• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫化銅空心球的合成和生長(zhǎng)機(jī)理及其在抗腫瘤中的應(yīng)用

    2019-02-27 06:53:22黃慶利王麗麗吳永平
    關(guān)鍵詞:王麗麗硫化銅空心球

    黃慶利 王麗麗 李 婷 吳永平

    (徐州醫(yī)科大學(xué)形態(tài)科研實(shí)驗(yàn)中心,徐州 221004)

    0 Introduction

    Cancer is one of the leading causes of death worldwide and the incidence rate is increasing year by year.However,current chemo-and radiation therapies have many well-known disadvantages, including systemic side effects,relatively poor specificity toward malignant tissues,drug resistance and low efficacy.Recently,near-infrared (NIR)photo-thermal therapy(PTT)has gained popularity[1-4].Various kinds of NIR laser-induced photo-thermal agents have been widely investigated such as noble metal nanostructures[5-6],carbon-based materials[7-8],chalcogenide semiconductors[9-14].Among these photo-thermal agents,copper chalcogenide semiconductors have attracted increasing attention due to their variations in stoichio-metric composition,valence states and different unique properties[10-18].The physical/chemical properties of nanomaterials are seriously depended on their morphology,size,composition,phase,structure and so on[18-19].Over the past decades,considerable efforts have been focused on synthesizing various morphologies of CuS nanomaterials,such as plate-like[4,15,20],tubular[21-22],flower-like[23],sphere-like[24-26]and dendritelike[27]morphologies.However,cage-like hollow CuS structures were not reported.

    Hollow structures of inorganic materials have received much attention because of their widespread potential applications in catalysis,drug delivery,chromatography separation,chemical reactors,controlled release of various substances,protection of environmentally sensitive biological molecules and cancer therapy[28-32].Various hollow structures of inorganic materials have been prepared by different methods[28-32].Nevertheless,most of the approaches for hollow structures rely on the use of either hard templates(e.g.,polymer latex and mono-dispersed silica)or soft templates(e.g.,ionic liquids,surfactants and micelles),which involve the adsorption of nanoparticles or polymerization on modified polymeric or inorganic template surface and subsequent removal of the templates by calcinations or dissolution with solvents.These methods often bring difficulties related to materials compatibility,high cost and complex synthetic procedures,which may prevent them from potential applications.It remains a major challenge to develop a facile,one-pot solution route for the preparation of inorganic hollow nanostructures.

    Here,a simple one-pot sacrificing template synthesis of CuShollow sphere was reported based on a mild and simple reaction between cupric nitrate trihydrate(Cu(NO3)2·3H2O),oxalic acid (H2C2O4)and sodium sulphide nonahydrate(Na2S·9H2O).A possible formation process of this novel hollow structure has been proposed on the basis of experiments.The CuS hollow sphere had the good photo-thermal conversion performance,which could be used as a photo-thermal agent for treating breast cancer and melanoma under NIR irradiation.

    1 Experimetal

    1.1 Material

    All the chemical reagents used in this work,including Cu(NO3)2·3H2O,H2C2O4and Na2S·9H2O,Dulbecco′s Modified Eagles medium(DMEM)containing 1%(V/V)penicillin-streptomycin,10%(V/V)fetal calf serum (FBS),Roswell Park Memorial Institute medium (RPMI 1640)and cell counting kit-8(CCK-8).All chemicals are analytically pure and were used as received without further purification.Deionized water was used throughout the experiment.

    1.2 Methods

    CuS cage-like hollow structures were prepared according to the following procedure:Firstly,1.0 mmol of Cu(NO3)2·3H2O was dissolved in 24 mL of distilled water with magnetic stirring for 5 min and a transparent blue solution was formed.Then,1.0 mmol H2C2O4was added into the above solution with stirring and a blue suspension was formed.Finally,2.0 mmol of Na2S·9H2O was added into the above suspension with magnetic stirring.The mixed solution was transferred into a Teflon-lined autoclave of 30 mL capacity,sealed and heated at 180℃for 6 h,then air-cooled to room temperature.The resulting black products were collected by centrifugation,washed with distilled water and ethanol for several times,and finally dried in air at 70℃for 6 h.

    1.3 Characterization

    The phase purity of the products was characterized by X-ray diffraction(XRD,German Bruker AXSD8 ADVANCE X-ray diffractometer)using a X-ray diffractometer with Cu Kα radiation(λ=0.154 18 nm),hybrid monochromators,and X accelerator dectector.Corresponding working voltage and current,scan range (2θ)were 40 kV,40 mA and 10°~70°respectively.Field emission scanning electron microscopy(FE-SEM)images were taken on a HITACHI S-4800 scanning electron microscope,operating at accelerating voltage of 15 kV.Transmission electron microscopy (TEM)and high resolution transmission electron microscopy (HRTEM)images were obtained on a FEIF-30 instrument(America),using accelerating voltage of 300 kV.A 808 nm laser(2 W,LWIRL808-10W-F,Laserwave Co.)as a selected NIR light was utilized to irradiate copper sulfide aqueous dispersion(3 mL,1 mg·mL-1)to induce photo-thermal effect.Cytotoxicity assays were conducted on amicroplate reader(Bio-rad,USA)according to a standard CCK-8 method.The relative cell viability was measured by comparing the control well containing only the cells.

