• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of viscosity on the cavitation characteristics of high speed sleeve bearing*

    2015-02-16 06:50:36WANGLili王麗麗LUChanghou路長厚
    水動力學研究與進展 B輯 2015年3期
    關鍵詞:王麗麗監(jiān)獄解決問題

    WANG Li-li (王麗麗), LU Chang-hou (路長厚)

    1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China, E-mail:wang-ly-ly@163.com

    2. School of Mechanical Engineering, Shandong University, Jinan 250061, China

    The effect of viscosity on the cavitation characteristics of high speed sleeve bearing*

    WANG Li-li (王麗麗)1, LU Chang-hou (路長厚)2

    1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China, E-mail:wang-ly-ly@163.com

    2. School of Mechanical Engineering, Shandong University, Jinan 250061, China

    (Received December 30, 2013, Revised May 21, 2014)

    The effect of viscosity on the cavitation characteristics of a high speed sleeve bearing is investigated theoretically and experimentally. The cavitation characteristics, the cavitation shape and the cavitation location of a spiral oil wedge hydrodynamic bearing are investigated experimentally by using the transparent bearing and the high-speed camera. The generalized Reynolds equation is established with considerations of the cavitation mechanism based on the modified Elrod method in theory, and the cavitations of different viscosity sleeve bearings are analyzed and compared. It is shown that the cavitations are strip-shaped for both the high viscosity lubricant and the low viscosity lubricant, and in the rupture region of the oil film at a high speed, the oil vapour or bubbles are produced. With the decrease of the supply pressure and the increase of the rotating speed, the rupture area of the oil film increases distinctly. The cavitation area decreases distinctly and the quality of lubrication is better for the low viscosity lubricant than for the high viscosity lubricant. The experiment results in general are consistent with the theoretical results.

    spiral oil wedge, lubricating medium, viscosity, cavitation characteristic

    Introduction

    The hybrid journal bearing is widely applied in high speed spindle systems, due to its excellent keeping, high load capacity, and stability. High temperature heating restricts the increase of the rotating speed for the hybrid bearing. Currently, most hybrid bearings use high viscosity lubricant as the lubricating medium. With the increase of the rotating speed, the internal friction increases and the temperature of the oil film increases, which might even make the bearing burnt and the journal sticking. The use of low viscosity lubrication is an effective way to improve the rotating speed of the hydrodynamic bearing. With high speed, heavy load, and other more complex conditions, the loss caused by cavitation increases, which makes the oil film rupture an urgent research topics.

    Riedel et al.[1]studied the influence of the design parameters and the variation of the additional supply flow rate through the feed hole related to the cavitation in the bearing. Wu et al.[2,3]solved the general Reynolds equation with mass conservation over the whole lubrication domain using an operator-splitting method. Braun et al.[4]discovered that the pressure in the cavitation region of the submerged journal bearing varies with the circumferential and axial locations. Fang[5]obtained clear photos of the whole-oil-film cavitation using high-speed CCD panoramic camera, and ideal photos of the cavitation distribution in the whole-oil-film by the method of coordinate transform. Li et al.[6]computed the cavitation region and the pressure distribution using the Fluent and the cavitation algorithm based on the JFO boundary condition (namely the mass conserving boundary condition), and the numerical results of this algorithm were compared with experimental data of previous researchers. Su et al.[7]and Li et al.[8]derived the generalized equation that describes the lubrication in the full film region and in the cavitation region by modifying the Elrod algorithm. Based on the Rayleigh-Plesset (PRE) model, Meng and Long[9]studied the film temperature of asliding bearing with consideration of the cavitation by using the computational fluid dynamics method. Shyu et al.[10]resolved the temperature and pressure distributions according to the thermohydrodynamic effects using the Legendre collocation method, the bulk-flow model and the Elrod’s cavitation algorithm. Hatakenaka and Tanaka[11]obtained convergent solutions of the temperature distribution with consideration of the reverse flow at the oil film inlet, and proposed a new method to calculate the heat flow at the pad-film interface in the cavitated region. Bayada and Meurisse[12]showed the impact of the cavitation model on the analysis of slip/no-slip hydrodynamic contacts. Oujja[13]applied a new numerical method to simulate the cavitation phenomenon in some general devices, and presented numerical applications in an elastic journal bearing to show the good performance of the method. Based on the modified Elrod cavitation algorithm, Wang et al.[14,15]computed the dynamically loaded journal bearings lubricated with micropolar fluids. Li et al.[16]presented a new gaseous cavitation model based on air solubility in the lubricant and it is shown that this new model is compatible with the JFO condition. Geller[17]analyzed the bearing characteristics using the FSI approach and a multi–phase model with integrated cavitation.

