• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modulated Dust-Acoustic Wave Packets in an Opposite Polarity Dusty Plasma System

    2019-03-12 02:41:40JahanChowdhuryMannanandMamun
    Communications in Theoretical Physics 2019年3期

    S.Jahan,N.A.Chowdhury, A.Mannan, and A.A.Mamun

    Department of Physics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

    (Received September 12, 2018; revised manuscript received October 23, 2018)

    Abstract The nonlinear propagation of the dust-acoustic bright and dark envelope solitons in an opposite polarity dusty plasma (OPDP)system (composed of non-extensive q-distributed electrons, iso-thermal ions, and positively as well as negatively charged warm dust)has been theoretically investigated.The reductive perturbation method (which is valid for a small, but finite amplitude limit)is employed to derive the nonlinear Schr?dinger equation.Two types of modes, namely, fast and slow dust-acoustic (DA)modes, have been observed.The conditions for the modulational instability (MI)and its growth rate in the unstable regime of the DA waves are significantly modified by the effects of non-extensive electrons, dust mass, and temperatures of different plasma species, etc.The implications of the obtained results from our current investigation in space and laboratory OPDP medium are briefly discussed.

    Key words: dust-acoustic waves, opposite polarity, modulational instability, envelope solitons

    1 Introduction

    Now-a-days, the study of dusty plasma (DP)is one of the most rapidly growing branches in plasma physics due to their existence in space, viz., planetary rings,[1]cometary tails,[2]Jupiter’s magnetosphere,[2]lower part of the Earth’s atmosphere[1]and also in laboratory plasmas.[3?7]The DP have generally considered to be an ensemble of negatively charged dust grains,free electrons,and ions.However, the co-existence of opposite polarity(OP)dust grains in plasmas introduces a new DP model called OP DP (OPDP)whose main constituent species are positively and negatively charged warm massive dust grains.[2,6]The exclusive property of this OPDP, which makes it completely unique from other plasmas(viz.,electron ion and electron-positron plasmas), is that the ratio of the size of positively charged dust grains to that of negatively charged dust grains can be smaller[8]or larger[9]or equal to unity.[9]There are three main processes by which dust grains become positively charged: (a)Secondary emission of electrons from the surface of the dust grains; (b)Thermionic emission induced by the radiative heating; (c)Photoemission in the presence of a flux of ultraviolet photons.[1,10]

    The researchers have focused on wave dynamics,specifically, dust-acoustic (DA)waves (DAWs), dustacoustic rogue waves (DARWs), and dust ion-acoustic waves(DIAWs)in understanding electrostatic density perturbations and potential structures (viz., shock, soliton,envelope solitons,[11?12]and rogue waves[13?15])in DP.Raoet al.[14]first theoretically predicted the existence of very low frequency DAWs (where the inertia is provided by the dust mass and restoring force is provided by the thermal pressure of electrons and ions)in comparison with the electron and ion thermal velocities and this theoretical prediction has been conclusively verified by Barkenet al.[4]There is also direct evidence for the co-existence of both positively and negatively charged dust grains in different regions of space plasmas(viz.,cometary tails,[2]upper mesosphere,[2]and Jupiter’s magnetosphere,[10]etc.)and laboratory devices (viz., direct current and radiofrequency discharges,[1]plasma processing reactors,[16]fusion plasma devices,and solid-fuel combustion products,[1]etc).The novelty of this OPDP has attracted numerous authors[17?21]to investigate the linear and nonlinear propagation of electrostatic waves.Sayed and Mamun[2]studied the finite solitary potential structures that exist in OPDP.El-Taibany[17]examined the DAWs in inhomogeneous four component OPDP, and observed that only compressive soliton is created corresponding to fast DA mode.

    In space and astro-physical situations, if the plasma species move very fast compared to their thermal velocities[22]then the Maxwellian distribution is no longer valid to explain the dynamics of these plasma species.For that reason, Tsallis proposed the non-extensive statistics,[23]which is the generalisation of Boltzmann-Gibbs-Shannon entropy.The importance of Tsallis statistics is that it can easily describe the long range interactions of the electron-ion in DP system.[13?15]The research regarding modulational instability (MI)of DAWs in nonlinear and dispersive mediums has been increasing significantly due to their existence in astrophysics, space physics[11?15]as well as in application in many laboratory situations.[11]A large number of researchers have used the nonlinear Schr?dinger equation (NLSE), which governs the dynamics of the DAWs, to study the formation of the envelope solitons or rogue waves[13?15]in DP.Bainset al.[13]investigated the MI of the DAWs in non-extensive DP.Moslemet al.[14]have studied the MI of the DAWs in three component DP in presence of the non-extensive electrons and ions, and have found that the threshold wave number(kc)increases withq.Duanet al.[19]have investigated the criteria for MI of the DAWs and the formation of envelope solitons in OPDP.Zaghbeeret al.[20]have reported DARWs in a four component OPDP.Gillet al.[21]have studied MI of DAWs in a four component OPDP,and have found that the presence of positive dust grains significantly modify the domain of the MI and localized envelope solitons.To the best knowledge of the authors,no attempt has been made to study the MI and corresponding dark and bright envelope solitons associated with the DAWs in a four component OPDP in presence of OP warm adiabatic dust grains.The aim of the present investigation is therefore to extend the work of Gillet al.[21]by examining the conditions for the MI of the DAWs (in which inertia is provided by the OP warm dust masses and restoring force is provided by the thermal pressure ofq-distributed electrons and iso-thermal ions)in four component OPDP.