    1.4 Cell culture and viability assay

    Cell culture:breast cancer cell MBA-MD-231 and melanoma cell B16 cells were cultured in DMEM containing 1%(V/V)penicillin-streptomycin,10%(V/V)FBS,and incubated at 37℃in an atmosphere of 5%(V/V)CO2for 24 h.The media were changed every two days.

    Cell viability assay:cytotoxicity assays were conducted according to a standard CCK-8 method.Cells were seeded in 96-well plates at a density of 1×105per well in 100μL of DMEM containing 10%(V/V)FBS,and incubated at 37℃in an atmosphere of 5%(V/V)CO2for 24 h.Cells were then treated with the medium containing as-prepared samples.All samples were controlled equivalent,at final concentrations of 0,7.8,15.6,31.2,62.5,125,250 or 500 μg·mL-1for 24 h.After addition of 10μL of CCK-8 in each well,all cells were incubated for another 2 h.The absorbance of the solution at 450 nm was measured using amicroplate reader.The relative cell viability was measured by comparing the control well containing only the cells.

    2 Results and discussion

    The crystalline phase and purity of the asprepared samples were determined by XRD,and the obtained results were shown in Fig.1.The pure monoclinic CuC2O4(PDF No.21-0297)was prepared only using Cu(NO3)2·3H2O and H2C2O4at the reaction temperatures of 180℃for 0.1 h (Fig.1a).Hexagonal phase CuS (PDF No.06-0464)was obtained at the reaction temperatures of 180℃for 6 h by adding Na2S·9H2O(Fig.1b).The strong and sharp XRD peaks of Fig.1b indicate that the as-prepared CuS crystals were highly crystalline.No other diffraction peaks were found,indicating that the products were pure CuS(Fig.1b).

    Fig.1 XRD patterns of(a)CuC2O4 prepared only using Cu(NO3)2·3H2O and H2C2O4 at the reaction temperatures of 180℃for 0.1 h and(b)cage-like CuShollow spheres prepared using Cu(NO3)2·3H2O,H2C2O4 and Na2S·9H2O at 180℃for 6 h

    The morphologies and microstructure were studied by FESEM and TEM.Fig.2a shows that the as-obtained samples were composed of many cage-like hollow architectures ranging from 1 to 2μm in diameters. High magnification FESEM images revealed that these microspheres were built from small 2D nanoplates with diameter of about 200 nm(Fig.2b).In addition,the TEM images further convinced that each sphere-like structure was made up of many small 2D nanoplates with the diameter of about 200 nm(Fig.2(c,d)).In Fig.2e,the HRTEM image shows sharp lattice fringes with 0.31 nm spacings,corresponding to the (102)planes of hexagonal phase CuS crystals.Most of the samples displayed sharp lattice fringes with no lattice defects such as stacking faults,indicating good crystallinity.This was also consistent with the result of their XRD patterns.

    To investigate the formation mechanism of the hollow cage-like CuSsphere,their growth process was followed by examining the products collected at different aging time intervals.Fig.3 shows the typical FESEM images of the as-prepared products at the reaction temperatures of 180℃at different reaction times.Fig.3a shows the FESEM images of the precursor(CuC2O4)obtained under hydrothermal condition for 0.1 h at 180 ℃ only using Cu(NO3)2·3H2Oand H2C2O4.The resultant products consisted of many microspheres with the diameter of 1~2 μm (Fig.3a).These spheres were constructed tightly by lots of nanoparticles(100~150 nm).By adding Na2S·9H2O and keeping 180 ℃for 0.1 h(Fig.3b),the size of the spheres became a bit small and these spheres were constructed loosely by lots of the smaller nanoparticles(about 50 nm).Some microspheres with hollow interior could be observed(Fig.3b),indicating that the hollow structures began to form.When the reaction time was prolonged to 1 h,the size of these spheres was hardly changed but the size of the particles which constructed these spheres became larger (ca.120 nm)and the shells of the spheres became thinner,as shown in Fig.3c.After reaction for 4 h (Fig.3d),the size of the spheres still kept unchanged and the size of the small particles which constructed these spheres further became larger(ca.200 nm).The shells of the spheres further became thinner and all microspheres were hollow structures.

