• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    硫化銅空心球的合成和生長(zhǎng)機(jī)理及其在抗腫瘤中的應(yīng)用

    2019-02-27 06:53:22黃慶利王麗麗吳永平
    關(guān)鍵詞:王麗麗硫化銅空心球

    黃慶利 王麗麗 李 婷 吳永平

    (徐州醫(yī)科大學(xué)形態(tài)科研實(shí)驗(yàn)中心,徐州 221004)

    0 Introduction

    Cancer is one of the leading causes of death worldwide and the incidence rate is increasing year by year.However,current chemo-and radiation therapies have many well-known disadvantages, including systemic side effects,relatively poor specificity toward malignant tissues,drug resistance and low efficacy.Recently,near-infrared (NIR)photo-thermal therapy(PTT)has gained popularity[1-4].Various kinds of NIR laser-induced photo-thermal agents have been widely investigated such as noble metal nanostructures[5-6],carbon-based materials[7-8],chalcogenide semiconductors[9-14].Among these photo-thermal agents,copper chalcogenide semiconductors have attracted increasing attention due to their variations in stoichio-metric composition,valence states and different unique properties[10-18].The physical/chemical properties of nanomaterials are seriously depended on their morphology,size,composition,phase,structure and so on[18-19].Over the past decades,considerable efforts have been focused on synthesizing various morphologies of CuS nanomaterials,such as plate-like[4,15,20],tubular[21-22],flower-like[23],sphere-like[24-26]and dendritelike[27]morphologies.However,cage-like hollow CuS structures were not reported.

    Hollow structures of inorganic materials have received much attention because of their widespread potential applications in catalysis,drug delivery,chromatography separation,chemical reactors,controlled release of various substances,protection of environmentally sensitive biological molecules and cancer therapy[28-32].Various hollow structures of inorganic materials have been prepared by different methods[28-32].Nevertheless,most of the approaches for hollow structures rely on the use of either hard templates(e.g.,polymer latex and mono-dispersed silica)or soft templates(e.g.,ionic liquids,surfactants and micelles),which involve the adsorption of nanoparticles or polymerization on modified polymeric or inorganic template surface and subsequent removal of the templates by calcinations or dissolution with solvents.These methods often bring difficulties related to materials compatibility,high cost and complex synthetic procedures,which may prevent them from potential applications.It remains a major challenge to develop a facile,one-pot solution route for the preparation of inorganic hollow nanostructures.

    Here,a simple one-pot sacrificing template synthesis of CuShollow sphere was reported based on a mild and simple reaction between cupric nitrate trihydrate(Cu(NO3)2·3H2O),oxalic acid (H2C2O4)and sodium sulphide nonahydrate(Na2S·9H2O).A possible formation process of this novel hollow structure has been proposed on the basis of experiments.The CuS hollow sphere had the good photo-thermal conversion performance,which could be used as a photo-thermal agent for treating breast cancer and melanoma under NIR irradiation.

    1 Experimetal

    1.1 Material

    All the chemical reagents used in this work,including Cu(NO3)2·3H2O,H2C2O4and Na2S·9H2O,Dulbecco′s Modified Eagles medium(DMEM)containing 1%(V/V)penicillin-streptomycin,10%(V/V)fetal calf serum (FBS),Roswell Park Memorial Institute medium (RPMI 1640)and cell counting kit-8(CCK-8).All chemicals are analytically pure and were used as received without further purification.Deionized water was used throughout the experiment.

    1.2 Methods

    CuS cage-like hollow structures were prepared according to the following procedure:Firstly,1.0 mmol of Cu(NO3)2·3H2O was dissolved in 24 mL of distilled water with magnetic stirring for 5 min and a transparent blue solution was formed.Then,1.0 mmol H2C2O4was added into the above solution with stirring and a blue suspension was formed.Finally,2.0 mmol of Na2S·9H2O was added into the above suspension with magnetic stirring.The mixed solution was transferred into a Teflon-lined autoclave of 30 mL capacity,sealed and heated at 180℃for 6 h,then air-cooled to room temperature.The resulting black products were collected by centrifugation,washed with distilled water and ethanol for several times,and finally dried in air at 70℃for 6 h.

    1.3 Characterization

    The phase purity of the products was characterized by X-ray diffraction(XRD,German Bruker AXSD8 ADVANCE X-ray diffractometer)using a X-ray diffractometer with Cu Kα radiation(λ=0.154 18 nm),hybrid monochromators,and X accelerator dectector.Corresponding working voltage and current,scan range (2θ)were 40 kV,40 mA and 10°~70°respectively.Field emission scanning electron microscopy(FE-SEM)images were taken on a HITACHI S-4800 scanning electron microscope,operating at accelerating voltage of 15 kV.Transmission electron microscopy (TEM)and high resolution transmission electron microscopy (HRTEM)images were obtained on a FEIF-30 instrument(America),using accelerating voltage of 300 kV.A 808 nm laser(2 W,LWIRL808-10W-F,Laserwave Co.)as a selected NIR light was utilized to irradiate copper sulfide aqueous dispersion(3 mL,1 mg·mL-1)to induce photo-thermal effect.Cytotoxicity assays were conducted on amicroplate reader(Bio-rad,USA)according to a standard CCK-8 method.The relative cell viability was measured by comparing the control well containing only the cells.

