• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics?

    2019-02-25 07:22:44TingXu許婷JuanZhao趙娟XianLongWang王憲龍andQingTianMeng孟慶田
    Chinese Physics B 2019年2期

    Ting Xu(許婷),Juan Zhao(趙娟),Xian-Long Wang(王憲龍),and Qing-Tian Meng(孟慶田),?

    1 School of Physics and Electronics,Shandong Normal University,Jinan 250358,China

    2 College of Science,Shandong Jiaotong University,Jinan 250357,China

    Keywords:state-to-state quantum dynamics,time-dependent wave packet,D+ND,differential cross section

    1.Introduction

    The nitrogen(N)atom is one of the most abundant elements in the atmosphere.Furthermore,the reactions containing N atom play important roles in atmospheric chemistry,combustion chemistry and some explosion processes.[1-3]Consequently,the reactions of the N atom especially with the H atom and their isotopes,have attracted much attention from both theoristsand experimentalists.[4-19]Experimentally,Koshi et al.[4]and Davison and Hanson[5]directly detected N atoms by the atomic resonance absorption technique,and studied the N+H2reaction at the high temperatures(1950 K-2850 K)in a shock tube.Furthermore,the rate coefficients of the reactions NH+H[6]and NH+D[7]were given in a quasistatic laser- flash photolysis,laser-induced fluorescence system at room-temperature.

    The theoretical investigation of the related reaction dynamics,such as with time-dependent wave packet(TDWP)[8]and quasi-classical trajectory(QCT),[9]was generally based on the accurate potential energy surface(PES).Takayanagi et al.[10]calculated the PESs for the N+H2reaction by using the ab initio multireference configuration interaction(MRCI)method.Pascual et al.[11]employed the modified GROW program developed in Refs.[12]-[15]to select the points and calculated the PES at the MCQDPT2//FORS-MCSCF(7,6)/6-311++G**level of theory by using GAMESS.Later,Adam et al.[6]and Qu et al.[7]proposed the global PESs for4A′′and2A′′states,which are based on the internally contracted MRCI method.Recently,Zhai and Han[16]constructed a high-quality global PES(hereafter denoted as ZH PES)for the ground4A′′state by using the many-body expansion method and the neural network method.For the ZH PES used in this work,all ab initio calculations are carried out in the MOLPRO package and 8645 ab initio energy points are used for fitting the PES with a basis set of aug-cc-pV5Z.The reaction heat of the ZH PES is closer to the experimental value and the predicted potential barrier height is lower than the theoretical value reported in previous work,which can therefore increase the reaction probability,especially at the lower collision energy.

    With this ZH PES,the relevant reactions including their isotopic reactions have been studied.Yu X and Yu Y J[17]and Zhang et al.[18]used the QCT method to calculate the polarization-dependent differential cross sections(DCSs)and the three angular distributions of P(θr),P(φr),P(θr,φr)for the reaction N+H2→NH+H.The state-to-state dynamics of the N(4S)+H2(X1Σ+)reaction in ZH PES has been reported by Zhang et al.[19]Furthermore,the reaction H+NH and its isotopic variants have been studied in previous work.Yao et al.[20]studied the state-to-state quantum dynamics of H+NH reaction,calculated and discussed the in fluences of collision energy on the product state-resolved integral cross sections(ICSs)and DCSs.Besides,Li et al.[21]implemented the TDWP and QCT methods to investigate the H+ND reaction and its isotopic reaction.

    However,for the title reaction,there are as yet no relevant calculations at the state-to-state level.In this work,we discuss the state-to-state dynamics calculations of the D+ND→N+D2reaction on the4A′′PES.To obtain the more precise information,we calculate state-resolved ICSs and DCSs of the reaction with considering all J values.The rest of the present article is arranged as follows.In Section 2 we brie fly describe the theoretical methods used in our quantum dynamical calculation.Our results are presented and discussed in Section 3.Finally,the main conclusions are dawn from the present study in Section 4.

    2.Theoretical method

    2.1.PES

    In this work,we use an adiabatic ZH PES constructed by Zhai and Han[16]and the PES is a fully dimensional analytic PES composed of 8645 ab initio energy points.The main features of this ZH PES are shown in Fig.1.It can be seen from this figure that there is an energy barrier located at the entrance channel,no well exists and the minimum reaction path occurs in the collinear configuration of the three nuclei.Besides,the title reaction is an exothermic reaction with a heat release of 1.17 eV.More information about ZH PES can be found in Ref.[16].