    Fig.2 (a,b)SEM,(c,d)TEM and(e)HRTEM images of CuShollow structures prepared using Cu(NO3)2·3H2O,H2C2O4 and Na2S·9H2Oat 180 ℃ for 6 h

    Fig.3 FESEM images of(a)CuC2O4 prepared only using Cu(NO3)2·3H2Oand H2C2O4 at the reaction temperatures of 180℃for 0.1 h and CuShollow spheres at different reaction times of(b)0.1,(c)1 and(d)4 h

    The EDS analysis of the precursor in Fig.4a shows Cu,C and O elements in the sample,indicating the formation of pure CuC2O4precursor.Cu,C,O and Selements were included in Fig.4b,by adding Na2S·9H2O,coupled with a subsequent hydrothermal treatment at 180℃for 0.1 h,indicating the partial transformation from CuC2O4precursor to CuS crystal.As increasing the aging time to 6 h,only Cu and S elements were determined in Fig.4c,indicating the complete transformation from CuC2O4precursor to CuS hollow spheres.It is obviously that the reactions involved in the formation of CuScan be described by the following two equations:

    Cu(NO3)2·3H2O+H2C2O4=CuC2O4+2HNO3+3H2O (1)By adding Na2S·9H2O,CuC2O4behave as self sacrificing templates in the following process of the reaction:

    Fig.4 EDSspretra of(a)CuC2O4 prepared only using Cu(NO3)2·3H2O and H2C2O4 at the reaction temperatures of 180℃for 0.1 h and CuShollow spheres for different reaction times of(b)0.1 and(c)6 h

    In addition,the amount of Na2S·9H2O was found to play an important role in the microstructures of the products.Fig.5 shows the diffraction peaks of asprepared from different amounts of Na2S·9H2O(1,4,6 and 10 mmol),respectively.It can be found that the as-prepared samples obtained with 1 and 4 mmol in Fig.5a and 5b,respectively,were indexed to CuSwith the hexagonal structure (PDF No.06-0464).However,with the amount of Na2S·9H2O increasing to 4 mmol,the intensity of some peaks became weak in Fig.5b.When the addition of Na2S·9H2O reached 6 and 10 mmol,orthorhombic Cu1.8S (PDF No.23-0962)were obtained in Fig.5c and 5d.Obviously,the phase of copper sulfides depended on the amount of Na2S·9H2O.

    Fig.5 XRD patterns of the samples prepared with different amounts of Na2S·9H2O at 180 ℃ for 6 h and keeping other reaction parameter constant

    The FESEM was used further to convice the role of Na2S·9H2O.Fig.6 shows the typical FESEM images of the products prepared with different amounts of Na2S·9H2O,keeping the amount of Cu(NO3)2·3H2O and H2C2O4constant.When the addition of Na2S·9H2O were 1 mmol,monodispersed and homogeneous hollow spheres with diameters of about 1.5μm could be found in Fig.6a.With the inceasing of the addition of Na2S·9H2O to 2 mmol,cage-like hollow structures were obtained as shown in Fig.2.These cages were built from small nanoplates with diameter of about 200 nm.When the addition of Na2S·9H2O reached 4 mmol,as illustrated in Fig.6b,a totally different morphology of irregular plates with a diameter of about 300 nm could be observed.When the addition of Na2S·9H2O reached 6 mmol,as shown in Fig.6c,no plates but only some polyhedrons with a diameter of about 2μm were fabricated and well distributed in a large area.Fig.6d indicated that the morphology were the same irregular polyhedrons but a rather smaller diameter of about 1 μm,when the addition of Na2S·9H2O reached 10 mmol.Obviously,the concentration of Na2S·9H2O was responsible for the formation of the as-prepared samples with different morphologies.

    Fig.6 SEM images of the CuSproducts prepared at 180℃for 6 h with different amounts of Na2S·9H2Oand keeping the amount of H2C2O4 being 1 mmol

    It is reasonable to presume that the formation of cage-like hollow CuS microspheres is based on Kirkendall effect and the Ostwald ripening mechanism,and the schematic illustration was shown in Schematic 1[33-35].At the first stage,tiny CuC2O4precursor nanoparticles were quickly produced when the C2O42-was added into the solution containing Cu2+and spontaneously aggregated to form large spheres to minimize their surface energy.By adding Na2S·9H2O at a low S2-concentration,CuC2O4behaved as templates in the following process of the reaction.S2-ions reacted with CuC2O4microspheres to form a thin layer of CuS on the surfaces of the CuC2O4microspheres.The thin layers were actually composed of many small CuS crystallites.With the aging time increasing,on one hand,the small CuScrystallites grew larger by Ostwald ripening;on the other hand,CuC2O4gradually dissolved into Cu2+and C2O42-,and Cu2+diffused outward to continue the reaction with S2-.In this way,CuS with hollow structures were finally formed.However,high S2-concentration will destroy thesphere-like struc-tures of CuC2O4and easily result in the formation of copperrich sulfides,which should be attributed to more easily partial reduction of Cu2+to Cu+in thepresence of S2-with the higher concentration.Hence,the concentration of S2-is a important factor for the preparation of hollow CuS.