    The applications for low viscosity sleeve bearings are few, and the studies of the effect of the viscosity on the cavitation characteristics are fewer. In this paper, the spiral oil wedge sleeve bearing (Fig.1) is studied, with three arc oil grooves tilted on the whole circumference and with oil return holes and oil feed holes at both ends of each groove. The unique structure of this new bearing makes its cavitation properties different from conventional bearings. The cavitation shape, the cavitation location, and the cavitation area of the spiral oil wedge hydrodynamic bearing are studied for both the high viscosity lubricant and the low viscosity lubricant theoretically and experimentally, to reveal the lubrication mechanism of the high speed sleeve bearing and to provide a theoretical and experimental foundation for a better understanding of the oil film distribution mechanism and the oil film boundary conditions.

    Fig.1 Schematic diagram of spiral oil wedge sleeve bearing

    1. Experimental principles and equipment

    The experimental equipment of the high speed spiral oil wedge sleeve bearing is designed by the authors. The experimental bearing is made of transparent glass, the journal is made of metal material and the region of cavitation can be observed using high-speed camera. In experiment, the rotating speed of the journal is adjusted by a frequency transformer; the input pressure is controlled by a relief value. In Fig.1, three oil grooves of the spiral oil wedge sleeve bearing are named oil groove 1, oil groove 2 and oil groove 3 to help describing the oil film rupture related with three oil wedges, with arrows denoting the rotation direction of the axis, which is downwards along the paper in the following cavitation pictures. The primary parameters of the bearing are given as follows: the journal diameter is 0.100031 m, the bearing clearancec is 0.000035 m, the bearing width is 0.11 m, the depth of the arc recess h0is 0.00012 m, the spiral angleβis 30o, the oil recess width is 0.09 m, and the wrap angle of the oil recess is80o.

    2. Mathematical model

    The mass conserving boundary condition (the JFO boundary condition) concerns the mass conservation in the oil film rupture and reformation location. Based on the assumption of the JFO boundary condition that the pressure gradient is zero in the cavitation region, the cavitation algorithm contains a switch function to modify the Reynolds equation in the cavitation location, similar to the Elrod algorithm[10,14].

    where βtis the lubricant bulk modulus,pis the oil film pressure,g is the unit step function,

    g =1Full film region,

    g =0Cavitation region

    A dimensionless density is defined as[10,14]

    where ρcavis the density of the lubricant at the cavitation region,αρis the ratio of the lubricant density to the cavitation density, andρis the lubricant density.

    Integrating Eq.(1) gives the expression of the pressure

    Equation (3) can be simplified as

    The unit step function dominates the fluid flow of different regions, including the full film region and the cavitation region, and the conservation of mass is satisfied. In the full film region, the fluid flow can be expressed by using the convection diffusion equation. In the cavitation region, the fluid flow can be expressed by using the convection equation. With pp= βt( αρ-1),αρ=pp/βt+1, and substituting Eq.(2) and Eq.(4) into the Reynolds equation for the density, the dimensionless generalized Reynolds equation can be expressed as

    where p is the dimensionless oil film pressure,is the dimensionless oil film thickness,is the dimensionless axial coordinates,is the dimensionless circumference coordinates,βtis the dimensionless lubricant bulk modulus,Xiis the ratio of the bearing width to the diameter,Lis the width of the bearing.

    Fig.2 Comparison of oil viscosity

    3. Comparison of oil viscosity

    Two viscosity lubricants are used in the experiment. Figure 2 shows the distribution of the viscosity against the temperature. It can be seen from Fig.2: the viscosity of the low viscosity lubricant is about 94.62 percent lower than the viscosity of the high viscosity lubricant. With the decrease of the viscosity of the low viscosity lubricant, the internal friction decreases, and the lubricating oil flows rapidly. So the cavitation area decreases and the quality of the lubrication is improved for the low viscosity lubricant as compared with the high viscosity lubricant. Compare with the high viscosity lubricant, the study of the cavitation characteristics for the low viscosity lubricant will provide some practical reference for the application of the low viscosity lubricant.

    Fig.3 Cavitation shape of oil wedge 1 at N =2800 r/min, pin=0.1MPa

    Fig.4 Cavitation shape of oil wedge 2 at N =2800 r/min, pin=0.1MPa

    Fig.5 Cavitation shape of oil wedge 3 at N =2800 r/min, pin=0.1MPa

    4. Experimental results and analyses

    4.1 Cavitation shapes

    Figures 3 through 5 show the cavitation shapes of the three oil wedges, Table 1 gives a comparison of the cavitation characteristics for both the high viscosity and low viscosity lubricants. The cavitations are strip-shaped for both the high viscosity lubricant andthe low viscosity lubricant, and the cavitation leading end forms a closed angle, which is consistent with the observations of Cole and Hughes[18]. The cavitation area decreases and the quality of lubrication is improved for the low viscosity lubricant as compared with the high viscosity lubricant.