    The manuscript is organized as the following fashion:The governing equations of our plasma model are provided in Sec.2.The NLSE is derived in Sec.3.The stability of DAWs is examined in Sec.4.Envelope solitons is presented in Sec.5.Finally, a brief discussion is provided in Sec.6.

    2 Model Equations

    In this paper, we consider a collisionless, fully ionized,unmagnetized four component dusty plasma system composed ofq-distributed electrons (charge?e, massme),iso-thermal ions (charge +e, massmi)and inertial warm negatively charged dust grains (chargeq1=?z1e, massm1)as well as positively charged warm dust grains(chargeq2=+z2e, massm2), wherez1(z2)is the charge state of the negatively (positively)charged warm dust particles.The negatively and positively charged warm dust grains can be displayed by continuity and momentum equations,respectively, as:

    wheren1(n2)is the number densities of the negatively(positively)charged warm dust grains;t(x)is the time(space)variable;u1(u2)is the fluid speed of the negatively (positively)charged warm dust species;eis the magnitude of the charge of the electron;φis the electrostatic wave potential;p1(p2)is the adiabatic pressure of the negatively(positively)charged warm dust grains.The system is enclosed through Poisson’s equation as

    whereniandneare, respectively, the ion and electron number densities.The quasi-neutrality condition at equilibrium can be written as

    whereni0,n20,ne0, andn10are the equilibrium number densities of the iso-thermal ions, positively charged warm dust grains,q-distributed electrons, and negatively charged warm dust grains, respectively.Now, in terms of normalized variables,namely,N1=n1/n10,N2=n2/n20;U1=u1/Cd1(withCd1being the sound speed of the negatively charged warm dust grains);U2=u2/Cd1,?=eφ/kBTi(withTibeing the temperature of the isothermal ion);T=tωpd1(withωpd1being the plasma frequency of the negatively charged warm dust grains);X=x/λDd1(withλDd1being the Debye length of the negatively charged warm dust grains);Cd1=(z1kBTi/m1)1/2,ωpd1= (4πe2z21n10/m1)1/2,λDd1= (kBTi/4πe2z1n10)1/2;p1=p10(n1/n10)γ(withp10being the equilibrium adiabatic pressure of the negatively charged warm dust grains andγ= (N+ 2)/N, whereNis the degree of freedom, for one-dimensional case,N= 1 so thatγ= 3);p10=n10kBT1(withT1being the temperature of the negatively charged warm dust grains andkBis the Boltzmann constant);p2=p20(n2/n20)3(withp20being the equilibrium adiabatic pressure of the positively charged warm dust grains)andp20=n20kBT2(withT2being the temperature of the positively charged warm dust particles).After normalization, the governing equations (1)–(5)can be written as

    whereσ1=T1/z1Ti,σ2=m1T2/z1m2Ti,α=m1z2/m2z1,β=z2n20/z1n10,andμi=ni0/z1n10.It may be noted here that we have considered for our numerical analysism1> m2,n10> n20, andTe,Ti ?T1,T2.The number densities of the non-extensiveq-distributed[15]electron can be given by the following normalized equation

    whereδ=Ti/Te(withTebeing the temperature of the non-extensiveq-distributed electron andTe > Ti)andqis the non-extensive parameter describing the degree of non-extensivity, i.e.,q= 1 indicates the Maxwellian distribution, whereasq <1 refers to the super-extensivity,and the opposite conditionq >1 corresponds to the subextensivity.[15]The number densities of the iso-thermally distributed[15]ion can be represented as

    Now,by substituting Eqs.(12)and(13)into Eq.(11),and extending up to the third order in?, we can obtain

    where

    The left hand side of Eq.(14)is the contribution of electron and ion species.

