久热久热在线精品观看| 一区在线观看完整版| 欧美日韩亚洲高清精品| 中文欧美无线码| 蜜桃国产av成人99| 欧美日韩一级在线毛片| 在线亚洲精品国产二区图片欧美| 99热国产这里只有精品6| 久久久久久人人人人人| 免费在线观看黄色视频的| 18禁观看日本| 亚洲伊人久久精品综合| 精品亚洲成a人片在线观看| 十分钟在线观看高清视频www| 午夜影院在线不卡| 亚洲欧洲日产国产| 日韩欧美一区视频在线观看| 色哟哟·www| 赤兔流量卡办理| 亚洲国产精品一区三区| 国产成人一区二区在线| 最近中文字幕高清免费大全6| 大香蕉久久网| 午夜91福利影院| 精品国产乱码久久久久久男人| 99九九在线精品视频| 成人亚洲欧美一区二区av| 王馨瑶露胸无遮挡在线观看| 欧美日韩综合久久久久久| 一区二区三区乱码不卡18| 久久国产精品大桥未久av| 午夜91福利影院| 国产有黄有色有爽视频| 中文字幕精品免费在线观看视频| 国产av码专区亚洲av| 亚洲综合精品二区| 天堂中文最新版在线下载| 下体分泌物呈黄色| 亚洲一区二区三区欧美精品| 精品国产超薄肉色丝袜足j| 精品一区二区三区四区五区乱码 | 一本—道久久a久久精品蜜桃钙片| 青春草视频在线免费观看| 国产精品一区二区在线不卡| 九草在线视频观看| 高清欧美精品videossex| 高清黄色对白视频在线免费看| 春色校园在线视频观看| 亚洲成av片中文字幕在线观看 | 国产成人欧美| 七月丁香在线播放| videos熟女内射| 26uuu在线亚洲综合色| 免费看av在线观看网站| 国产国语露脸激情在线看| 国产精品蜜桃在线观看| 两性夫妻黄色片| 亚洲精品中文字幕在线视频| 久久这里只有精品19| 在线观看免费视频网站a站| 久久综合国产亚洲精品| videosex国产| 一本色道久久久久久精品综合| 欧美日韩综合久久久久久| 欧美日韩精品网址| 制服诱惑二区| 精品亚洲成a人片在线观看| 亚洲综合色网址| 熟女av电影| 嫩草影院入口| 人成视频在线观看免费观看| 一级黄片播放器| 久久精品久久久久久噜噜老黄| av在线老鸭窝| 成人影院久久| 波野结衣二区三区在线| av电影中文网址| 日韩av不卡免费在线播放| 久久精品久久久久久久性| 亚洲国产av新网站| 欧美在线黄色| 黄片播放在线免费| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通|