    Table1 Comparison of cavitation characteristics for high viscosity and low viscosity lubricants

    Fig.6 Oil film ruptures in experiment at N =1800 r/min, pin=0.3MPa

    4.2 Experimental comparison of oil film ruptures

    Figures 6 through 8 show the graphical comparison of experimental results for the oil film ruptures for different viscosities, in which the white areas are the cavitaion region, and the black areas are the oil film full region. It can be seen from Fig.6 and Fig.7 that with the increase of the rotating speed, for the high viscosity lubricant, the oil film rupture occurs at the three oil grooves, the oil film rupture shape changes little, and the oil film reformation location moves indistinctly along the rotation direction of the axis. But for the low viscosity lubricant, the oil film rupture occurs distinctly only at the oil groove 3, the cavitation area decreases compared with the high viscosity lubricant. In general, the rupture area increases with the increase of the rotating speed for the two viscosity lubrications.

    Fig.7 Oil film ruptures in experiment at N =3000 r/min, pin=0.3MPa

    Figure 7 and Fig.8 show the graphical comparison of oil film ruptures under different input pressures.It is shown that with the increase of the input pressure, for the high viscosity lubricant, the oil film rupture location moves indistinctly along the rotation direction of the axis, the oil film reformation location moves along the opposite rotation direction of the axis, and the cavitation area decreases. It is consistent with the experimental results of the high viscosity lubricant, with the increase of the input pressure, the cavitation area decreases distinctly and the oil film rupture occurs only at the oil groove 3 for the low viscosity lubricant. The quality of lubrication is improved for the low viscosity lubricant compared with the high viscosity lubricant.

    Fig.8 Oil film ruptures in experiment at N =3000 r/min, pin=0.1MPa

    Fig.9 Oil film ruptures in theory at N =1800 r/min,pin= 0.3 MPa

    Figure 9 and Fig.10 show the graphical comparison of the theoretical results for the oil film ruptures for different viscosities, in which the white areas are the cavitaion region, the black areas are the oil film full region. It is shown that with the increase of the rotating speed, the rupture area of both the low and high viscosity lubrications increases distinctly. In a low rotating speed, the oil film rupture occurs at the three oil grooves for the high viscosity lubricant, but the oil film rupture occurs indistinctly for the low viscosity lubricant. In a high rotating speed, the oil film rupture occurs distinctly at the three oil grooves for both the low and high viscosity lubrications; the cavitation area decreases for the low viscosity lubricant as compared with the high viscosity lubricant.

    Fig.10 Oil film ruptures in theory at N =10000 r/min, pin=0.3MPa

    Figure 9 and Fig.6 show the graphical comparison of the theoretical results and the experimental results for the oil film ruptures. It is shown that though there are some differences between the theoretical results and the experimental results, especially for the oil wedge 2 of the high viscosity lubricant and the oil wedge 3 of the low viscosity lubricant, the theoretical results obtained by the modified Elrod cavitation algorithm agree with experimental results generally. The experimental cavitation region is larger than the theoretical cavitation region, which can be explained as follows. In the experiment, there might be a tension in the oil film, as well as the formation of new cavitations and other ingredients; in theory, the ingredients in the experiment are not considered and it is assumed that the flow is Newtonian, the lubricant inertia effect is small.

    By a comparison of Figs.6 and 9, it can be seen that the theoretical results agree with experimental re-sults generally, therefore, we can forecast the oil film ruptures by theoretical results at a super high speed, which may help the design of high speed journal bearings and improve the rotating speed of the bearing.

    5. Conclusions

    The cavitation shape, the oil film rupture and reformation location, and the cavitation area of the spiral oil wedge sleeve bearing are studied theoretically and experimentally for both the high viscosity lubricant and the low viscosity lubricant.

    (1) The cavitations are strip-shaped for both the high viscosity lubricant and the low viscosity lubricant, with the cavitation leading end in a closed angle, and in the oil film rupture region, oil bubbles are produced at a high speed. The cavitations for the high viscosity lubricant is distinct, but the cavitations for the low viscosity lubricant is indistinct.

    (2) With the increase of the rotating speed, the cavitation area of the oil wedge becomes larger for both the high viscosity lubricant and the low viscosity lubricant, with the increase of the input pressure, the cavitation area of the oil wedge decreases for both the high viscosity lubricant and the low viscosity lubricant, the effect of the input pressure on the cavitation is larger than that of the rotation speed generally.

    話別說得這么難聽好不好?我說過我和他根本就不認識!事情鬧得沸沸揚揚滿城風雨對你我有什么好處?就算你把他告進監(jiān)獄又能怎樣?能解決問題嗎?你是不是非要把我弄得身敗名裂?

    (3) The cavitation area decreases and the quality of lubrication is improved for the low viscosity lubricant compared with the high viscosity lubricant.

    (4) The experimental results agree with the theoretical results generally, which shows the theoretical computation is valid.

    Acknowledgement

    This work was supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (Grant No. 2013RCJJ014).