    3 Derivation of the NLSE

    We will use the reductive perturbation method(RPM)to derive the NLSE for studying the MI of the DAWs in OPDP.Now, the stretched co-ordinate[15]can be defined as

    whereVgis the envelope group velocity and?is a small but real parameter.The dependent variables[15]can be written as

    where Υ=kX ?ωTandk(ω)is the carrier wave number (frequency).The derivative operators in the above equations are considered as follows:

    Now, by substituting Eqs.(15)–(23)into Eqs.(7)–(10),and Eq.(14)and collecting power term of?, the first order approximation(m=1)with the first harmonic(l=1)provides the following relation

    whereλ=3σ1andθ=3σ2.Now, these equations can be reduced to the following pattern

    whereA=ω2?θk2andS=λk2?ω2.Therefore, the dispersion relation for the DAWs can be written as

    whereG= (λk2+θk2+θγ1+λγ1+αβ+ 1),H=(k2+γ1)/k2, andM=k2(θλk2+θγ1λ+θ+αβλ).The conditionG2>4HMmust be satisfied in order to obtain real and positive values ofω.Normally, two types of DA modes exist, namely, fast (ωf)and slow (ωs)DA modes according to the positive and negative sign of Eq.(33).Now,we have studied the dispersion properties by depictingωwithkin Figs.1 and 2 which clearly indicates that(a)The fast DA mode exponentially increases withkfor its lower range,but a saturation starts after a certain value ofk; (b)The value ofωfincreases exponentially with the increasing values ofz2for fixed value ofz1,n20, andn10(see in Fig.1); (c)On the other hand, the slow DA mode linearly increases withk; (d)Theωsdecreases with the increase ofz2for the fixed value ofz1,n20,andn10(see in Fig.2).This result agrees with the result of previous published work.[6,18]It is important to mention that in fast DA mode, both positive and negative warm dust species oscillate in phase with electrons and ions.Whereas in slow DA mode, only one of the inertial massive dust components oscillate in phase with electrons and ions,but the other species are in anti-phase with them.[15]Next, with the help of second-order(m=2 withl=1)equations, we obtain the expression ofVgas

    Fig.1 The variation of ωf with k for different values of β, along with α= 1.2, δ= 0.3, μi= 1.4, σ1= 0.0001,σ2=0.001, and q=1.8.

    Fig.2 The variation of ωs with k for different values of β, along with α= 1.2, δ= 0.3, μi= 1.4, σ1= 0.0001,σ2=0.001, and q=1.8.

    From the next order of?, we can get the secondharmonic mode of the carrier wave withm=2 andl=2 as

    where

    Now, we consider the expressions for (m= 3,l= 0)and(m=2,l=0), which lead to the zeroth harmonic modes.

    Finally, we get

    where

    Now, we can obtain the standard NLSE from the third harmonic(m=3,l=1)modes with the help of Eqs.(29)–(44)which can be written as

    where Φ=for simplicity and the dispersion (P)and nonlinear (Q)coefficient are, respectively, written as

    where

    4 Stability DAWs

    The DAWs are modulationally stable against external perturbation whenP/Q <0.On the other hand,whenP/Q >0, the DAWs are modulationally unstable against external perturbation.WhenP/Q →±∞, the corresponding value ofk(=kc)is called the critical or threshold wave number(kc)for the onset of MI.The variation ofP/Qwithkforμiandαare shown in Figs.3 and 4, respectively, which clearly indicate that (a)The value ofkcincreases with the increase ofni0for fixed value ofz1andn10; (b)On the other hand,kcvalue decreases with the increase ofm2for fixed value ofm1,z2, andz1.The growth rate (Γ)of the modulationally unstable region for the DAWs(whenP/Q>0 and<=(2Q||2/P)1/2)can be written as[6,11?12,15,18]

    Fig.3 The variation of P/Q with k for different values ofμi,along with α=1.2,β=0.07,δ=0.3,σ1=0.0001,σ2=0.001, q=1.8, and ωf.

    Fig.4 The variation of P/Q with k for different values of α,along with β=0.07,δ=0.3,μi=1.4,σ1=0.0001,σ2=0.001, q=1.8, and ωs.

    Now,we have graphically shown how the Γ varies withfor different values ofαandqin Figs.5–9.It is obvious from Figs.5–7 that (a)Within three limits ofq(q= 1,q=+ve,andq=?ve),the maximum value of Γ increases with the increases in the value ofz2for fixed valuesz1,m1,andm2(viaα); (b)So, the effects of theαon the maximum value of the growth rate is independent from the various limits ofq.The physics of this result is that the nonlinearity, which leads to increase the maximum value of the growth rate of DAWs, increases with the increase in the values ofα.

    Fig.5 The variation of Γ with for different values of α(when q=1.0), along with β=0.07, δ=0.3, μi=1.4,σ1=0.0001, σ2=0.001, =0.5, k=0.6, and ωf.

    Fig.6 The variation of Γ with for different values of α(when q=1.5), along with β=0.07, δ=0.3, μi=1.4,σ1=0.0001, σ2=0.001, =0.5, k=0.6, and ωf.

    Fig.7 The variation of Γ with for different values of α(when q=?0.6), along with β=0.07, δ=0.3, μi=1.4,σ1=0.0001, σ2=0.001, =0.5, k=0.6, and ωf.