    1.4 Cell culture and viability assay

    Cell culture:breast cancer cell MBA-MD-231 and melanoma cell B16 cells were cultured in DMEM containing 1%(V/V)penicillin-streptomycin,10%(V/V)FBS,and incubated at 37℃in an atmosphere of 5%(V/V)CO2for 24 h.The media were changed every two days.

    Cell viability assay:cytotoxicity assays were conducted according to a standard CCK-8 method.Cells were seeded in 96-well plates at a density of 1×105per well in 100μL of DMEM containing 10%(V/V)FBS,and incubated at 37℃in an atmosphere of 5%(V/V)CO2for 24 h.Cells were then treated with the medium containing as-prepared samples.All samples were controlled equivalent,at final concentrations of 0,7.8,15.6,31.2,62.5,125,250 or 500 μg·mL-1for 24 h.After addition of 10μL of CCK-8 in each well,all cells were incubated for another 2 h.The absorbance of the solution at 450 nm was measured using amicroplate reader.The relative cell viability was measured by comparing the control well containing only the cells.

    2 Results and discussion

    The crystalline phase and purity of the asprepared samples were determined by XRD,and the obtained results were shown in Fig.1.The pure monoclinic CuC2O4(PDF No.21-0297)was prepared only using Cu(NO3)2·3H2O and H2C2O4at the reaction temperatures of 180℃for 0.1 h (Fig.1a).Hexagonal phase CuS (PDF No.06-0464)was obtained at the reaction temperatures of 180℃for 6 h by adding Na2S·9H2O(Fig.1b).The strong and sharp XRD peaks of Fig.1b indicate that the as-prepared CuS crystals were highly crystalline.No other diffraction peaks were found,indicating that the products were pure CuS(Fig.1b).

    Fig.1 XRD patterns of(a)CuC2O4 prepared only using Cu(NO3)2·3H2O and H2C2O4 at the reaction temperatures of 180℃for 0.1 h and(b)cage-like CuShollow spheres prepared using Cu(NO3)2·3H2O,H2C2O4 and Na2S·9H2O at 180℃for 6 h

    The morphologies and microstructure were studied by FESEM and TEM.Fig.2a shows that the as-obtained samples were composed of many cage-like hollow architectures ranging from 1 to 2μm in diameters. High magnification FESEM images revealed that these microspheres were built from small 2D nanoplates with diameter of about 200 nm(Fig.2b).In addition,the TEM images further convinced that each sphere-like structure was made up of many small 2D nanoplates with the diameter of about 200 nm(Fig.2(c,d)).In Fig.2e,the HRTEM image shows sharp lattice fringes with 0.31 nm spacings,corresponding to the (102)planes of hexagonal phase CuS crystals.Most of the samples displayed sharp lattice fringes with no lattice defects such as stacking faults,indicating good crystallinity.This was also consistent with the result of their XRD patterns.

    To investigate the formation mechanism of the hollow cage-like CuSsphere,their growth process was followed by examining the products collected at different aging time intervals.Fig.3 shows the typical FESEM images of the as-prepared products at the reaction temperatures of 180℃at different reaction times.Fig.3a shows the FESEM images of the precursor(CuC2O4)obtained under hydrothermal condition for 0.1 h at 180 ℃ only using Cu(NO3)2·3H2Oand H2C2O4.The resultant products consisted of many microspheres with the diameter of 1~2 μm (Fig.3a).These spheres were constructed tightly by lots of nanoparticles(100~150 nm).By adding Na2S·9H2O and keeping 180 ℃for 0.1 h(Fig.3b),the size of the spheres became a bit small and these spheres were constructed loosely by lots of the smaller nanoparticles(about 50 nm).Some microspheres with hollow interior could be observed(Fig.3b),indicating that the hollow structures began to form.When the reaction time was prolonged to 1 h,the size of these spheres was hardly changed but the size of the particles which constructed these spheres became larger (ca.120 nm)and the shells of the spheres became thinner,as shown in Fig.3c.After reaction for 4 h (Fig.3d),the size of the spheres still kept unchanged and the size of the small particles which constructed these spheres further became larger(ca.200 nm).The shells of the spheres further became thinner and all microspheres were hollow structures.