    [1] RIEDEL M., SCHMIDT M. and STüCKE P. Numerical investigation of cavitation flow in journal bearing geometry[J]. EPJ Web of Conferences, 2013, 45(45): 01081/1-01081/4.

    [2] WU Jian-kang, LI An-feng and LEE T. S. et al. Operator-splitting method for analysis of cavitation in liquidlubricated herringbone grooved journal bearing[J]. Journal of Hydrodynamics, 2002, 14(4): 95-101.

    [3] WU J., LI A. and LEE T. S. et al. Operator-splitting method for the analysis of cavitation in liquid-lubricated herringbone grooved journal bearings[J]. International Journal for Numerical Methods in Fluids, 2004, 44(7): 765-775.

    [4] BRAUN M. J., HANNON W. M. Cavitation formation and modelling for fluid film bearings: A review[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224(9): 839-863.

    [5] FANG Chao-feng. Study of dynamically loaded journal bearing with transference of transient oil film[D]. Master Thesis, Shanghai, China: Shanghai University, 2007(in Chinese).

    [6] LI Q., YU G. and LIU S. et al. Application of CFD analysis for journal bearing considering cavitation effects[J]. Journal of Engineering Thermophysics, 2010, 31(Suppl): 221-224.

    [7] SU Hong, WANG Xiao-jing and ZHANG Zhi-ming. History moving of cavitation for dynamically loaded journal bearing[J]. Chinese Journal of Mechanical Engineering, 2006, 42(4): 8-12(in Chinese).

    [8] LI Qiang, ZHENG Shui-ying and LIU Shu-lian. Analysis of the performance of journal bearing with JFO boundary condition[J]. Journal of Mechanical Strength, 2010, 32(2): 270-274(in Chinese).

    [9] MENG F., LONG T. Study film temperature including cavitation effect of sliding bearing by CFD method[J]. Advanced Materials Research, 2013, 690-693: 2012-2015.

    [10] SHYU S.-H., JENG Y.-R. and LI F. A legendre collocation method for thermohydrodynamic journal-bearing problems with Elrod’s cavitation algorithm[J]. Tribology International, 2008, 41(6): 493-501.

    [11] HATAKENAKA K., TANAKA M. Thermohydrodynamic performance of journal bearings with partial reverse flow and finger-type cavitation[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2002, 216(5): 315-325.

    [12] BAYADA G., MEURISSE M. H. Impact of the cavitation model on the theoretical performance of heterogeneous slip/no-slip engineered contacts in hydrodynamic conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223(3): 371-381.

    [13] OUJJA R. A new method for cavitations approximation in some general lubrication devices[J]. Applied mathematics and computation, 2006, 181(2): 1645-1656.

    [14] WANG X., ZHANG J. and DONG H. Analysis of bearing lubrication under dynamic loading considering micropolar and cavitating effect[J]. Tribology International, 2011, 44(9): 1071-1075.

    [15] WANG X., ZHU K. Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects[J]. Tribology International, 2006, 39(3): 227-237.

    [16] LI X., SONG Y. and HAO Z. et al. Cavitation mechanism of oil-film bearing and development of a new gaseous cavitation model based on air solubility[J]. Journal of Tribology, 2012, 134(3): 031701-031707.

    [17] GELLER M., SCHEMMANN C. and KLUCK N. Simulation of radial journal bearings using the FSI approach and a multi–Phase model with integrated cavitation[J]. Progress in Computational Fluid Dynamics, 2014, 14(1): 14-23.

    [18] COLE J. A., HUGES C. J. Visual study of film extent in dynamically loaded complete journal bearings[C]. IME Conference on Lubrication and Wear. London, UK, 1957.

    * Project supported by the National Natural Science Foundation of China (Grant No. 51305242).