    The effects of non-extensivity of the electrons on the MI growth rate can be observed from Figs.8 and 9,and it is obvious from these figures that(a)The maximum value of Γ decreases (decreases)with the increase in the values ofqfor the limits ofq >1 (q <1); (b)So, the variation of Γ with respect tois independent on the sign of theq.This result agrees with the result of previous published work.[18]

    Fig.8 The variation of Γ with for q (q > 1), along with α= 1.2, β= 0.07, δ= 0.3, μi= 1.4, σ1= 0.0001,σ2=0.001, =0.5, k=0.6, and ωf.

    Fig.9 The variation of Γ with for q (q < 1), along with α= 1.2, β= 0.07, δ= 0.3, μi= 1.4, σ1= 0.0001,σ2=0.001, =0.5, k=0.6, and ωf.

    5 Envelope Solitons

    The bright(whenP/Q>0)and dark(whenP/Q<0)envelope solitonic solutions, respectively, can be written as[24?27]

    whereψ0indicates the envelope amplitude,Uis the traveling speed of the localized pulse,Wis the pulse width which can be written asand ?0is the oscillating frequency forU=0.The bright (by using Eq.(47))and dark (by using Eq.(48))envelope solitons are depicted in Figs.10 and 11, respectively.

    Fig.10 The variation of Re(Φ)with ξ for k=0.6(bright envelope solitons), along with α=1.2, β=0.07, δ=0.3,μi= 1.4, σ1= 0.0001, σ2= 0.001, τ= 0, ψ0= 0.008,q=1.5, ?0=0.4, U=0.4, and ωf.

    Fig.11 The variation of Re(Φ)with ξ for k=0.2(dark envelope solitons), along with α=1.2, β=0.07, δ=0.3,μi= 1.4, σ1= 0.0001, σ2= 0.001, τ= 0, ψ0= 0.008,q=1.5, ?0=0.4, U=0.4, and ωf.

    6 Discussion

    We have studied an unmagnetized realistic space dusty plasma system consists ofq-distributed electrons, isothermal ions, positively charged warm dust grains as well as negatively charged warm dust grains.The RPM is used to derive the NLSE.The results that have been found from our investigation can be summarized as follows:

    (i)The fast DA mode increases exponentially withz2for fixed value ofz1,n20, andn10(viaβ).On the other hand, the slow DA mode linearly decreases with the increase ofz2for the fixed value ofz1,n20, andn10(viaβ).

    (ii)The DAWs is modulationally stable (unstable)in the range of values ofkin which the ratioP/QisP/Q<0(P/Q>0).

    (iii)The value ofkcincreases with the increase ofni0for fixed value ofz1andn10(viaμiand for fast mode).On the other hand,kcvalue decreases with the increase ofm2for fixed value ofm1,z2, andz1(viaαand for slow mode).

    (iv)The value of Γ increases withαfor fixed value ofq(within three ranges ofq, namely,q >1,q= 1, andq <1).So, the variation of Γ withαis independent of possible values ofq.

    (v)The maximum value of Γ decreases (decreases)with the increase in the values ofqfor the limitsq >1(q <1).So, the growth rate is independent on the sign of theq.

    The results of our present investigation will be useful in understanding the nonlinear phenomena both in space (viz., Jupiters magnetosphere,[2]upper mesosphere,and comets tails,[2]etc.)and laboratory (viz., direct current and radio-frequency discharges, plasma processing reactors, fusion plasma devices,[1]and solid-fuel combustion products,[1]etc.)plasma system containingqdistributed electrons, iso-thermal ions, negatively and positively charged massive warm dust grains in OPDP medium.