    Fig.1.Potential energy versus reaction path for H+NH reaction on ZH PES.

    2.2.Method

    When a collision of two molecules happens,its state-tostate quantum dynamics can provide more detailed information and profound observation of the chemical reaction process.But for general systems,the state-to-state quantum scattering calculation takes a long time to obtain the information about accurate dynamics.[22-28]To solve this problem,Zhang and Han[29-31]carefully studied the algorithm of the TDWP method and found that it had a high degree of parallelism.Based on this feature of the algorithm,they modified the program of TDWP into a parallel accelerated version of graphic processing units(GPUs). The relevant calculation shows that this version of GPUs can give high-efficiency dynamical results.[29]In this work,we used the GPUs to perform the calculation about the dynamics of reaction D+ND→N+D2.For the given J value,the Hamiltonian in body- fixed(BF)product Jacobi coordinate can be written as

    where R is the distance between N and the center of mass of D2;r is the internuclear distance of diatomic molecule D2;two reduced massμRand μrcan be expressed asμR=2mNmD/(mN+2mD)andμr=mD/2,respectively;is the total angular moment operator;is the rotational angular moment operator of D2;Vpesis the PES used in this work.

    The reactant was prepared in the space- fixed(SF)Jacobi coordinate system by using the Gaussian wave packet in R direction and can be expressed as

    with

    where L=J-j,V=Vpes-Vr(r),Vr(r)is the potential of the product molecule D2.

    The radial component of the product wave packet is chosen to be a delta function multiplied by the outgoing asymptotic radial function

    where R∞is a fixed radial coordinate of asymptotic region,ν′and j′are the final vibrational and rotational quantum number,respectively.Using this method,the scattering matrix can be obtained in BF Jacobi coordinate as follows:

    The coefficients are given by

    where i and f denote the initial and final states,h(1)and h(2)are the first and second kind of spherical Hankel functions,respectively.Finally,the state-to-state DCS and ICS can be calculated by the scattering matrix summed over all useful total angular momentum J values,and expressed as follows:

    Here,θ is the scattering angle between the reactants and the products,(θ)the reduced rotation matrix,K0and K′are the initial and final projection of the total angular momentum J,andis the transition matrix from initial state ν0j0to final state ν′j′.

    3.Result and discussion

    3.1.Number aspects

    In this work,we perform the state-to-state dynamics calculation for the reaction D+ND→N+D2with the TDWP method developed on the GPUs.To obtain the converged ICSs,the maximum value of J is 49 for collision energies up to 0.5 eV.In order to obtain the result of convergence,many tests have been carried out for ν=0 and j=0 to determine the optimal parameters.The test results are shown in Table 1.It is noted that K is one of the main convergence parameters,which sets an upper limit on the helicity quantum number.From Table 2,we can know that for the selected J and collision energy Ec=0.5 eV,the number of K(K=min(14,J+1))is enough to obtain the converged results.

    Table 1.Numerical parameters used in present quantum wavepacket calculations(all parameters are given in a.u.(atomic unit)unless otherwise stated).

    Table 2.Convergence test results of title reaction probability as a function of K(with E c=0.5 eV and J=20,30,and 40).

    3.2.Total reaction probability and ICS

    First,the reaction probability of the title reaction at five selected total angular momenta(J=0,10,20,30,40)are shown in Fig.2.For J=0,because of the existence of the tunneling effect,the threshold energy of the reaction is about 0.03 eV,lower than the barrier height(Ec≈0.08 eV).A broad resonance structure is displayed and it gradually disappears with the increase of J,which has been also found in H+H2[32]and H+Li2[33]reactions.This phenomenon can be partly attributed to the shift of the minimum of PES to higher energy as J increases.Moreover,because of the existence of centrifugal potential,the threshold energy also increases as the J value increases.The total ICSs are displayed in Fig.3.Obviously,the curves of the total ICS are consistent with the results in Ref.[21],so we can conclude that our calculations are reasonable.

    Fig.2.Total reaction probabilities versus collision energy for the D+ND→N+D2 reaction at several values of J.

    Fig.3.Total ICSs versus collision energy for different product vibrational state distributions in D+ND(ν=0,j=0)reaction.

    Fig.4. Plots of(2J+1)weighted opacity function versus J for D+ND→N+D2 reaction at different collision energies.