    Fig.2 (a,b)SEM,(c,d)TEM and(e)HRTEM images of CuShollow structures prepared using Cu(NO3)2·3H2O,H2C2O4 and Na2S·9H2Oat 180 ℃ for 6 h

    Fig.3 FESEM images of(a)CuC2O4 prepared only using Cu(NO3)2·3H2Oand H2C2O4 at the reaction temperatures of 180℃for 0.1 h and CuShollow spheres at different reaction times of(b)0.1,(c)1 and(d)4 h

    The EDS analysis of the precursor in Fig.4a shows Cu,C and O elements in the sample,indicating the formation of pure CuC2O4precursor.Cu,C,O and Selements were included in Fig.4b,by adding Na2S·9H2O,coupled with a subsequent hydrothermal treatment at 180℃for 0.1 h,indicating the partial transformation from CuC2O4precursor to CuS crystal.As increasing the aging time to 6 h,only Cu and S elements were determined in Fig.4c,indicating the complete transformation from CuC2O4precursor to CuS hollow spheres.It is obviously that the reactions involved in the formation of CuScan be described by the following two equations:

    Cu(NO3)2·3H2O+H2C2O4=CuC2O4+2HNO3+3H2O (1)By adding Na2S·9H2O,CuC2O4behave as self sacrificing templates in the following process of the reaction:

    Fig.4 EDSspretra of(a)CuC2O4 prepared only using Cu(NO3)2·3H2O and H2C2O4 at the reaction temperatures of 180℃for 0.1 h and CuShollow spheres for different reaction times of(b)0.1 and(c)6 h

    In addition,the amount of Na2S·9H2O was found to play an important role in the microstructures of the products.Fig.5 shows the diffraction peaks of asprepared from different amounts of Na2S·9H2O(1,4,6 and 10 mmol),respectively.It can be found that the as-prepared samples obtained with 1 and 4 mmol in Fig.5a and 5b,respectively,were indexed to CuSwith the hexagonal structure (PDF No.06-0464).However,with the amount of Na2S·9H2O increasing to 4 mmol,the intensity of some peaks became weak in Fig.5b.When the addition of Na2S·9H2O reached 6 and 10 mmol,orthorhombic Cu1.8S (PDF No.23-0962)were obtained in Fig.5c and 5d.Obviously,the phase of copper sulfides depended on the amount of Na2S·9H2O.

    Fig.5 XRD patterns of the samples prepared with different amounts of Na2S·9H2O at 180 ℃ for 6 h and keeping other reaction parameter constant

    The FESEM was used further to convice the role of Na2S·9H2O.Fig.6 shows the typical FESEM images of the products prepared with different amounts of Na2S·9H2O,keeping the amount of Cu(NO3)2·3H2O and H2C2O4constant.When the addition of Na2S·9H2O were 1 mmol,monodispersed and homogeneous hollow spheres with diameters of about 1.5μm could be found in Fig.6a.With the inceasing of the addition of Na2S·9H2O to 2 mmol,cage-like hollow structures were obtained as shown in Fig.2.These cages were built from small nanoplates with diameter of about 200 nm.When the addition of Na2S·9H2O reached 4 mmol,as illustrated in Fig.6b,a totally different morphology of irregular plates with a diameter of about 300 nm could be observed.When the addition of Na2S·9H2O reached 6 mmol,as shown in Fig.6c,no plates but only some polyhedrons with a diameter of about 2μm were fabricated and well distributed in a large area.Fig.6d indicated that the morphology were the same irregular polyhedrons but a rather smaller diameter of about 1 μm,when the addition of Na2S·9H2O reached 10 mmol.Obviously,the concentration of Na2S·9H2O was responsible for the formation of the as-prepared samples with different morphologies.

    Fig.6 SEM images of the CuSproducts prepared at 180℃for 6 h with different amounts of Na2S·9H2Oand keeping the amount of H2C2O4 being 1 mmol

    It is reasonable to presume that the formation of cage-like hollow CuS microspheres is based on Kirkendall effect and the Ostwald ripening mechanism,and the schematic illustration was shown in Schematic 1[33-35].At the first stage,tiny CuC2O4precursor nanoparticles were quickly produced when the C2O42-was added into the solution containing Cu2+and spontaneously aggregated to form large spheres to minimize their surface energy.By adding Na2S·9H2O at a low S2-concentration,CuC2O4behaved as templates in the following process of the reaction.S2-ions reacted with CuC2O4microspheres to form a thin layer of CuS on the surfaces of the CuC2O4microspheres.The thin layers were actually composed of many small CuS crystallites.With the aging time increasing,on one hand,the small CuScrystallites grew larger by Ostwald ripening;on the other hand,CuC2O4gradually dissolved into Cu2+and C2O42-,and Cu2+diffused outward to continue the reaction with S2-.In this way,CuS with hollow structures were finally formed.However,high S2-concentration will destroy thesphere-like struc-tures of CuC2O4and easily result in the formation of copperrich sulfides,which should be attributed to more easily partial reduction of Cu2+to Cu+in thepresence of S2-with the higher concentration.Hence,the concentration of S2-is a important factor for the preparation of hollow CuS.