    Biography: WANG Li-li (1979-), Female, Ph. D., Lecturer

    猜你喜歡
    王麗麗監(jiān)獄解決問題
    監(jiān)獄選美
    Existence and Uniqueness Theorems of Almost Periodic Solution in Shifts δ±on Time Scales
    聯(lián)系實際 解決問題
    助農(nóng)解決問題增收致富
    在解決問題中理解整式
    論監(jiān)獄企業(yè)立法
    歡迎你到監(jiān)獄來
    趣味(語文)(2018年10期)2018-12-29 12:28:34
    小漢字我來練
    The Classi6cation of Inappropriate Diction in the English Descriptions
    化難為易 解決問題
    亚洲国产精品专区欧美| 久久精品人妻少妇| 亚洲国产av新网站| 日韩强制内射视频| av国产久精品久网站免费入址| 欧美xxxx黑人xx丫x性爽| 一级毛片我不卡| 国产精品嫩草影院av在线观看| 国产精品伦人一区二区| 亚洲图色成人| 精品久久久久久久人妻蜜臀av| 夫妻性生交免费视频一级片| 国产av在哪里看| 久久久国产一区二区| 一区二区三区乱码不卡18| 18禁动态无遮挡网站| 精品国内亚洲2022精品成人| 身体一侧抽搐| 日本猛色少妇xxxxx猛交久久| 国精品久久久久久国模美| 国产乱来视频区| 成年女人在线观看亚洲视频 | 天天躁夜夜躁狠狠久久av| 久久久久久久久久黄片| 久久久色成人| 大又大粗又爽又黄少妇毛片口| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 一夜夜www| a级毛色黄片| 国产激情偷乱视频一区二区| 亚洲激情五月婷婷啪啪| 麻豆国产97在线/欧美| 毛片女人毛片| 国产亚洲av片在线观看秒播厂 | 高清日韩中文字幕在线| 久久午夜福利片| 中文字幕制服av| 久久精品国产亚洲av涩爱| 国产极品天堂在线| 噜噜噜噜噜久久久久久91| 亚洲国产色片| 亚洲人成网站在线观看播放| 免费无遮挡裸体视频| 亚洲精品aⅴ在线观看| 久久精品久久久久久久性| 看非洲黑人一级黄片| 国产精品精品国产色婷婷| 成人性生交大片免费视频hd| 免费少妇av软件| av.在线天堂| 国产精品一及| 亚洲国产精品成人久久小说| 亚洲无线观看免费| 婷婷色综合大香蕉| 午夜福利视频精品| av在线老鸭窝| 国产女主播在线喷水免费视频网站 | 亚洲第一区二区三区不卡| 草草在线视频免费看| 91久久精品国产一区二区成人| 久久草成人影院| 欧美+日韩+精品| 亚洲乱码一区二区免费版| 国产精品精品国产色婷婷| 成人性生交大片免费视频hd| 成人亚洲精品av一区二区| 99久久精品一区二区三区| 成人美女网站在线观看视频| 97热精品久久久久久| 男人和女人高潮做爰伦理| 婷婷色av中文字幕| 久久久a久久爽久久v久久| 欧美人与善性xxx| 日本免费在线观看一区| 亚洲乱码一区二区免费版| 黄片wwwwww| 久久久国产一区二区| 国产亚洲av嫩草精品影院| 亚洲国产成人一精品久久久| av在线亚洲专区| 成人毛片60女人毛片免费| 哪个播放器可以免费观看大片| 亚洲欧洲日产国产| 边亲边吃奶的免费视频| 女人久久www免费人成看片| 18禁动态无遮挡网站| 三级毛片av免费| 久99久视频精品免费| 免费观看的影片在线观看| 国产乱来视频区| 在线免费十八禁| 亚洲欧美一区二区三区国产| 男人爽女人下面视频在线观看| 亚洲最大成人手机在线| 麻豆成人午夜福利视频| 国产成人精品婷婷| 97精品久久久久久久久久精品| 青春草视频在线免费观看| 全区人妻精品视频| 日韩av免费高清视频| 国产一区有黄有色的免费视频 | 国产午夜精品久久久久久一区二区三区| 久久久精品94久久精品| 免费看av在线观看网站| 亚洲经典国产精华液单| 免费不卡的大黄色大毛片视频在线观看 | 国产 一区 欧美 日韩| 国产精品一区二区在线观看99 | 99热全是精品| 九草在线视频观看| 久久国产乱子免费精品| 能在线免费看毛片的网站| 国产乱人偷精品视频| 国产精品一区二区在线观看99 | 久久久久久久国产电影| 全区人妻精品视频| 激情五月婷婷亚洲| 国产精品伦人一区二区| 国产熟女欧美一区二区| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 国产精品一区二区三区四区免费观看| 国产精品一及| 一级黄片播放器| 国产伦理片在线播放av一区| 婷婷六月久久综合丁香| 国产淫片久久久久久久久| 