    Scheme 1 Schematic illustration of the growth mechanism of CuShollow structures

    Copper sulfide has good photo-thermal conversion performance,which could be used as photo-thermal agents for treat cancer under NIR irradiation.Photothermal performances of copper sulfides nanostructures with different morphologies and phase were investigated in their aqueous dispersion (1 mg·mL-1).Each sample was exposed to the same NIR irradiation(808 nm,continuous wave,2 W,180 s)and the temperature change was recorded using a temperature controller model CH702.The cage-like hollow CuS possessed the best photo-thermal efficiency in Fig.7a(the temperature increased~23℃ after NIR irradiation),which are consistent with early reports[36-37].To be specific,it is noted that an amount incremental of photo-thermal conversion effect was achieved.The assynthesized hollow CuSmicrospheres presented a rosy photo-thermal conversion effect due to the approach of constructing a special nanostructure with nanoparticles and cavities.Further studies showed that the photothermal performance also depended on the concentration of CuS aqueous suspension and laser power(Fig.7b and 7c).

    Among the wide range of nanostructures,hollow CuSnanostructures have a large specific surface area,numerous pores and good photo-thermal conversion effect[38].These features make them have great potential in the application as both photo-thermal agents and drug-delivery carriers.Several groups have reported good anti-cancer effect of hollow CuS nanostructures[38-40].To test the cell toxicity of unique cage-like hollow CuS,the breast cancer cell MBA-MD-231 and melanoma cell B16 were incubated with a concentration range of CuS prepared with 2 mmol Na2S·9H2O in Fig.8a and 8b.It can be found that the viability of cells was higher than 70%when the concentration of cage-like CuS was increased to 500 μg·mL-1.This means that cage-like CuS were low toxic to cells.However,these cells were significantly inhibited after NIR light irradiation of low power density (600 mW·cm-2)for 3 min(Fig.8c and 8d).In contrast,there was almost no change for the pure medium group under the same condition (Fig.8c and 8d).This means 808 nm activated cage-like CuS,which had a lethal effect on cancer cells.

    Fig.7 Photo-thermal performance of samples:(a)Pure water and copper sulfides nanostructures prepared with different amount of Na2S·9H2O;(b)Different concentrations of cage-like CuSprepared with 2 mmol Na2S·9H2O upon NIR irradiation;(c)Photo-thermal performance of cage-like CuS(1 mg·mL-1)prepared with 2 mmol Na2S·9H2O with different laser power

    Fig.8 Viabilities of(a)B16 and(b)MD231cells incubated with different dosages of cage-like hollow CuSprepared with 2 mmol Na2S·9H2Oand viabilities of(c)B16 cells and(d)MD231 cell incubated with cage-like hollow CuS(500 μg·mL-1)prepared with 2 mmol Na2S·9H2Ofor 24 h after NIR light irradiation for 3 min

    CuSas an agent for PTT,the possible mechanism was discussed.The interaction of infrared with nanomaterials,heating is the major effect[41].It was found that elevated active oxygen species(ROS)generated with elevation of temperature to 37~50 ℃.Absorption of infrared energy stirs up the motion of charged particles and rotation of water molecules,therefore,rising the temperature.Then the formation of ROSand 8-oxoguanine were found[42].Heat-induced ROS can damage and/or inhibit proteins in several waysone is the direct oxidation of amino acids by ROS.Here,we apply the ROS produced by CuS mediated NIR heating for cancer treatment.

    3 Conclusions

    Pure hexagonal phase CuS with hollow spherelike structures was obtained by a hydrothermal process at180℃,and verified by XRD,SEM,TEMand HRTEM.The possible formation mechanism of CuS hollow spheres was discussed.the cage-like CuS exhibited excellent photo-thermal conversion performance under the irradiation of 808 nm laser,and therefore had the great potential as photo-thermal agent for anticancer.The present method is simple,reliable and can be further developed for the preparation of more metal sulfide nanostructures.