    Scheme 1 Schematic illustration of the growth mechanism of CuShollow structures

    Copper sulfide has good photo-thermal conversion performance,which could be used as photo-thermal agents for treat cancer under NIR irradiation.Photothermal performances of copper sulfides nanostructures with different morphologies and phase were investigated in their aqueous dispersion (1 mg·mL-1).Each sample was exposed to the same NIR irradiation(808 nm,continuous wave,2 W,180 s)and the temperature change was recorded using a temperature controller model CH702.The cage-like hollow CuS possessed the best photo-thermal efficiency in Fig.7a(the temperature increased~23℃ after NIR irradiation),which are consistent with early reports[36-37].To be specific,it is noted that an amount incremental of photo-thermal conversion effect was achieved.The assynthesized hollow CuSmicrospheres presented a rosy photo-thermal conversion effect due to the approach of constructing a special nanostructure with nanoparticles and cavities.Further studies showed that the photothermal performance also depended on the concentration of CuS aqueous suspension and laser power(Fig.7b and 7c).

    Among the wide range of nanostructures,hollow CuSnanostructures have a large specific surface area,numerous pores and good photo-thermal conversion effect[38].These features make them have great potential in the application as both photo-thermal agents and drug-delivery carriers.Several groups have reported good anti-cancer effect of hollow CuS nanostructures[38-40].To test the cell toxicity of unique cage-like hollow CuS,the breast cancer cell MBA-MD-231 and melanoma cell B16 were incubated with a concentration range of CuS prepared with 2 mmol Na2S·9H2O in Fig.8a and 8b.It can be found that the viability of cells was higher than 70%when the concentration of cage-like CuS was increased to 500 μg·mL-1.This means that cage-like CuS were low toxic to cells.However,these cells were significantly inhibited after NIR light irradiation of low power density (600 mW·cm-2)for 3 min(Fig.8c and 8d).In contrast,there was almost no change for the pure medium group under the same condition (Fig.8c and 8d).This means 808 nm activated cage-like CuS,which had a lethal effect on cancer cells.

    Fig.7 Photo-thermal performance of samples:(a)Pure water and copper sulfides nanostructures prepared with different amount of Na2S·9H2O;(b)Different concentrations of cage-like CuSprepared with 2 mmol Na2S·9H2O upon NIR irradiation;(c)Photo-thermal performance of cage-like CuS(1 mg·mL-1)prepared with 2 mmol Na2S·9H2O with different laser power

    Fig.8 Viabilities of(a)B16 and(b)MD231cells incubated with different dosages of cage-like hollow CuSprepared with 2 mmol Na2S·9H2Oand viabilities of(c)B16 cells and(d)MD231 cell incubated with cage-like hollow CuS(500 μg·mL-1)prepared with 2 mmol Na2S·9H2Ofor 24 h after NIR light irradiation for 3 min

    CuSas an agent for PTT,the possible mechanism was discussed.The interaction of infrared with nanomaterials,heating is the major effect[41].It was found that elevated active oxygen species(ROS)generated with elevation of temperature to 37~50 ℃.Absorption of infrared energy stirs up the motion of charged particles and rotation of water molecules,therefore,rising the temperature.Then the formation of ROSand 8-oxoguanine were found[42].Heat-induced ROS can damage and/or inhibit proteins in several waysone is the direct oxidation of amino acids by ROS.Here,we apply the ROS produced by CuS mediated NIR heating for cancer treatment.

    3 Conclusions

    Pure hexagonal phase CuS with hollow spherelike structures was obtained by a hydrothermal process at180℃,and verified by XRD,SEM,TEMand HRTEM.The possible formation mechanism of CuS hollow spheres was discussed.the cage-like CuS exhibited excellent photo-thermal conversion performance under the irradiation of 808 nm laser,and therefore had the great potential as photo-thermal agent for anticancer.The present method is simple,reliable and can be further developed for the preparation of more metal sulfide nanostructures.