日韩电影二区| 亚洲国产精品sss在线观看| 视频中文字幕在线观看| 99久久人妻综合| 国产成人freesex在线| 国产一区二区在线观看日韩| 一本久久精品| 国产成人午夜福利电影在线观看| 国产一区二区在线观看日韩| 精品欧美国产一区二区三| 80岁老熟妇乱子伦牲交| 看非洲黑人一级黄片| 午夜福利视频精品| 精品国内亚洲2022精品成人| 少妇人妻一区二区三区视频| 91在线精品国自产拍蜜月| 丝瓜视频免费看黄片| 波野结衣二区三区在线| 国产av不卡久久| 欧美xxxx性猛交bbbb| 97超碰精品成人国产| 国产黄频视频在线观看| 精品久久久久久久末码| 久久这里有精品视频免费| av在线观看视频网站免费| 日本av手机在线免费观看| 亚洲精品国产av蜜桃| 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 熟妇人妻不卡中文字幕| 我的老师免费观看完整版| 久久久久久国产a免费观看| 亚洲人与动物交配视频| 亚洲成色77777| 97超视频在线观看视频| 人妻系列 视频| 精品酒店卫生间| 久久久久久久久久黄片| 成人鲁丝片一二三区免费| 特级一级黄色大片| 亚洲怡红院男人天堂| 日本一二三区视频观看| 国产午夜精品论理片| 欧美bdsm另类| 国产老妇伦熟女老妇高清| 久久久欧美国产精品| 91av网一区二区| 亚洲高清免费不卡视频| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 成年人午夜在线观看视频 | 亚洲欧洲日产国产| 蜜桃久久精品国产亚洲av| 亚洲第一区二区三区不卡| 国产视频首页在线观看| av线在线观看网站| 91午夜精品亚洲一区二区三区| 淫秽高清视频在线观看| 日韩av在线大香蕉| 三级国产精品片| 国产精品女同一区二区软件| 精品久久久久久久末码| 最近的中文字幕免费完整| 高清毛片免费看| 日韩在线高清观看一区二区三区| 白带黄色成豆腐渣| 精品不卡国产一区二区三区| 久久99蜜桃精品久久| 草草在线视频免费看| 亚洲欧美成人综合另类久久久| 亚洲乱码一区二区免费版| 搡女人真爽免费视频火全软件| 菩萨蛮人人尽说江南好唐韦庄| 少妇的逼好多水| 两个人视频免费观看高清| 亚洲精品国产av成人精品| 国内精品宾馆在线| 国产淫片久久久久久久久| 成人鲁丝片一二三区免费| 成人亚洲精品av一区二区| 国产综合懂色| 秋霞伦理黄片| 国产精品麻豆人妻色哟哟久久 | 亚洲精品影视一区二区三区av| 成人美女网站在线观看视频| 亚洲真实伦在线观看| 国产精品久久久久久av不卡| 中文字幕久久专区| 亚洲乱码一区二区免费版| 97热精品久久久久久| 欧美97在线视频| av免费观看日本| 好男人视频免费观看在线| 久久久欧美国产精品| 五月伊人婷婷丁香| 熟女人妻精品中文字幕| 黄色日韩在线| 一个人免费在线观看电影| 国产精品麻豆人妻色哟哟久久 | 成年免费大片在线观看| 国产伦一二天堂av在线观看| 中文精品一卡2卡3卡4更新| 国产中年淑女户外野战色| 国产白丝娇喘喷水9色精品| xxx大片免费视频| 成人二区视频| 汤姆久久久久久久影院中文字幕 | 午夜久久久久精精品| 精品欧美国产一区二区三| 国产午夜精品一二区理论片| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 亚洲国产欧美人成| 欧美日韩亚洲高清精品| 男人舔奶头视频| 久久97久久精品| 联通29元200g的流量卡| 男人舔女人下体高潮全视频| 麻豆精品久久久久久蜜桃| 看十八女毛片水多多多| 久久久久久国产a免费观看| 免费看日本二区| 男的添女的下面高潮视频| 国产高清国产精品国产三级 | 国产伦精品一区二区三区视频9| 听说在线观看完整版免费高清| 久久久a久久爽久久v久久| 国产av在哪里看| 一本一本综合久久| 十八禁网站网址无遮挡 | 午夜精品一区二区三区免费看| 日日啪夜夜撸| 51国产日韩欧美| 人妻制服诱惑在线中文字幕| 青春草亚洲视频在线观看| 极品教师在线视频| 日产精品乱码卡一卡2卡三| 卡戴珊不雅视频在线播放| 少妇的逼水好多| 26uuu在线亚洲综合色| 能在线免费看毛片的网站| 欧美一级a爱片免费观看看| av网站免费在线观看视频 | 欧美性感艳星| 国产成年人精品一区二区| 男人和女人高潮做爰伦理| av专区在线播放| 国产一区二区在线观看日韩| 亚洲精品影视一区二区三区av| av专区在线播放| 日产精品乱码卡一卡2卡三| 国产黄a三级三级三级人| 亚洲精品成人av观看孕妇| 亚洲欧美日韩东京热| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品人妻久久久久久| 蜜臀久久99精品久久宅男| 