    猜你喜歡
    王麗麗硫化銅空心球
    某銅礦山硫化銅浮選段技改工業(yè)化應(yīng)用
    Existence and Uniqueness Theorems of Almost Periodic Solution in Shifts δ±on Time Scales
    基于空心球滑移條件下的雙梯度鉆井井筒溫壓場(chǎng)的研究
    硫化銅/石墨烯的制備及光催化性能研究
    Fe2TiO5/C空心球光催化劑的可見光光催化和重復(fù)利用性能研究
    聚苯胺/硫化銅復(fù)合材料的制備及其近紅外吸收性能
    用于高性能硫化鎘敏化太陽(yáng)能電池對(duì)電極的硫化銅/還原氧化石墨烯納米復(fù)合材料的合成
    新型炭材料(2018年1期)2018-03-15 10:49:23
    The Classi6cation of Inappropriate Diction in the English Descriptions
    The effect of viscosity on the cavitation characteristics of high speed sleeve bearing*
    空心球包覆處理制備氧化鋁多孔陶瓷
    亚洲欧美中文字幕日韩二区| 亚洲国产欧美人成| 中文在线观看免费www的网站| 少妇熟女欧美另类| 国产中年淑女户外野战色| 久久影院123| 97超视频在线观看视频| 女人久久www免费人成看片| 久久国产亚洲av麻豆专区| 国产亚洲最大av| 99热国产这里只有精品6| 午夜福利在线观看免费完整高清在| 日韩国内少妇激情av| 国产探花极品一区二区| 在线精品无人区一区二区三 | 日韩一本色道免费dvd| 亚洲电影在线观看av| 夫妻性生交免费视频一级片| 大话2 男鬼变身卡| 有码 亚洲区| 国内精品宾馆在线| 老熟女久久久| 人妻一区二区av| 身体一侧抽搐| 日韩中字成人| 激情五月婷婷亚洲| 亚洲婷婷狠狠爱综合网| 大香蕉97超碰在线| 免费看av在线观看网站| 老师上课跳d突然被开到最大视频| 小蜜桃在线观看免费完整版高清| 午夜免费观看性视频| 一个人免费看片子| 国产免费又黄又爽又色| 免费人成在线观看视频色| 日韩一区二区视频免费看| av专区在线播放| 亚洲精品一二三| 国产成人freesex在线| 老司机影院毛片| 中文天堂在线官网| 国产精品福利在线免费观看| 99热国产这里只有精品6| 精品午夜福利在线看| 好男人视频免费观看在线| 如何舔出高潮| 亚洲欧美日韩东京热| 国产精品成人在线| 久久久久久久精品精品| 中文字幕免费在线视频6| 亚洲久久久国产精品| 亚洲美女黄色视频免费看| 大片电影免费在线观看免费| 成年人午夜在线观看视频| 精品久久久噜噜| 天堂中文最新版在线下载| 国产精品人妻久久久影院| 97热精品久久久久久| 国产久久久一区二区三区| 国产精品.久久久| 3wmmmm亚洲av在线观看| 好男人视频免费观看在线| 直男gayav资源| 欧美人与善性xxx| 这个男人来自地球电影免费观看 | 日韩av在线免费看完整版不卡| 亚洲怡红院男人天堂| 亚洲自偷自拍三级| 欧美日韩视频精品一区| 欧美xxⅹ黑人| 全区人妻精品视频| 成人美女网站在线观看视频| 午夜福利影视在线免费观看| 国产亚洲精品久久久com| 下体分泌物呈黄色| 如何舔出高潮| 一级爰片在线观看| 久久这里有精品视频免费| 免费看不卡的av| 91狼人影院| 精品酒店卫生间| 在线天堂最新版资源| 成人毛片60女人毛片免费| 少妇人妻一区二区三区视频| 久久综合国产亚洲精品| 女的被弄到高潮叫床怎么办| 精品酒店卫生间| 国产精品av视频在线免费观看| 久久6这里有精品| 国产精品伦人一区二区| 久久久久久久久久人人人人人人| 各种免费的搞黄视频| 老司机影院成人| 男女无遮挡免费网站观看| 国产精品一区二区性色av| 五月玫瑰六月丁香| 三级国产精品片| 99国产精品免费福利视频| 国产极品天堂在线| 久久精品久久精品一区二区三区| 狠狠精品人妻久久久久久综合| 五月开心婷婷网| 国产精品秋霞免费鲁丝片| 18禁裸乳无遮挡免费网站照片| 国产大屁股一区二区在线视频| 欧美xxⅹ黑人| 深爱激情五月婷婷| 内地一区二区视频在线| 国产女主播在线喷水免费视频网站| 欧美国产精品一级二级三级 | 国产欧美日韩精品一区二区| 日韩精品有码人妻一区| 久久精品久久精品一区二区三区| 干丝袜人妻中文字幕| 内射极品少妇av片p| 精华霜和精华液先用哪个| 少妇猛男粗大的猛烈进出视频| 久久精品国产a三级三级三级| 人体艺术视频欧美日本| 多毛熟女@视频| 国产亚洲一区二区精品| 国产欧美亚洲国产| 久久久久视频综合| 熟女人妻精品中文字幕| 欧美激情极品国产一区二区三区 | 国产 一区 欧美 