    猜你喜歡
    王麗麗硫化銅空心球
    某銅礦山硫化銅浮選段技改工業(yè)化應(yīng)用
    Existence and Uniqueness Theorems of Almost Periodic Solution in Shifts δ±on Time Scales
    基于空心球滑移條件下的雙梯度鉆井井筒溫壓場(chǎng)的研究
    硫化銅/石墨烯的制備及光催化性能研究
    Fe2TiO5/C空心球光催化劑的可見光光催化和重復(fù)利用性能研究
    聚苯胺/硫化銅復(fù)合材料的制備及其近紅外吸收性能
    用于高性能硫化鎘敏化太陽(yáng)能電池對(duì)電極的硫化銅/還原氧化石墨烯納米復(fù)合材料的合成
    新型炭材料(2018年1期)2018-03-15 10:49:23
    The Classi6cation of Inappropriate Diction in the English Descriptions
    The effect of viscosity on the cavitation characteristics of high speed sleeve bearing*
    空心球包覆處理制備氧化鋁多孔陶瓷
    高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 99久国产av精品国产电影| 日韩中文字幕视频在线看片 | 婷婷色综合www| 亚洲av.av天堂| 精品久久久久久电影网| 亚洲国产成人一精品久久久| 亚洲,一卡二卡三卡| 免费av中文字幕在线| 看非洲黑人一级黄片| 这个男人来自地球电影免费观看 | 国产在线免费精品| 免费看不卡的av| 精品人妻一区二区三区麻豆| 99热全是精品| 狂野欧美激情性bbbbbb| 美女xxoo啪啪120秒动态图| 久久精品国产自在天天线| 美女主播在线视频| 成人毛片a级毛片在线播放| 精品少妇黑人巨大在线播放| kizo精华| 伦精品一区二区三区| 亚洲精品一二三| 在线观看免费视频网站a站| 一级爰片在线观看| 中文在线观看免费www的网站| 美女高潮的动态| 97精品久久久久久久久久精品| 日本一二三区视频观看| 久久国产亚洲av麻豆专区| 97在线视频观看| 亚洲精品国产色婷婷电影| www.色视频.com| 国产精品秋霞免费鲁丝片| 观看av在线不卡| 精品国产乱码久久久久久小说| 欧美日韩精品成人综合77777| 99久久精品热视频| 一级毛片 在线播放| 2022亚洲国产成人精品| 永久免费av网站大全| 亚洲av日韩在线播放| 亚洲av欧美aⅴ国产| 亚洲成色77777| 国产精品一区二区三区四区免费观看| 黄色日韩在线| .国产精品久久| 亚洲国产高清在线一区二区三| 18+在线观看网站| 人人妻人人看人人澡| 亚洲无线观看免费| 成人免费观看视频高清| 少妇高潮的动态图| 欧美最新免费一区二区三区| 高清午夜精品一区二区三区| 成年美女黄网站色视频大全免费 | 国产av国产精品国产| 亚洲欧洲国产日韩| 一区在线观看完整版| 搡女人真爽免费视频火全软件| 少妇丰满av| av国产免费在线观看| av国产免费在线观看| 国产成人免费观看mmmm| 18禁裸乳无遮挡动漫免费视频| 欧美国产精品一级二级三级 | 亚洲国产精品一区三区| 天美传媒精品一区二区| 青青草视频在线视频观看| 久久久久久久精品精品| 亚洲高清免费不卡视频| 午夜福利影视在线免费观看| 久久国内精品自在自线图片| 国产精品熟女久久久久浪| 99久国产av精品国产电影| av女优亚洲男人天堂| 欧美精品亚洲一区二区| 熟女人妻精品中文字幕| 三级国产精品片| 女的被弄到高潮叫床怎么办| 又爽又黄a免费视频| 中文字幕久久专区| 少妇的逼水好多| 色5月婷婷丁香| 日本免费在线观看一区| 亚洲av国产av综合av卡| 国产精品av视频在线免费观看| 久久精品国产自在天天线| 国产精品秋霞免费鲁丝片| 高清日韩中文字幕在线| 免费久久久久久久精品成人欧美视频 | 中文字幕久久专区| 在线播放无遮挡| 伊人久久精品亚洲午夜| 国产精品一区二区在线观看99| 国产女主播在线喷水免费视频网站| 成年美女黄网站色视频大全免费 | 亚洲三级黄色毛片| 在线精品无人区一区二区三 | 亚洲欧美清纯卡通| 日韩一区二区三区影片| 又爽又黄a免费视频| 日韩在线高清观看一区二区三区| 亚洲av日韩在线播放| 一级片'在线观看视频| 亚洲国产精品成人久久小说| 中国美白少妇内射xxxbb| 国产午夜精品久久久久久一区二区三区| 一级毛片久久久久久久久女| 纯流量卡能插随身wifi吗| av福利片在线观看| 一本—道久久a久久精品蜜桃钙片| 日本欧美国产在线视频| 国产精品不卡视频一区二区| 91aial.com中文字幕在线观看| 久久6这里有精品| 久久精品国产a三级三级三级| 高清午夜精品一区二区三区| 国产男女内射视频| 麻豆乱淫一区二区| 久久久久久久久久久免费av| 免费久久久久久久精品成人欧美视频 | 精品视频人人做人人爽| 哪个播放器可以免费观看大片| 毛片一级片免费看久久久久| 99久久精品一区二区三区| 日韩人妻高清精品专区| 女人十人毛片免费观看3o分钟| 久久久久久久久久久丰满| av.