观看美女的网站| 精品亚洲乱码少妇综合久久| 午夜福利高清视频| 淫秽高清视频在线观看| 久久99热6这里只有精品| 久久久久久久久久久免费av| 国产 一区精品| 黑人高潮一二区| 性插视频无遮挡在线免费观看| 午夜精品国产一区二区电影 | 九九爱精品视频在线观看| 日韩国内少妇激情av| 黄片wwwwww| 亚洲欧美清纯卡通| 亚洲在线观看片| 国产一区二区三区av在线| 在线观看美女被高潮喷水网站| 少妇人妻精品综合一区二区| 天堂网av新在线| 大话2 男鬼变身卡| 亚洲av.av天堂| 麻豆成人午夜福利视频| 久久久精品免费免费高清| 一级毛片黄色毛片免费观看视频| 高清av免费在线| 禁无遮挡网站| 国产一区有黄有色的免费视频 | 免费观看在线日韩| 国产伦精品一区二区三区视频9| 六月丁香七月| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 亚洲伊人久久精品综合| 国产成人a∨麻豆精品| 人人妻人人看人人澡| 久久人人爽人人爽人人片va| av黄色大香蕉| 免费av毛片视频| 免费在线观看成人毛片| 插逼视频在线观看| 日韩成人av中文字幕在线观看| 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品456在线播放app| 插逼视频在线观看| 婷婷色综合www| www.av在线官网国产| 日本免费a在线| 嘟嘟电影网在线观看| 亚洲精品日韩在线中文字幕| 中文乱码字字幕精品一区二区三区 | 欧美bdsm另类| 国产精品伦人一区二区| 亚洲av国产av综合av卡| 久久久久网色| 免费观看在线日韩| 亚洲四区av| 99久久九九国产精品国产免费| 久久99热这里只频精品6学生| 日韩电影二区| 久久久久久国产a免费观看| 免费黄频网站在线观看国产| 在线免费观看的www视频| 国产v大片淫在线免费观看| 街头女战士在线观看网站| 一本一本综合久久| av网站免费在线观看视频 | 午夜视频国产福利| 我的女老师完整版在线观看| 国产一区有黄有色的免费视频 | 毛片女人毛片| 欧美激情在线99| 亚洲av在线观看美女高潮| 男人舔奶头视频| 最近2019中文字幕mv第一页| 边亲边吃奶的免费视频| 免费黄色在线免费观看| 精品国产露脸久久av麻豆 | 亚洲成人久久爱视频| 国产免费一级a男人的天堂| 69人妻影院| 日韩一区二区视频免费看| av免费在线看不卡| 色尼玛亚洲综合影院| 午夜福利在线在线| 久99久视频精品免费| 午夜福利高清视频| 99热全是精品| 亚洲av国产av综合av卡| 午夜激情欧美在线| 亚洲成人精品中文字幕电影| 秋霞在线观看毛片| 日本与韩国留学比较| 天堂俺去俺来也www色官网 | 日韩成人av中文字幕在线观看| 欧美潮喷喷水| 国产成人福利小说| 精品久久久噜噜| 九九久久精品国产亚洲av麻豆| 久久精品国产亚洲网站| 午夜福利在线观看免费完整高清在| 2018国产大陆天天弄谢| 久久人人爽人人片av| 熟女电影av网| 成人毛片60女人毛片免费| 有码 亚洲区| 亚洲欧美中文字幕日韩二区| 九草在线视频观看| 高清日韩中文字幕在线| 女人被狂操c到高潮| 黄色一级大片看看| h日本视频在线播放| 国产精品日韩av在线免费观看| 国产精品蜜桃在线观看| 高清视频免费观看一区二区 | 五月玫瑰六月丁香| 18禁在线播放成人免费| 美女被艹到高潮喷水动态| 久久99精品国语久久久| 一级二级三级毛片免费看| 蜜桃久久精品国产亚洲av| 亚洲欧美一区二区三区黑人 | 人人妻人人澡欧美一区二区| or卡值多少钱| 日本黄色片子视频| 国产探花极品一区二区| 日韩欧美三级三区| 国产精品国产三级国产专区5o| 插逼视频在线观看| 久久久久久久午夜电影| 国产大屁股一区二区在线视频| 亚洲激情五月婷婷啪啪| 欧美另类一区| 蜜桃亚洲精品一区二区三区| 成人毛片a级毛片在线播放| 国产精品女同一区二区软件| 麻豆乱淫一区二区| 永久免费av网站大全| 亚洲av一区综合| 久久精品熟女亚洲av麻豆精品 | 91av网一区二区| 亚洲人与动物交配视频| 国产探花极品一区二区| 丝袜美腿在线中文| 看十八女毛片水多多多| 午夜精品在线福利| 插逼视频在线观看| 亚洲成人久久爱视频| 国产av在哪里看| 日韩一区二区三区影片| av.