日韩| 亚洲第一区二区三区不卡| 少妇的逼好多水| 国产乱来视频区| 欧美+日韩+精品| 亚洲天堂av无毛| 天美传媒精品一区二区| 熟妇人妻不卡中文字幕| 国产av精品麻豆| 中文精品一卡2卡3卡4更新| 在线免费十八禁| kizo精华| 最黄视频免费看| 好男人视频免费观看在线| 亚洲av成人精品一区久久| 91久久精品电影网| 国产成人免费无遮挡视频| 亚洲图色成人| 免费观看在线日韩| 在线观看美女被高潮喷水网站| 亚洲国产成人一精品久久久| 我的老师免费观看完整版| 丰满乱子伦码专区| 少妇熟女欧美另类| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| 婷婷色综合www| av视频免费观看在线观看| 国产黄色免费在线视频| 国产伦精品一区二区三区视频9| 国产精品久久久久久久久免| 日本欧美视频一区| 晚上一个人看的免费电影| 久久人人爽av亚洲精品天堂 | 乱系列少妇在线播放| 91精品国产九色| 国产成人freesex在线| 亚洲成人中文字幕在线播放| 国产男人的电影天堂91| 七月丁香在线播放| 色视频在线一区二区三区| 一级黄片播放器| 亚洲人成网站在线观看播放| av.在线天堂| 中国三级夫妇交换| 欧美成人一区二区免费高清观看| 内地一区二区视频在线| 一个人看的www免费观看视频| 在线观看一区二区三区| 偷拍熟女少妇极品色| 亚洲av免费高清在线观看| 狠狠精品人妻久久久久久综合| 亚洲人成网站高清观看| 日本黄色日本黄色录像| 日韩一本色道免费dvd| 亚洲欧美成人综合另类久久久| 少妇裸体淫交视频免费看高清| 国产精品熟女久久久久浪| 中文字幕亚洲精品专区| 日日摸夜夜添夜夜添av毛片| 国产乱人视频| 一级毛片 在线播放| 偷拍熟女少妇极品色| 色婷婷久久久亚洲欧美| av线在线观看网站| 欧美+日韩+精品| 九九在线视频观看精品| 成人毛片60女人毛片免费| 高清日韩中文字幕在线| 国产黄片视频在线免费观看| 最近的中文字幕免费完整| 内地一区二区视频在线| 在线观看免费视频网站a站| 亚洲国产日韩一区二区| 在线天堂最新版资源| 日本av免费视频播放| 色婷婷av一区二区三区视频| 狂野欧美激情性xxxx在线观看| 少妇猛男粗大的猛烈进出视频| 少妇熟女欧美另类| 国产精品久久久久久精品古装| 亚洲成人一二三区av| 久久久久久人妻| 日韩成人伦理影院| 91久久精品电影网| 26uuu在线亚洲综合色| 高清日韩中文字幕在线| 一级片'在线观看视频| 一级毛片久久久久久久久女| 91久久精品国产一区二区成人| 一本一本综合久久| 三级国产精品片| 精品久久久噜噜| 黑丝袜美女国产一区| 亚洲怡红院男人天堂| 夫妻午夜视频| 亚洲国产最新在线播放| 亚洲成人一二三区av| 日韩一区二区视频免费看| 男女免费视频国产| 成人国产av品久久久| 欧美一区二区亚洲| 99久久综合免费| 亚洲成人一二三区av| 免费少妇av软件| 久久久久久久久久久免费av| 久久久久久九九精品二区国产| 国产欧美另类精品又又久久亚洲欧美| 高清欧美精品videossex| 日韩电影二区| 欧美日韩视频精品一区| 在线 av 中文字幕| 欧美最新免费一区二区三区| 免费大片18禁| 青春草视频在线免费观看| 精华霜和精华液先用哪个| 成年人午夜在线观看视频| 色综合色国产| 午夜免费鲁丝| 91精品一卡2卡3卡4卡| 免费不卡的大黄色大毛片视频在线观看| 天堂俺去俺来也www色官网| 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 在线观看人妻少妇| 亚洲国产av新网站| 欧美 日韩 精品 国产| 91久久精品电影网| 2021少妇久久久久久久久久久| 91狼人影院| 啦啦啦在线观看免费高清www| 久久久久久久大尺度免费视频| 久久热精品热| 婷婷色综合www| 亚洲国产日韩一区二区| 久久综合国产亚洲精品| 18+在线观看网站| 精品一区二区免费观看| 免费看日本二区| 肉色欧美久久久久久久蜜桃| 欧美成人一区二区免费高清观看| 色综合色国产| 91在线精品国自产拍蜜月| 日韩电影二区| 亚洲av福利一区| 熟妇人妻不卡中文字幕| av国产免费在线观看| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人 | 香蕉精品网在线| 人妻夜夜爽99麻豆av| 女人十人毛片免费观看3o分钟| 久久久欧美国产精品| 丰满人妻一区二区三区视频av| 欧美3d第一页| 亚洲精品,欧美精品| 精品一区二区三区视频在线| 制服丝袜香蕉在线| 高清欧美精品videossex| 性高湖久久久久久久久免费观看| 一级二级三级毛片免费看| 丝袜喷水一区| 日韩一本色道免费dvd| 我要看日韩黄色一级片| 在线亚洲精品国产二区图片欧美 | 