    Figure 4 shows the plots of opacity function versus J for the reaction D+ND at five different values of collision energy.The contribution of J-dependent partial wave to the ICSs is through a 2J+1 factor,which is analogous to the opacity function P(b).As we can see from Fig.4,all the curves show the arch shapes approximately,i.e.,each of the distribution curves reaches the maximum at a certain J value and then decreases to zero at the last accessible value of J.As the collision energy increases,the maximum value of J dependence shifts to the larger values of J.The reactions occur at the smaller values of J at the lower collision energy,and the larger values of J take part in the reaction with the increasing collision energy.Different J dependence corresponds to the different impact parameter b dependence.So,we can think that there are two mechanisms for the title reaction,i.e.,the rebound collision and the stripping collision.The rebound collision is associated with small impact parameter b and leads to the backward scattering,while the stripping collision corresponds to the big impact parameter b and tends to generate the sideward and forward scattering.Overall,we can think that the backward scattering is dominated at low collision energy,and the sideward and forward scattering begin to appear as the collision energy increases.

    3.3.Product state distribution

    The D2vibrational state-resolved ICSs are also shown in Fig.3.As we can see,ν′=0,1,2,3 vibrationallevels are open in the energy range considered and the D2product is mainly formed in the ν′=0 and ν′=1 states.The curve of ν′=0 increases monotonically as the collision energy increases,while the ν′=1 increases and then decreases with the increase of collision energy.Besides,the result of ν′=1 state is higher than that of ν′=0 before Ec≈ 0.3 eV and the opposite behavior appears after about 0.3 eV.This phenomenon can be due to the fact that the direct mechanism proceeds through a rebound mechanism in which the head-on collision plays an important role at low collision energy.In the head-on collision,the vibrational excitation of the reactant molecule is produced and then transferred to the product molecule.But,the stripping mechanism emerges and dominates as the collision energy increases,and the rotational excitation is more advantageous in this case.

    Fig.5.Product rotational state distributions for D+ND(ν=0,j=0)reaction at three different values of collision energy.

    Fig.6.(a)3D product vibrational state-resolved reaction cross section and(b)3D product rotational state-resolved cross section.

    Figure 5 shows the product rotational state-resolved ICSs at three values of collision energy.All curves reveal the similar features and the peaks lie between j′=0 and the maximum j′value allowed by energy.Unlike the vibrational state distribution,the rotational inversion population appears in all rotational states for the considered energy values.Although the behaviors are similar under different energy values,there are also some differences among them.With the increase of collision energy,the peak value of ICS tends to the higher j′,and the magnitude of the maximum value increases.This indicates that the number of product rotational channels increases as the collision energy increases,and more rotating channels are effectively opened at the higher collision energy.In addition,there is a negative correlation between vibrational excitation and rotational excitation,i.e.,with the increase of product vibrational number ν′,the density of the rotational state decreases gradually.To give a much more indicative view of the product rovibrational state distributions,we plot threedimensional diagram in Fig.6.As shown in this figure,the products mainly concentrate on ν′=0,1 and 0 < j′< 15,which is consistent with the distributions shown in Figs.3 and 5.

    3.4.DCS

    Figure 7 shows the total DCSs of the title reaction at five values of collision energy.It can be seen that the distribution is dominated by the backward scattering at low collision energy.The sideward scattering and the forward scattering begin to appear as the collision energy increases.Besides,the sideward scattering and the forward scattering are obviously enhanced as the collision energy increases.The details of the distribution from the scattering angle 0°to 12°are shown in Fig.7,in which we can find that there is a weak forward scattering at Ec=0.5 eV.This is due to the collision with larger impact parameters involved in the reaction,which fits our guess in Fig.4.From this drawing of partial enlargement,we can find that the DCSs decrease with the decrease of the collision energy in the forward scattering region.When the collision energy is 0.2 eV,the DCSs in the angle range from 0°to 12°are close to zero.As the collision energy continues to decrease to a smaller energy(such as 0.1 eV),the DCS oscillates slightly in the forward scattering region.This can be attributed to the fact that the scattering direction of the product is weakly affected by the smaller collision energy,and the scattering in each direction will have a certain probability.Due to these reasons,the DCS of Ec=0.1 eV is larger than that of Ec=0.2 eV in the small scattering angle region.

    Fig.7.Total DCSs versus scattering angle for D+ND→N+D2 reaction at five different values of collision energy.