在线天堂| 少妇的逼好多水| 97精品久久久久久久久久精品| 伦精品一区二区三区| 国内揄拍国产精品人妻在线| 下体分泌物呈黄色| 成人免费观看视频高清| 国产精品欧美亚洲77777| 日韩一区二区三区影片| 性高湖久久久久久久久免费观看| 有码 亚洲区| 啦啦啦啦在线视频资源| 人人妻人人看人人澡| 亚洲美女黄色视频免费看| 久久 成人 亚洲| 老女人水多毛片| 身体一侧抽搐| 久久青草综合色| 国产日韩欧美亚洲二区| 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩卡通动漫| 99热这里只有是精品50| av免费观看日本| 一区二区三区乱码不卡18| 一级毛片aaaaaa免费看小| 国产精品成人在线| 国产免费一区二区三区四区乱码| 赤兔流量卡办理| 黄片wwwwww| 亚洲综合精品二区| 99国产精品免费福利视频| 精品久久久久久电影网| 色视频www国产| 欧美最新免费一区二区三区| 日韩av免费高清视频| 天堂俺去俺来也www色官网| 国产成人精品福利久久| av一本久久久久| 欧美极品一区二区三区四区| 男的添女的下面高潮视频| 日韩成人av中文字幕在线观看| av线在线观看网站| freevideosex欧美| 日韩欧美精品免费久久| 国产精品99久久久久久久久| 国产男人的电影天堂91| 熟妇人妻不卡中文字幕| 2022亚洲国产成人精品| 2021少妇久久久久久久久久久| 欧美变态另类bdsm刘玥| 国产成人91sexporn| 简卡轻食公司| 黄色一级大片看看| 成人影院久久| 在线观看一区二区三区激情| 亚洲成人中文字幕在线播放| 国产淫片久久久久久久久| 欧美+日韩+精品| 日日撸夜夜添| 国产亚洲一区二区精品| 永久免费av网站大全| 一级毛片久久久久久久久女| 免费人成在线观看视频色| 精品人妻视频免费看| 性色avwww在线观看| 国产成人午夜福利电影在线观看| 免费不卡的大黄色大毛片视频在线观看| 99热全是精品| 国产av精品麻豆| a级毛片免费高清观看在线播放| 纯流量卡能插随身wifi吗| 1000部很黄的大片| 亚洲婷婷狠狠爱综合网| 99re6热这里在线精品视频| 中国三级夫妇交换| 嘟嘟电影网在线观看| 免费观看av网站的网址| 午夜福利视频精品| 日韩欧美一区视频在线观看 | 高清不卡的av网站| 午夜免费男女啪啪视频观看| 日韩精品有码人妻一区| 在线免费观看不下载黄p国产| .国产精品久久| 国产精品爽爽va在线观看网站| 老熟女久久久| 久久国产乱子免费精品| 少妇人妻精品综合一区二区| 天堂中文最新版在线下载| 日韩成人av中文字幕在线观看| 国产日韩欧美在线精品| 成人黄色视频免费在线看| 一本一本综合久久| 波野结衣二区三区在线| 久久久久久久精品精品| 人人妻人人看人人澡| 久久久久久久久大av| 少妇熟女欧美另类| 精品国产露脸久久av麻豆| 偷拍熟女少妇极品色| 精品亚洲成a人片在线观看 | 在线观看一区二区三区激情| 观看av在线不卡| 久久久久精品性色| 国产av精品麻豆| 久久人人爽av亚洲精品天堂 | 久久影院123| 国产日韩欧美亚洲二区| 欧美日韩在线观看h| 亚洲va在线va天堂va国产| 尾随美女入室| a级毛片免费高清观看在线播放| 1000部很黄的大片| 久久韩国三级中文字幕| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 香蕉精品网在线| 国产女主播在线喷水免费视频网站| 亚洲aⅴ乱码一区二区在线播放| 国产伦精品一区二区三区四那| 精品久久久久久电影网| 欧美极品一区二区三区四区| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 老司机影院毛片| 深爱激情五月婷婷| 成人午夜精彩视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产精品伦人一区二区| 国产精品国产三级专区第一集| 免费观看的影片在线观看| 亚洲无线观看免费| 亚洲内射少妇av| 在线亚洲精品国产二区图片欧美 | 在线观看人妻少妇| av免费观看日本| 狂野欧美白嫩少妇大欣赏| 人体艺术视频欧美日本| 91精品国产国语对白视频| 成人午夜精彩视频在线观看| 少妇的逼好多水| 国产乱人偷精品视频| 街头女战士在线观看网站| 国产淫片久久久久久久久| 波野结衣二区三区在线| 91精品国产国语对白视频| 熟女av电影| 大片电影免费在线观看免费| 