国产精品人妻久久久影院| 欧美xxⅹ黑人| 精品久久国产蜜桃| 免费看av在线观看网站| 国产男女超爽视频在线观看| 久久人人爽人人爽人人片va| 国产成人aa在线观看| 看免费成人av毛片| 一级毛片 在线播放| 一本一本综合久久| 亚洲国产毛片av蜜桃av| 国产乱人视频| 亚洲av福利一区| 国产69精品久久久久777片| 女人久久www免费人成看片| 国产精品国产三级国产av玫瑰| 狂野欧美激情性bbbbbb| 日本黄色日本黄色录像| 99热网站在线观看| 99热6这里只有精品| 久久女婷五月综合色啪小说| 国产亚洲午夜精品一区二区久久| 建设人人有责人人尽责人人享有的 | 国产亚洲5aaaaa淫片| 亚洲国产欧美在线一区| 日韩免费高清中文字幕av| 亚洲人成网站高清观看| 中文天堂在线官网| 大片电影免费在线观看免费| 丝袜脚勾引网站| 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 亚洲精品国产成人久久av| 最近的中文字幕免费完整| 熟女av电影| 少妇丰满av| 国产亚洲精品久久久com| 80岁老熟妇乱子伦牲交| 国产黄频视频在线观看| 亚洲成人手机| 久久久久久人妻| 永久网站在线| 我的女老师完整版在线观看| 五月天丁香电影| 国产av一区二区精品久久 | 97超视频在线观看视频| 亚洲va在线va天堂va国产| 久久这里有精品视频免费| 汤姆久久久久久久影院中文字幕| 亚洲美女黄色视频免费看| 极品少妇高潮喷水抽搐| 国产av一区二区精品久久 | 丰满人妻一区二区三区视频av| 毛片女人毛片| 久热这里只有精品99| av免费观看日本| 久久韩国三级中文字幕| 99热这里只有是精品50| 高清午夜精品一区二区三区| 各种免费的搞黄视频| 日本黄色片子视频| 18+在线观看网站| 国产一区二区三区av在线| 综合色丁香网| 亚洲国产色片| 蜜桃在线观看..| 亚洲精品亚洲一区二区| 日韩成人av中文字幕在线观看| 亚洲av不卡在线观看| 大话2 男鬼变身卡| 各种免费的搞黄视频| 91久久精品国产一区二区三区| 欧美日韩亚洲高清精品| .国产精品久久| 亚洲欧美成人综合另类久久久| 亚洲国产精品成人久久小说| 香蕉精品网在线| 黄色一级大片看看| 一级毛片 在线播放| a 毛片基地| 人人妻人人看人人澡| 国产高潮美女av| 日本色播在线视频| 好男人视频免费观看在线| 在线观看一区二区三区激情| 国产乱人视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲第一av免费看| 午夜日本视频在线| 久久青草综合色| 国产精品麻豆人妻色哟哟久久| 久久热精品热| 午夜福利视频精品| h视频一区二区三区| 国产亚洲5aaaaa淫片| 日韩免费高清中文字幕av| 亚洲性久久影院| 精品久久久久久久久亚洲| 夜夜骑夜夜射夜夜干| 中文资源天堂在线| 日韩中文字幕视频在线看片 | 十八禁网站网址无遮挡 | 亚洲怡红院男人天堂| 日韩亚洲欧美综合| 亚洲不卡免费看| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩卡通动漫| 老熟女久久久| 午夜福利在线观看免费完整高清在| 一级毛片久久久久久久久女| 午夜免费观看性视频| 亚洲天堂av无毛| 久久国内精品自在自线图片| 欧美97在线视频| 国产 一区精品| 黑人猛操日本美女一级片| 高清在线视频一区二区三区| 亚洲电影在线观看av| 99九九线精品视频在线观看视频| 免费黄网站久久成人精品| 国产精品一区二区在线观看99| 九九久久精品国产亚洲av麻豆| 97精品久久久久久久久久精品| 看免费成人av毛片| 亚洲av福利一区| 建设人人有责人人尽责人人享有的 | 欧美97在线视频| 中文字幕av成人在线电影| 亚洲久久久国产精品| 五月伊人婷婷丁香| 精品久久久久久久末码| 亚洲av成人精品一区久久| 国产永久视频网站| 天美传媒精品一区二区| 一级毛片aaaaaa免费看小| 日韩伦理黄色片| 国产精品久久久久成人av| 久久婷婷青草| 精品久久久久久电影网| 毛片一级片免费看久久久久| 天堂俺去俺来也www色官网| 制服丝袜香蕉在线| 搡老乐熟女国产| 久久精品国产亚洲av天美| 亚洲精品视频女| 久久人人爽av亚洲精品天堂 | 欧美日本视频| av在线观看视频网站免费| 大片电影免费在线观看免费| 欧美成人精品欧美一级黄| av在线蜜桃| 美女cb高潮喷水在线观看| 亚洲精品aⅴ在线观看| 午夜激情福利司机影院| 欧美日韩精品成人综合77777| 久久久久久久久久久丰满| 一级毛片 在线播放| 日韩电影二区| 青青草视频在线视频观看| 性高湖久久久久久久久免费观看| 国产免费一区二区三区四区乱码| 国产成人精品久久久久久| 97精品久久久久久久久久精品| 国产精品无大码| 