    To show more details of the reaction,we calculate the state-resolved DCSs at three values of collision energy,which are shown in Fig.8.Forlow collision energy case,Ec=0.1 eV,the product experiences predominately the backward scattering in two vibrational states.For the higher energy case,the distribution of the DCS at Ec=0.3 eV is similar to that at Ec=0.5 eV.We can find that the backward scattering relates to the relatively small rotational states.Besides,the sideward scattering is enhanced with the increase of rotational quantum number.

    Fig.8.State-resolved DCSs for title reaction at three typical collision energy values.

    4.Conclusions

    In this work,the efficient GPU version of the TDWP code is used to study the reaction D+ND on a new ab initio PES.The total ICS increases as the collision energy increases after the threshold value,barely having the oscillatory structure.In addition,there is no obvious inversion of quantum number in the vibrational state-resolved ICS,while the rotational state-resolved ICS has inversion phenomenon.Because of the low impact parameter b collisions at low collision energy,the products experience mainly backward scattering.With the increase of collision energy,the sideward scattering and the forward scattering begin to appear and increase gradually,and the product molecules are excited to high rovibrational states.The backward scattering of the product is also observed at high energy,which means that there exist rebound and stripping mechanisms at high energy.

    国产精品精品国产色婷婷| 一级a爱片免费观看的视频| 精品久久久久久久久亚洲| 看非洲黑人一级黄片| 欧美一区二区国产精品久久精品| videossex国产| 亚洲精品456在线播放app| 男女那种视频在线观看| 欧美日韩综合久久久久久| 午夜福利成人在线免费观看| АⅤ资源中文在线天堂| 国产片特级美女逼逼视频| 久久久久精品国产欧美久久久| 久久精品国产亚洲av涩爱 | 1000部很黄的大片| 日韩欧美国产在线观看| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕 | 精品欧美国产一区二区三| 国产久久久一区二区三区| 久久久久久久久久成人| 一级a爱片免费观看的视频| 久久综合国产亚洲精品| 女生性感内裤真人,穿戴方法视频| 免费av不卡在线播放| 此物有八面人人有两片| АⅤ资源中文在线天堂| 美女 人体艺术 gogo| 亚洲三级黄色毛片| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产精品久久男人天堂| 国产老妇女一区| 精华霜和精华液先用哪个| 国产精品爽爽va在线观看网站| 国产片特级美女逼逼视频| 成人美女网站在线观看视频| 国产高潮美女av| 日韩三级伦理在线观看| 精品一区二区三区视频在线| 