    黑人高潮一二区| 亚洲国产欧洲综合997久久,| 少妇高潮的动态图| 午夜亚洲福利在线播放| 国产高清视频在线观看网站| 精品午夜福利在线看| 国产成人福利小说| 国产不卡一卡二| 91av网一区二区| 高清午夜精品一区二区三区 | 美女国产视频在线观看| 国产蜜桃级精品一区二区三区| 黄片无遮挡物在线观看| 久久欧美精品欧美久久欧美| 欧美+亚洲+日韩+国产| 亚洲av中文av极速乱| 久久99精品国语久久久| 国产精品无大码| 亚洲自拍偷在线| 久久精品久久久久久噜噜老黄 | 最近手机中文字幕大全| 久久久精品大字幕| 一区二区三区高清视频在线| 日韩强制内射视频| 女人被狂操c到高潮| 日韩在线高清观看一区二区三区| 人人妻人人澡欧美一区二区| 日本av手机在线免费观看| 久久久久性生活片| 精品久久久久久久人妻蜜臀av| 国产成人精品久久久久久| 久久久久久伊人网av| 亚洲aⅴ乱码一区二区在线播放| 欧美3d第一页| 欧美激情久久久久久爽电影| 菩萨蛮人人尽说江南好唐韦庄 | 1024手机看黄色片| 99久久精品一区二区三区| 成人毛片60女人毛片免费| 久久久久久久久久黄片| 国产亚洲av嫩草精品影院| 一本精品99久久精品77| av在线亚洲专区| 国产精品不卡视频一区二区| 狠狠狠狠99中文字幕| 国产精品日韩av在线免费观看| 亚洲国产欧美在线一区| 色哟哟·www| 久久久久久大精品| 九九久久精品国产亚洲av麻豆| 美女国产视频在线观看| 搡女人真爽免费视频火全软件| 欧美日韩在线观看h| 2021天堂中文幕一二区在线观| 婷婷色综合大香蕉| 久久这里只有精品中国| 国产精品人妻久久久影院| 午夜免费激情av| 国产大屁股一区二区在线视频| 国产高清不卡午夜福利| 亚洲国产欧洲综合997久久,| 欧美xxxx性猛交bbbb| 看片在线看免费视频| 久久热精品热| 综合色丁香网| 国产精品永久免费网站| 我的老师免费观看完整版| АⅤ资源中文在线天堂| 午夜爱爱视频在线播放| 99热这里只有是精品50| 国产av麻豆久久久久久久| 99久久精品国产国产毛片| а√天堂www在线а√下载| 女人十人毛片免费观看3o分钟| 日韩av在线大香蕉| 亚洲国产高清在线一区二区三| 久久鲁丝午夜福利片| 高清午夜精品一区二区三区 | 亚洲高清免费不卡视频| 99久久无色码亚洲精品果冻| 一区二区三区免费毛片| 国产精品久久久久久精品电影小说 | 国产成人精品久久久久久| 亚洲一区二区三区色噜噜| 亚洲一级一片aⅴ在线观看| 99久久精品国产国产毛片| 国产色婷婷99| 久久热精品热| av在线播放精品| 亚洲av电影不卡..在线观看| 国产精品一区二区在线观看99 | 九九在线视频观看精品| 在线免费观看的www视频| 亚洲最大成人手机在线| 免费av观看视频| 人人妻人人澡欧美一区二区| 丝袜美腿在线中文| 国产色婷婷99| 日韩欧美精品v在线| 一夜夜www| 校园春色视频在线观看| 成年版毛片免费区| 中文精品一卡2卡3卡4更新| 国产人妻一区二区三区在| 少妇的逼水好多| 人人妻人人澡欧美一区二区| 美女内射精品一级片tv| 国产成人精品一,二区 | av黄色大香蕉| 大型黄色视频在线免费观看| 18禁在线播放成人免费| 国产在视频线在精品| 亚洲欧美精品自产自拍| 国产一区二区在线av高清观看| 美女 人体艺术 gogo| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 日本欧美国产在线视频| 国产精品野战在线观看| 免费观看a级毛片全部| 国产精品久久久久久av不卡| 天堂影院成人在线观看| 男女啪啪激烈高潮av片| 毛片一级片免费看久久久久| 免费人成在线观看视频色| av天堂在线播放| 欧美一区二区亚洲| 国产精品永久免费网站| 精品一区二区三区人妻视频| 青春草亚洲视频在线观看| 极品教师在线视频| 欧美区成人在线视频| 精品午夜福利在线看| 久久精品夜色国产| 国产成人freesex在线| 日产精品乱码卡一卡2卡三| 日韩成人av中文字幕在线观看| 高清毛片免费看| 亚洲人成网站在线播放欧美日韩| 亚洲精品粉嫩美女一区| 欧美成人免费av一区二区三区| 国产老妇女一区| 国产成人精品婷婷| 极品教师在线视频| 成人毛片60女人毛片免费| 国产精品精品国产色婷婷| 国产单亲对白刺激| 色哟哟哟哟哟哟| 淫秽高清视频在线观看| 成熟少妇高潮喷水视频| 国产午夜福利久久久久久| 亚洲无线在线观看| 欧美成人免费av一区二区三区| 欧美区成人在线视频| 国产精品三级大全| 国产一级毛片在线| 我的老师免费观看完整版| 欧美性猛交╳xxx乱大交人| 