成人美女网站在线观看视频| 一本色道久久久久久精品综合| 在线亚洲精品国产二区图片欧美 | 精品熟女少妇av免费看| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 激情 狠狠 欧美| 国产淫语在线视频| 亚州av有码| 内地一区二区视频在线| 精品久久久久久久久亚洲| 欧美xxxx性猛交bbbb| 肉色欧美久久久久久久蜜桃| 亚洲高清免费不卡视频| h日本视频在线播放| 午夜免费鲁丝| 亚洲无线观看免费| 99九九线精品视频在线观看视频| 国产午夜精品一二区理论片| 日韩av免费高清视频| 乱码一卡2卡4卡精品| 日韩中字成人| 国产v大片淫在线免费观看| 午夜日本视频在线| 日韩 亚洲 欧美在线| 免费观看在线日韩| 一区二区三区乱码不卡18| 精品酒店卫生间| 99九九线精品视频在线观看视频| 熟女av电影| 国产亚洲午夜精品一区二区久久| 久久这里有精品视频免费| 日韩三级伦理在线观看| 99热这里只有是精品50| 国产一区亚洲一区在线观看| 在线观看一区二区三区激情| av又黄又爽大尺度在线免费看| av线在线观看网站| 久久99热这里只有精品18| 婷婷色av中文字幕| 欧美日韩在线观看h| 亚洲欧美日韩另类电影网站 | 精品久久久久久久末码| 一个人看的www免费观看视频| 久久青草综合色| 国产成人一区二区在线| 在线观看美女被高潮喷水网站| 国产伦精品一区二区三区四那| 777米奇影视久久| 涩涩av久久男人的天堂| 国产精品一及| 在线观看人妻少妇| 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| 美女国产视频在线观看| 精品亚洲乱码少妇综合久久| 亚洲av.av天堂| 亚洲精品乱码久久久v下载方式| 国产真实伦视频高清在线观看| 国产中年淑女户外野战色| 国产免费一级a男人的天堂| 我要看黄色一级片免费的| 免费av不卡在线播放| 亚洲欧美日韩卡通动漫| 成人免费观看视频高清| 美女内射精品一级片tv| av福利片在线观看| 午夜福利影视在线免费观看| 永久网站在线| 五月天丁香电影| 成年美女黄网站色视频大全免费 | 91久久精品电影网| 简卡轻食公司| 亚洲精品亚洲一区二区| 青春草国产在线视频| 中文字幕av成人在线电影| 亚洲精品日本国产第一区| 九九在线视频观看精品| 春色校园在线视频观看| 人妻夜夜爽99麻豆av| 99久国产av精品国产电影| 亚洲国产高清在线一区二区三| 一本久久精品| 欧美xxⅹ黑人| 色婷婷久久久亚洲欧美| 永久免费av网站大全| 亚洲精品日本国产第一区| av在线蜜桃| 久久久久网色| 亚洲精品aⅴ在线观看| 成年人午夜在线观看视频| 天堂中文最新版在线下载| 一本久久精品| 两个人的视频大全免费| 97精品久久久久久久久久精品| 中文字幕av成人在线电影| 亚洲人与动物交配视频| 只有这里有精品99| 如何舔出高潮| 久久久成人免费电影| av线在线观看网站| 一本色道久久久久久精品综合| 又黄又爽又刺激的免费视频.| 国产欧美另类精品又又久久亚洲欧美| 国产淫语在线视频| 伦理电影免费视频| 人人妻人人爽人人添夜夜欢视频 | 久久午夜福利片| 久久女婷五月综合色啪小说| 天天躁日日操中文字幕| a级一级毛片免费在线观看| 精品久久久久久久久av| 久久这里有精品视频免费| 久久久精品94久久精品| 久久av网站| 人人妻人人添人人爽欧美一区卜 | 狂野欧美激情性xxxx在线观看| 蜜桃在线观看..| 久久ye,这里只有精品| 日韩在线高清观看一区二区三区| 偷拍熟女少妇极品色| 欧美激情国产日韩精品一区| 校园人妻丝袜中文字幕| 精品酒店卫生间| 欧美zozozo另类| 成人亚洲精品一区在线观看 | 亚洲精品,欧美精品| 久久久久久久大尺度免费视频| av国产免费在线观看| 国产91av在线免费观看| av免费观看日本| 欧美高清性xxxxhd video| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 男的添女的下面高潮视频| 国产精品一区www在线观看| 边亲边吃奶的免费视频| 最近手机中文字幕大全| av天堂中文字幕网| 国产精品熟女久久久久浪| 男的添女的下面高潮视频| 亚洲欧美日韩另类电影网站 | 国产高清有码在线观看视频| 夫妻性生交免费视频一级片| 一本久久精品| 国产爱豆传媒在线观看| 少妇人妻精品综合一区二区| 一区在线观看完整版| 国产欧美日韩精品一区二区| 97在线人人人人妻| 国产成人午夜福利电影在线观看| 日韩成人伦理影院| 91aial.com中文字幕在线观看| 偷拍熟女少妇极品色| 在线观看人妻少妇| 国产精品久久久久久久电影| 免费大片18禁| 国产精品麻豆人妻色哟哟久久| 亚洲天堂av无毛| 久久人人爽人人片av| 免费人成在线观看视频色| 免费播放大片免费观看视频在线观看| 国产精品一区www在线观看| 国产成人精品福利久久| 成人二区视频| 欧美变态另类bdsm刘玥| 亚洲国产av新网站| 三级国产精品片| 97超碰精品成人国产| 激情五月婷婷亚洲| 女的被弄到高潮叫床怎么办| 国产爱豆传媒在线观看| 在线 av 中文字幕| av.