国产女主播在线喷水免费视频网站 | 久久午夜亚洲精品久久| 99热这里只有是精品50| 欧美最新免费一区二区三区| 国产高清视频在线播放一区| 女生性感内裤真人,穿戴方法视频| 综合色丁香网| 别揉我奶头~嗯~啊~动态视频| 日本一本二区三区精品| 日韩欧美 国产精品| 五月玫瑰六月丁香| 午夜激情福利司机影院| 国产亚洲精品av在线| 91午夜精品亚洲一区二区三区| АⅤ资源中文在线天堂| 国产麻豆成人av免费视频| 国产精品电影一区二区三区| ponron亚洲| 哪里可以看免费的av片| 精品无人区乱码1区二区| 中文字幕av在线有码专区| 22中文网久久字幕| 色综合站精品国产| 国产69精品久久久久777片| 国产亚洲精品综合一区在线观看| 久久久午夜欧美精品| 久久久久久久午夜电影| 久久精品国产亚洲网站| 国产伦精品一区二区三区四那| 国产女主播在线喷水免费视频网站 | 国产91av在线免费观看| 99久久九九国产精品国产免费| 搡老岳熟女国产| 天美传媒精品一区二区| 免费黄网站久久成人精品| 大香蕉久久网| 九九久久精品国产亚洲av麻豆| 嫩草影院入口| 精品久久久噜噜| 日本黄大片高清| 天堂动漫精品| 麻豆乱淫一区二区| 人妻制服诱惑在线中文字幕| 精品国产三级普通话版| 国产亚洲av嫩草精品影院| 国产色爽女视频免费观看| 夜夜看夜夜爽夜夜摸| 久久中文看片网| 亚洲欧美清纯卡通| 中文字幕久久专区| 日日啪夜夜撸| 欧美zozozo另类| 久久久久性生活片| 伊人久久精品亚洲午夜| 99视频精品全部免费 在线| 99久久久亚洲精品蜜臀av| 我的老师免费观看完整版| 亚洲欧美精品自产自拍| 成人毛片a级毛片在线播放| 精品久久久久久久久亚洲| www日本黄色视频网| 亚洲国产精品sss在线观看| 丰满的人妻完整版| 久久亚洲精品不卡| 亚洲自偷自拍三级| 一进一出好大好爽视频| 香蕉av资源在线| 丰满乱子伦码专区| 亚洲最大成人av| 好男人在线观看高清免费视频| 人妻久久中文字幕网| 大香蕉久久网| 国产精品久久久久久精品电影| 国产亚洲av嫩草精品影院| 成人欧美大片| 亚洲自拍偷在线| 嫩草影院新地址| 欧美另类亚洲清纯唯美| 国内精品美女久久久久久| 九色成人免费人妻av| 欧美xxxx性猛交bbbb| 国产午夜精品论理片| 18禁黄网站禁片免费观看直播| 久久6这里有精品| 高清毛片免费看| 在线观看免费视频日本深夜| 久久久久久久午夜电影| 亚洲图色成人| 国产69精品久久久久777片| 精品久久久久久久人妻蜜臀av| 国产男靠女视频免费网站| 午夜亚洲福利在线播放| 久久人妻av系列| 三级国产精品欧美在线观看| 我要搜黄色片| 久久久a久久爽久久v久久| 麻豆久久精品国产亚洲av| 国产精品日韩av在线免费观看| 久久久久性生活片| 亚洲人成网站在线播放欧美日韩| 欧美性猛交╳xxx乱大交人| 午夜精品国产一区二区电影 | 亚洲欧美精品自产自拍| 一夜夜www| 国产久久久一区二区三区| 国产一级毛片七仙女欲春2| 色哟哟·www| 国产精品一二三区在线看| 搞女人的毛片| 久久久久久伊人网av| 一本一本综合久久| 国产探花极品一区二区| 久久婷婷人人爽人人干人人爱| 99久国产av精品国产电影| 赤兔流量卡办理| 日韩欧美精品v在线| 欧美在线一区亚洲| 日日摸夜夜添夜夜添小说| 国产男靠女视频免费网站| 夜夜爽天天搞| 波多野结衣巨乳人妻| 色在线成人网| 亚洲五月天丁香| 成人美女网站在线观看视频| 亚洲精品在线观看二区| 日韩欧美精品免费久久| 欧美日本视频| 亚洲综合色惰| 久久99热6这里只有精品| 人人妻人人澡人人爽人人夜夜 | 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| 久久综合国产亚洲精品| 成人综合一区亚洲| 国产午夜精品久久久久久一区二区三区 | 久久草成人影院| 亚洲中文字幕日韩| 我要搜黄色片| 亚洲av成人精品一区久久| 日韩精品青青久久久久久| 最近中文字幕高清免费大全6| 国产aⅴ精品一区二区三区波| 午夜福利高清视频| 国产精品久久久久久av不卡| 中文资源天堂在线| 久久精品国产清高在天天线| 美女 人体艺术 gogo| 亚洲av五月六月丁香网| 淫秽高清视频在线观看| 久久久久久久亚洲中文字幕| 18禁黄网站禁片免费观看直播| 午夜福利视频1000在线观看| 日韩国内少妇激情av| 国产精品一及| 美女高潮的动态| 免费av不卡在线播放| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 国产乱人视频| 亚洲欧美清纯卡通| 欧美不卡视频在线免费观看| 97在线视频观看| 免费黄网站久久成人精品| 国产高潮美女av| 99国产精品一区二区蜜桃av| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件 | 精品不卡国产一区二区三区| 