国产精品久久电影中文字幕| 久久热精品热| 久久午夜福利片| 联通29元200g的流量卡| 最新中文字幕久久久久| 熟女人妻精品中文字幕| 亚洲av二区三区四区| 精品午夜福利在线看| 日本撒尿小便嘘嘘汇集6| 在线国产一区二区在线| 久久精品人妻少妇| 日韩欧美国产在线观看| 欧美极品一区二区三区四区| av专区在线播放| 色5月婷婷丁香| 欧美日韩一区二区视频在线观看视频在线 | 国产成人aa在线观看| 国产亚洲欧美98| 久久久精品大字幕| 精品少妇黑人巨大在线播放 | 欧美+亚洲+日韩+国产| 日韩三级伦理在线观看| 免费观看人在逋| 久久久国产成人精品二区| 91狼人影院| 丰满的人妻完整版| 少妇人妻精品综合一区二区 | 青青草视频在线视频观看| 久久精品国产亚洲av天美| 欧美精品一区二区大全| 免费搜索国产男女视频| 午夜视频国产福利| 久久精品国产清高在天天线| 免费看日本二区| 中文亚洲av片在线观看爽| 一边亲一边摸免费视频| 久久精品国产鲁丝片午夜精品| 国产精品综合久久久久久久免费| 在线观看午夜福利视频| 国产探花极品一区二区| 亚洲av免费在线观看| 国产日本99.免费观看| 国产黄片美女视频| 国产一区二区三区在线臀色熟女| 99热这里只有是精品50| 热99在线观看视频| 激情 狠狠 欧美| 久久精品国产鲁丝片午夜精品| 日韩一本色道免费dvd| 亚洲aⅴ乱码一区二区在线播放| 联通29元200g的流量卡| 少妇被粗大猛烈的视频| 99在线视频只有这里精品首页| 亚洲在线观看片| 人妻制服诱惑在线中文字幕| 亚洲第一电影网av| 国内精品久久久久精免费| www.av在线官网国产| 国产真实伦视频高清在线观看| 亚洲无线在线观看| 精品一区二区三区人妻视频| 男人舔女人下体高潮全视频| 最近视频中文字幕2019在线8| 人妻少妇偷人精品九色| 国产探花在线观看一区二区| 在线观看66精品国产| 精品人妻视频免费看| 美女xxoo啪啪120秒动态图| 性欧美人与动物交配| 可以在线观看毛片的网站| 国产极品精品免费视频能看的| 国产精品一区二区性色av| a级毛色黄片| 天堂网av新在线| 精品一区二区三区人妻视频| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 亚洲精品日韩av片在线观看| 久久久久网色| 夫妻性生交免费视频一级片| 亚洲av第一区精品v没综合| 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 秋霞在线观看毛片| 人体艺术视频欧美日本| 成人漫画全彩无遮挡| 国产亚洲av片在线观看秒播厂 | 亚洲图色成人| 亚洲欧美日韩无卡精品| 国产黄色视频一区二区在线观看 | 3wmmmm亚洲av在线观看| 可以在线观看的亚洲视频| 老熟妇乱子伦视频在线观看| 国产精品女同一区二区软件| 少妇的逼水好多| 免费电影在线观看免费观看| 亚洲美女搞黄在线观看| 国产真实伦视频高清在线观看| 亚洲欧美清纯卡通| 国产成人freesex在线| 国产精品日韩av在线免费观看| 亚洲图色成人| 男女下面进入的视频免费午夜| 久久精品夜色国产| 国产精品综合久久久久久久免费| 亚洲av免费高清在线观看| 老熟妇乱子伦视频在线观看| 亚洲七黄色美女视频| a级一级毛片免费在线观看| 99热网站在线观看| 亚洲人成网站在线播| 波多野结衣高清无吗| 午夜福利视频1000在线观看| 天天一区二区日本电影三级| 激情 狠狠 欧美| 啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 成人亚洲精品av一区二区| 男女啪啪激烈高潮av片| 人妻少妇偷人精品九色| 悠悠久久av| 欧美成人一区二区免费高清观看| 色综合色国产| 日日干狠狠操夜夜爽| 国产伦精品一区二区三区四那| 久久中文看片网| 亚洲av不卡在线观看| 亚洲精品久久久久久婷婷小说 | 性欧美人与动物交配| 午夜福利高清视频| 插阴视频在线观看视频| 国产精品一区二区在线观看99 | 国内揄拍国产精品人妻在线| 亚洲av不卡在线观看| 日产精品乱码卡一卡2卡三| 麻豆成人午夜福利视频| 亚洲人成网站在线播放欧美日韩| av卡一久久| 欧美+日韩+精品| 亚洲精品国产成人久久av| av在线老鸭窝| 久久久久久久久大av| 国产69精品久久久久777片| 22中文网久久字幕| 国产精品久久久久久精品电影小说 | 欧美最新免费一区二区三区| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 如何舔出高潮| 成年av动漫网址| 国产精品久久久久久久电影| 