在线天堂| 亚洲高清免费不卡视频| 日韩成人伦理影院| 欧美少妇被猛烈插入视频| 免费少妇av软件| 少妇人妻 视频| 午夜激情福利司机影院| 1000部很黄的大片| 热99国产精品久久久久久7| 免费看光身美女| a级毛片免费高清观看在线播放| 日日啪夜夜爽| 一区在线观看完整版| 国产美女午夜福利| 你懂的网址亚洲精品在线观看| 啦啦啦中文免费视频观看日本| 久久这里有精品视频免费| av又黄又爽大尺度在线免费看| 国产在线一区二区三区精| 一区在线观看完整版| 美女高潮的动态| 成年美女黄网站色视频大全免费 | 亚洲,欧美,日韩| 国产精品欧美亚洲77777| 久久精品久久久久久久性| av.在线天堂| av国产久精品久网站免费入址| 大香蕉久久网| 黄色怎么调成土黄色| 日韩成人伦理影院| 激情 狠狠 欧美| 国产精品人妻久久久久久| 麻豆国产97在线/欧美| 尾随美女入室| 欧美xxxx黑人xx丫x性爽| 在线看a的网站| 日本黄色片子视频| 亚洲伊人久久精品综合| 精品一品国产午夜福利视频| 国产亚洲最大av| 久久久久国产网址| 免费观看的影片在线观看| 亚洲精品视频女| 婷婷色av中文字幕| 中国三级夫妇交换| 国产av一区二区精品久久 | 久久久a久久爽久久v久久| 伦理电影免费视频| 三级经典国产精品| av女优亚洲男人天堂| 天天躁夜夜躁狠狠久久av| 妹子高潮喷水视频| 亚洲av男天堂| 18+在线观看网站| 高清不卡的av网站| 永久免费av网站大全| 久久精品久久久久久久性| 亚洲综合色惰| 成人午夜精彩视频在线观看| 午夜免费观看性视频| 人人妻人人添人人爽欧美一区卜 | 久久ye,这里只有精品| 大香蕉久久网| 亚洲精品日本国产第一区| 亚洲熟女精品中文字幕| 国产 一区 欧美 日韩| 色哟哟·www| 国产欧美亚洲国产| 国产精品熟女久久久久浪| 亚洲精品,欧美精品| 亚洲国产精品国产精品| 亚洲精品国产色婷婷电影| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 在线观看一区二区三区| 一级毛片aaaaaa免费看小| 日韩成人av中文字幕在线观看| 成人亚洲欧美一区二区av| 乱系列少妇在线播放| 看非洲黑人一级黄片| 亚洲人成网站高清观看| a级毛片免费高清观看在线播放| 女人久久www免费人成看片| 高清欧美精品videossex| 国产黄频视频在线观看| 国产 一区 欧美 日韩| 欧美一区二区亚洲| 国产熟女欧美一区二区| 久久久久性生活片| 国产精品秋霞免费鲁丝片| 男人添女人高潮全过程视频| 免费观看无遮挡的男女| 亚洲精品aⅴ在线观看| 欧美日韩亚洲高清精品| 高清日韩中文字幕在线| 国产成人一区二区在线| 高清欧美精品videossex| 少妇人妻一区二区三区视频| 在线观看一区二区三区激情| 综合色丁香网| 男女免费视频国产| 18禁动态无遮挡网站| 中文精品一卡2卡3卡4更新| 看免费成人av毛片| 亚洲国产精品成人久久小说| 最黄视频免费看| 久热这里只有精品99| 精品久久久久久久末码| 汤姆久久久久久久影院中文字幕| 狠狠精品人妻久久久久久综合| 国产男女内射视频| 大香蕉久久网| 午夜激情福利司机影院| 国产精品一及| 在线精品无人区一区二区三 | 国产永久视频网站| 特大巨黑吊av在线直播| 少妇的逼好多水| 岛国毛片在线播放| 亚洲人与动物交配视频| 美女国产视频在线观看| 尾随美女入室| 国产老妇伦熟女老妇高清| 日韩中字成人| 国产欧美日韩精品一区二区| 久久午夜福利片| 一区二区三区精品91| 亚洲第一av免费看| 欧美zozozo另类| 91午夜精品亚洲一区二区三区| 久久久久久久久久久丰满| 国产精品一区二区在线不卡| 免费观看av网站的网址| 亚洲精品456在线播放app| 一级a做视频免费观看| 成人亚洲欧美一区二区av| 欧美3d第一页| 有码 亚洲区| 老司机影院毛片| 亚洲av综合色区一区| 国产精品免费大片| 网址你懂的国产日韩在线| 99热这里只有是精品在线观看| 亚洲国产欧美在线一区| 亚洲中文av在线| 简卡轻食公司| 熟女电影av网| 最近2019中文字幕mv第一页| 哪个播放器可以免费观看大片| 日韩一区二区视频免费看| 亚洲欧美日韩卡通动漫| 免费观看在线日韩| a级毛色黄片| 18禁裸乳无遮挡动漫免费视频| 免费看光身美女| 97精品久久久久久久久久精品| 99久久中文字幕三级久久日本| 狂野欧美激情性bbbbbb| 亚洲综合色惰| 国产伦理片在线播放av一区| 色婷婷久久久亚洲欧美| 日韩不卡一区二区三区视频在线| 中国美白少妇内射xxxbb|