丝瓜视频免费看黄片| 国产欧美另类精品又又久久亚洲欧美| 国产精品国产av在线观看| 久久99热这里只频精品6学生| 女性生殖器流出的白浆| 国产精品嫩草影院av在线观看| 纵有疾风起免费观看全集完整版| 国产精品国产三级国产专区5o| 久久99蜜桃精品久久| 91精品国产九色| 亚洲国产精品专区欧美| 一级片'在线观看视频| 成年女人在线观看亚洲视频| 亚洲av电影在线观看一区二区三区| 黄色配什么色好看| 毛片女人毛片| 国产极品天堂在线| 久久久久久人妻| 国产欧美另类精品又又久久亚洲欧美| 亚洲精华国产精华液的使用体验| 女人十人毛片免费观看3o分钟| 在线天堂最新版资源| 最近2019中文字幕mv第一页| 欧美日韩视频精品一区| 涩涩av久久男人的天堂| 久久久精品94久久精品| 亚洲久久久国产精品| av国产久精品久网站免费入址| 永久免费av网站大全| 啦啦啦啦在线视频资源| 日韩制服骚丝袜av| 精品一品国产午夜福利视频| 久久青草综合色| 全区人妻精品视频| 97精品久久久久久久久久精品| 婷婷色综合大香蕉| 亚洲第一av免费看| 久久人人爽av亚洲精品天堂 | 成年人午夜在线观看视频| 汤姆久久久久久久影院中文字幕| 高清毛片免费看| 国产国拍精品亚洲av在线观看| 麻豆成人av视频| 能在线免费看毛片的网站| 22中文网久久字幕| 啦啦啦啦在线视频资源| 99久久中文字幕三级久久日本| 国产av一区二区精品久久 | 人人妻人人看人人澡| 91久久精品国产一区二区成人| 你懂的网址亚洲精品在线观看| 亚洲精品第二区| 视频区图区小说| 欧美97在线视频| 观看美女的网站| 你懂的网址亚洲精品在线观看| 少妇熟女欧美另类| 少妇人妻久久综合中文| 99久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 韩国av在线不卡| 99久久精品热视频| 成人午夜精彩视频在线观看| 91精品国产国语对白视频| 两个人的视频大全免费| 国产精品久久久久久久久免| av又黄又爽大尺度在线免费看| 欧美日本视频| 精品久久久精品久久久| 国产永久视频网站| 国产欧美日韩一区二区三区在线 | 亚洲欧美日韩无卡精品| 亚洲人成网站高清观看| 亚洲av电影在线观看一区二区三区| 国产高清不卡午夜福利| 韩国av在线不卡| 色婷婷av一区二区三区视频| 97超碰精品成人国产| av国产久精品久网站免费入址| 亚洲精品视频女| av线在线观看网站| 国产亚洲最大av| 久久女婷五月综合色啪小说| 免费黄色在线免费观看| 国产成人91sexporn| 一级毛片aaaaaa免费看小| 高清不卡的av网站| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久久免| 国产欧美另类精品又又久久亚洲欧美| 亚洲久久久国产精品| 国内精品宾馆在线| 五月伊人婷婷丁香| h视频一区二区三区| 久久国产亚洲av麻豆专区| 国内少妇人妻偷人精品xxx网站| 狠狠精品人妻久久久久久综合| 精品久久久久久久久av| 国产黄片美女视频| 欧美精品亚洲一区二区| 日本wwww免费看| 国产精品人妻久久久久久| 午夜老司机福利剧场| 自拍偷自拍亚洲精品老妇| 精品人妻一区二区三区麻豆| 国产精品爽爽va在线观看网站| 最近中文字幕2019免费版| 久久久久性生活片| 日日撸夜夜添| 亚洲,欧美,日韩| 99久国产av精品国产电影| 国产 一区精品| 青春草视频在线免费观看| 啦啦啦视频在线资源免费观看| 久久热精品热| 国产乱人偷精品视频| 久久ye,这里只有精品| 成人亚洲欧美一区二区av| 99热全是精品| 亚洲精品色激情综合| 成人高潮视频无遮挡免费网站| 黄色视频在线播放观看不卡| 亚洲欧洲国产日韩| 91精品一卡2卡3卡4卡| 美女cb高潮喷水在线观看| 日本色播在线视频| 久热这里只有精品99| 欧美日韩国产mv在线观看视频 | 亚洲av在线观看美女高潮| 精品一区在线观看国产| 国产精品久久久久久久电影| 国产精品久久久久久久久免| 多毛熟女@视频| 美女脱内裤让男人舔精品视频| 欧美丝袜亚洲另类| 日韩中文字幕视频在线看片 | 久久久色成人| 日韩中字成人| 国产成人午夜福利电影在线观看| 丰满少妇做爰视频| 久久国产乱子免费精品| 国产伦精品一区二区三区四那| 一区二区三区免费毛片| 亚洲欧美日韩无卡精品| 在线观看免费视频网站a站| 一区二区三区免费毛片| 街头女战士在线观看网站| 日韩电影二区| 成人无遮挡网站| 亚洲精品日韩av片在线观看| 日韩欧美一区视频在线观看 | 伊人久久国产一区二区| 亚洲国产精品一区三区| 两个人的视频大全免费| 国产乱人偷精品视频| 精品少妇久久久久久888优播| 在线观看av片永久免费下载| 在线观看人妻少妇| 高清不卡的av网站| 欧美亚洲 丝袜 人妻 在线| 国产精品麻豆人妻色哟哟久久|