国产三级中文精品| 神马国产精品三级电影在线观看| 青春草亚洲视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产爱豆传媒在线观看| 久久午夜亚洲精品久久| 成人亚洲欧美一区二区av| 岛国在线免费视频观看| 一个人看视频在线观看www免费| a级毛片a级免费在线| 黄色欧美视频在线观看| 亚洲国产欧洲综合997久久,| 日韩视频在线欧美| 哪里可以看免费的av片| 精品久久久久久久久久久久久| 欧美精品一区二区大全| 国产精品久久久久久精品电影| 色综合色国产| eeuss影院久久| 欧美性猛交╳xxx乱大交人| 亚洲人成网站在线播| 三级男女做爰猛烈吃奶摸视频| 99热网站在线观看| 99热6这里只有精品| 亚洲在久久综合| 久久精品夜夜夜夜夜久久蜜豆| 少妇裸体淫交视频免费看高清| 男人的好看免费观看在线视频| 久久精品国产亚洲av涩爱 | 亚洲五月天丁香| a级一级毛片免费在线观看| 自拍偷自拍亚洲精品老妇| 免费观看人在逋| 麻豆一二三区av精品| 少妇被粗大猛烈的视频| 在线观看午夜福利视频| 欧美变态另类bdsm刘玥| 五月伊人婷婷丁香| 亚洲综合色惰| 在线免费十八禁| 亚洲最大成人中文| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av视频在线观看入口| 在线播放无遮挡| 日日撸夜夜添| 99热6这里只有精品| 亚洲中文字幕一区二区三区有码在线看| 免费大片18禁| 国产又黄又爽又无遮挡在线| 日本五十路高清| 国产黄色视频一区二区在线观看 | 悠悠久久av| 91久久精品国产一区二区三区| 亚洲一区高清亚洲精品| 在线观看av片永久免费下载| 免费搜索国产男女视频| 亚洲在线自拍视频| 日韩精品青青久久久久久| 美女xxoo啪啪120秒动态图| 成人欧美大片| 久久亚洲精品不卡| 国产美女午夜福利| 国产探花极品一区二区| 久久久久久伊人网av| 三级毛片av免费| 国产高潮美女av| 亚洲av第一区精品v没综合| 亚洲av成人精品一区久久| 久久热精品热| 97热精品久久久久久| 亚洲国产精品合色在线| 久久久久久伊人网av| 精品无人区乱码1区二区| 国产白丝娇喘喷水9色精品| 亚洲一级一片aⅴ在线观看| 亚洲色图av天堂| 亚洲一级一片aⅴ在线观看| 精品99又大又爽又粗少妇毛片| 国产av在哪里看| 三级毛片av免费| 成人毛片60女人毛片免费| 国产高清有码在线观看视频| 男女那种视频在线观看| 男人舔女人下体高潮全视频| 一级av片app| 午夜福利在线在线| 可以在线观看的亚洲视频| 1000部很黄的大片| 欧美xxxx黑人xx丫x性爽| 日韩在线高清观看一区二区三区| 黑人高潮一二区| 乱码一卡2卡4卡精品| 亚洲美女视频黄频| 久久久久久九九精品二区国产| 91久久精品国产一区二区三区| 一级av片app| 亚洲国产高清在线一区二区三| 观看美女的网站| 亚洲三级黄色毛片| 国产一区二区在线观看日韩| 欧美xxxx性猛交bbbb| 免费观看在线日韩| 丝袜美腿在线中文| 人妻制服诱惑在线中文字幕| 日韩成人av中文字幕在线观看| 久久这里有精品视频免费| 久久中文看片网| 真实男女啪啪啪动态图| 少妇丰满av| 免费在线观看成人毛片| 成人特级黄色片久久久久久久| av卡一久久| h日本视频在线播放| 久久韩国三级中文字幕| 欧美人与善性xxx| 亚洲av成人av| 久久久精品大字幕| 国产精品久久久久久精品电影| 亚洲不卡免费看| 精品国产三级普通话版| 欧美成人精品欧美一级黄| 亚洲精品乱码久久久久久按摩| 日韩亚洲欧美综合| 女同久久另类99精品国产91| 精品久久久久久久末码| av福利片在线观看| 91久久精品国产一区二区成人| 少妇熟女aⅴ在线视频| 亚洲av不卡在线观看| 内射极品少妇av片p| a级毛片a级免费在线| 一级毛片aaaaaa免费看小| 久久中文看片网| 欧美高清性xxxxhd video| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 欧美日本视频| 中文精品一卡2卡3卡4更新| 亚洲精品乱码久久久v下载方式| av天堂在线播放| 老司机影院成人| 国产精品一区二区在线观看99 | 国产精品不卡视频一区二区| 免费人成视频x8x8入口观看| 午夜福利在线观看免费完整高清在 | 欧美+日韩+精品| 少妇猛男粗大的猛烈进出视频 | 欧美色欧美亚洲另类二区| 久久国产乱子免费精品| 中文在线观看免费www的网站| 国产成人精品婷婷| 色5月婷婷丁香| 99久久无色码亚洲精品果冻| 精品一区二区三区人妻视频| 