在线天堂| 18禁裸乳无遮挡免费网站照片| 国产免费福利视频在线观看| 国产美女午夜福利| 男人舔奶头视频| 亚洲成人一二三区av| 黄片无遮挡物在线观看| 久久久久久久久久久丰满| 亚州av有码| 真实男女啪啪啪动态图| 亚洲欧洲日产国产| 国产又色又爽无遮挡免| av在线播放精品| 大香蕉久久网| 免费观看的影片在线观看| 女人久久www免费人成看片| 两个人视频免费观看高清| 免费av不卡在线播放| 精品久久久久久久末码| 纵有疾风起免费观看全集完整版 | 久久久久久久久久成人| 床上黄色一级片| 亚洲av中文字字幕乱码综合| 国产黄a三级三级三级人| av专区在线播放| 欧美一区二区亚洲| 高清视频免费观看一区二区 | 亚洲精品亚洲一区二区| 麻豆av噜噜一区二区三区| 欧美日韩在线观看h| 人妻少妇偷人精品九色| 91av网一区二区| 亚洲国产精品国产精品| 一级片'在线观看视频| 免费看不卡的av| 欧美另类一区| 国产在视频线精品| 日韩人妻高清精品专区| 免费看av在线观看网站| 日日撸夜夜添| 插阴视频在线观看视频| 中国美白少妇内射xxxbb| 日日干狠狠操夜夜爽| av在线亚洲专区| 欧美日韩视频高清一区二区三区二| 亚洲人成网站高清观看| 综合色av麻豆| 国产一区有黄有色的免费视频 | 国产精品久久视频播放| 国产一级毛片七仙女欲春2| 麻豆乱淫一区二区| 精品久久久久久电影网| 国产在线男女| 日韩av在线大香蕉| 麻豆久久精品国产亚洲av| 亚洲精品第二区| 午夜精品一区二区三区免费看| 91久久精品国产一区二区三区| 亚洲成人久久爱视频| 日韩av在线免费看完整版不卡| 亚洲精品中文字幕在线视频 | 国产高潮美女av| 国产精品久久视频播放| 免费在线观看成人毛片| 青春草国产在线视频| 久久鲁丝午夜福利片| 亚洲精品成人久久久久久| 亚洲综合精品二区| 黄色配什么色好看| 日韩三级伦理在线观看| 中文字幕免费在线视频6| 国产不卡一卡二| 久久精品国产亚洲网站| 日本与韩国留学比较| 亚洲国产色片| 国产精品.久久久| 嫩草影院精品99| 久久久久久久亚洲中文字幕| 哪个播放器可以免费观看大片| 精品欧美国产一区二区三| 精品熟女少妇av免费看| 性色avwww在线观看| 联通29元200g的流量卡| 亚洲精品色激情综合| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 美女脱内裤让男人舔精品视频| 嫩草影院新地址| 国产欧美日韩精品一区二区| 国产不卡一卡二| 能在线免费观看的黄片| 成年女人看的毛片在线观看| 国产高清国产精品国产三级 | 色哟哟·www| 超碰97精品在线观看| 国产乱人视频| av卡一久久| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 又爽又黄a免费视频| 久久精品夜夜夜夜夜久久蜜豆| 国产成人aa在线观看| 国内精品美女久久久久久| 卡戴珊不雅视频在线播放| 国产精品一区二区三区四区免费观看| 国产精品日韩av在线免费观看| 高清毛片免费看| 蜜臀久久99精品久久宅男| 2021少妇久久久久久久久久久| av专区在线播放| 男人舔女人下体高潮全视频| 中文字幕亚洲精品专区| 神马国产精品三级电影在线观看| 午夜激情欧美在线| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 亚洲在线自拍视频| 热99在线观看视频| 午夜福利成人在线免费观看| 亚洲成人精品中文字幕电影| 免费看日本二区| 亚洲精品乱码久久久久久按摩| 亚洲精品日本国产第一区| 日本-黄色视频高清免费观看| 色播亚洲综合网| 成人美女网站在线观看视频| 亚洲av免费在线观看| 晚上一个人看的免费电影| 深夜a级毛片| 欧美3d第一页| 亚洲精品aⅴ在线观看| 精品一区二区三区视频在线| 国产成人一区二区在线| 91久久精品国产一区二区三区| 国产伦精品一区二区三区四那| 亚洲伊人久久精品综合| 亚洲精品乱码久久久v下载方式| 午夜福利在线在线| 大香蕉97超碰在线| 欧美最新免费一区二区三区| 成人午夜高清在线视频| 国产精品国产三级国产专区5o| 国产成人精品福利久久| 女人十人毛片免费观看3o分钟| 欧美潮喷喷水| 国产黄a三级三级三级人| 尤物成人国产欧美一区二区三区| 亚洲怡红院男人天堂| 麻豆精品久久久久久蜜桃| 日产精品乱码卡一卡2卡三| 狂野欧美白嫩少妇大欣赏| 寂寞人妻少妇视频99o| 精品欧美国产一区二区三| 亚洲av二区三区四区| 搡老妇女老女人老熟妇| 欧美+日韩+精品| 乱人视频在线观看| 80岁老熟妇乱子伦牲交| 男女国产视频网站| 精品久久久噜噜| 一级片'在线观看视频| 日本三级黄在线观看| 久久久久久久久大av| 高清在线视频一区二区三区| 少妇人妻一区二区三区视频| 又爽又黄无遮挡网站| 蜜臀久久99精品久久宅男| 国产v大片淫在线免费观看| 搡女人真爽免费视频火全软件| 99热这里只有是精品在线观看| 国产精品福利在线免费观看| 一级av片app| 天天躁夜夜躁狠狠久久av| 亚洲欧美中文字幕日韩二区| 国产男女超爽视频在线观看| 日韩欧美精品免费久久| av在线蜜桃| 国产在视频线精品|