国产亚洲欧美98| 国产高清激情床上av| 国产成人精品一,二区 | 国产老妇女一区| 国产精品久久久久久精品电影小说 | 26uuu在线亚洲综合色| 午夜久久久久精精品| 色哟哟·www| 欧美激情国产日韩精品一区| 午夜老司机福利剧场| 男的添女的下面高潮视频| 免费看av在线观看网站| 国产精品一及| 亚洲人成网站在线观看播放| 久久6这里有精品| 高清午夜精品一区二区三区 | 在线观看一区二区三区| 日本一本二区三区精品| 中文字幕熟女人妻在线| 看十八女毛片水多多多| 亚洲欧美中文字幕日韩二区| 18禁黄网站禁片免费观看直播| 级片在线观看| 亚洲精品国产成人久久av| 欧美激情久久久久久爽电影| 日韩亚洲欧美综合| 深夜a级毛片| 中文在线观看免费www的网站| 国国产精品蜜臀av免费| 99久久九九国产精品国产免费| 99久久精品国产国产毛片| 2022亚洲国产成人精品| 日本三级黄在线观看| 国产成人精品婷婷| 久久精品国产亚洲av涩爱 | 日产精品乱码卡一卡2卡三| 内地一区二区视频在线| 国产一区二区在线av高清观看| 伊人久久精品亚洲午夜| 一本一本综合久久| 少妇人妻一区二区三区视频| 国产高清三级在线| 超碰av人人做人人爽久久| 美女脱内裤让男人舔精品视频 | 色哟哟哟哟哟哟| 亚洲一区高清亚洲精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人毛片a级毛片在线播放| 午夜福利视频1000在线观看| 亚洲欧美成人精品一区二区| 午夜福利在线观看免费完整高清在 | 国产淫片久久久久久久久| 国产午夜福利久久久久久| 国产精华一区二区三区| 欧美日韩综合久久久久久| 欧美成人一区二区免费高清观看| 成人永久免费在线观看视频| 亚洲最大成人av| 亚洲人成网站在线观看播放| 久久久久久国产a免费观看| 日韩一区二区视频免费看| 又粗又硬又长又爽又黄的视频 | 亚洲成人久久性| 一本久久中文字幕| av天堂中文字幕网| 久久韩国三级中文字幕| 欧美不卡视频在线免费观看| 一区二区三区四区激情视频 | 69人妻影院| 欧美日韩国产亚洲二区| 国产一区二区三区在线臀色熟女| 国产精品人妻久久久久久| 狂野欧美激情性xxxx在线观看| 久久久久久久久中文| 乱人视频在线观看| 久久精品国产亚洲av涩爱 | 永久网站在线| 亚洲精品456在线播放app| 国产精品一区二区三区四区久久| 日韩国内少妇激情av| 老司机影院成人| 日韩中字成人| 国产激情偷乱视频一区二区| 天天躁日日操中文字幕| 国产三级中文精品| 中文字幕人妻熟人妻熟丝袜美| 欧美性猛交╳xxx乱大交人| 高清午夜精品一区二区三区 | 国产精品国产三级国产av玫瑰| 国产成人一区二区在线| 一本一本综合久久| 少妇被粗大猛烈的视频| 精品久久久久久久人妻蜜臀av| 夜夜爽天天搞| 国产极品天堂在线| 国产色爽女视频免费观看| 日韩成人av中文字幕在线观看| 寂寞人妻少妇视频99o| 国产v大片淫在线免费观看| 少妇的逼好多水| 亚洲经典国产精华液单| 日本撒尿小便嘘嘘汇集6| 97超视频在线观看视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产片特级美女逼逼视频| 2021天堂中文幕一二区在线观| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| 亚洲国产精品国产精品| 国产精品电影一区二区三区| 黑人高潮一二区| 免费一级毛片在线播放高清视频| 国产精品三级大全| 国产欧美日韩精品一区二区| a级毛片免费高清观看在线播放| 在线国产一区二区在线| 日本av手机在线免费观看| 看免费成人av毛片| 一个人观看的视频www高清免费观看| 亚洲国产精品合色在线| 午夜福利在线观看吧| 在线天堂最新版资源| 干丝袜人妻中文字幕| 国产成人精品婷婷| 黄色日韩在线| 啦啦啦啦在线视频资源| 床上黄色一级片| 国产高清不卡午夜福利| 成人二区视频| 亚洲国产欧美人成| 熟女电影av网| 麻豆av噜噜一区二区三区| 又粗又硬又长又爽又黄的视频 | 亚洲av男天堂| 内射极品少妇av片p| 99在线视频只有这里精品首页| 久久精品久久久久久噜噜老黄 | 国产精品无大码| 欧美潮喷喷水| 亚洲精品久久国产高清桃花| 哪个播放器可以免费观看大片| 精品久久久久久久人妻蜜臀av| 高清毛片免费观看视频网站| 精品久久久久久久久亚洲| 赤兔流量卡办理| 毛片女人毛片| 草草在线视频免费看| 久久久久久久久久成人| 国产精品美女特级片免费视频播放器| 99久久中文字幕三级久久日本| 国产免费男女视频| 亚洲人与动物交配视频|