最近视频中文字幕2019在线8| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利18| 性色avwww在线观看| 国产亚洲精品av在线| 国产成人91sexporn| 人妻少妇偷人精品九色| 国产高清不卡午夜福利| 日韩欧美免费精品| 成人一区二区视频在线观看| 久久久成人免费电影| 国产美女午夜福利| 高清午夜精品一区二区三区 | 桃色一区二区三区在线观看| 日韩欧美 国产精品| 日日摸夜夜添夜夜爱| 99精品在免费线老司机午夜| 国产精品av视频在线免费观看| 午夜爱爱视频在线播放| 欧美日韩综合久久久久久| 最近视频中文字幕2019在线8| 老师上课跳d突然被开到最大视频| 神马国产精品三级电影在线观看| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 国产私拍福利视频在线观看| 一边摸一边抽搐一进一小说| 亚洲久久久久久中文字幕| 国产精品野战在线观看| 久久精品久久久久久噜噜老黄 | 成人无遮挡网站| 小蜜桃在线观看免费完整版高清| 黑人高潮一二区| 干丝袜人妻中文字幕| 欧美三级亚洲精品| 色播亚洲综合网| 国产激情偷乱视频一区二区| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 校园人妻丝袜中文字幕| 国产精品野战在线观看| 亚洲一级一片aⅴ在线观看| 女人被狂操c到高潮| 我的老师免费观看完整版| 色播亚洲综合网| 18+在线观看网站| 亚洲av.av天堂| 美女高潮的动态| 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 国产精品野战在线观看| 欧美精品国产亚洲| 精品人妻一区二区三区麻豆 | 亚洲人与动物交配视频| 在线观看免费视频日本深夜| 性插视频无遮挡在线免费观看| 国产亚洲精品av在线| 亚洲18禁久久av| 亚洲av不卡在线观看| 久久欧美精品欧美久久欧美| 老司机影院成人| 欧美不卡视频在线免费观看| 一夜夜www| 麻豆一二三区av精品| 美女黄网站色视频| 女的被弄到高潮叫床怎么办| 深夜a级毛片| 国产美女午夜福利| 成人av一区二区三区在线看| 乱人视频在线观看| a级一级毛片免费在线观看| 色综合亚洲欧美另类图片| 久久精品国产99精品国产亚洲性色| 国产精品综合久久久久久久免费| 免费观看的影片在线观看| 少妇熟女aⅴ在线视频| 国产精品三级大全| 中文字幕人妻熟人妻熟丝袜美| 色在线成人网| 桃色一区二区三区在线观看| 免费在线观看影片大全网站| 亚洲精品国产av成人精品 | 美女cb高潮喷水在线观看| 不卡视频在线观看欧美| 欧美性猛交╳xxx乱大交人| 99精品在免费线老司机午夜| 免费高清视频大片| 欧美一级a爱片免费观看看| 日韩精品有码人妻一区| 啦啦啦啦在线视频资源| 欧美日本亚洲视频在线播放| 在线观看午夜福利视频| 免费无遮挡裸体视频| 免费观看人在逋| 日韩一区二区视频免费看| 久久久久久久久大av| 国产v大片淫在线免费观看| 国产精品久久久久久亚洲av鲁大| 国产精品一区www在线观看| 亚洲成人av在线免费| 一区二区三区四区激情视频 | 自拍偷自拍亚洲精品老妇| 可以在线观看的亚洲视频| 中文亚洲av片在线观看爽| 岛国在线免费视频观看| 内射极品少妇av片p| 久久久久久久午夜电影| 波多野结衣巨乳人妻| 十八禁网站免费在线| 亚洲第一电影网av| 日本 av在线| 色视频www国产| 22中文网久久字幕| 国产美女午夜福利| 日韩av不卡免费在线播放| 毛片女人毛片| 三级国产精品欧美在线观看| 美女cb高潮喷水在线观看| 亚洲专区国产一区二区| 欧美成人a在线观看| 久久鲁丝午夜福利片| 久久久精品欧美日韩精品| 99热精品在线国产| 国产男人的电影天堂91| 大又大粗又爽又黄少妇毛片口| 精品一区二区免费观看| 一本精品99久久精品77| 在线观看一区二区三区| 成熟少妇高潮喷水视频| 男女下面进入的视频免费午夜| 免费看日本二区| 午夜福利18| 99热这里只有是精品在线观看| 91午夜精品亚洲一区二区三区| 麻豆国产av国片精品| 精品熟女少妇av免费看| 老司机影院成人| 永久网站在线| 在线免费十八禁| 麻豆久久精品国产亚洲av| 99久久精品国产国产毛片| 插逼视频在线观看| 久久久久九九精品影院| 亚洲电影在线观看av| 国模一区二区三区四区视频| 中文亚洲av片在线观看爽| 欧美成人一区二区免费高清观看| 亚洲专区国产一区二区| 亚洲精品国产av成人精品 | 精品无人区乱码1区二区| 日韩一本色道免费dvd| 精品一区二区三区视频在线| 中文字幕av成人在线电影| 国产精品美女特级片免费视频播放器| 欧美一区二区精品小视频在线| 日本欧美国产在线视频| 日本黄大片高清| 给我免费播放毛片高清在线观看| 欧美高清成人免费视频www| 菩萨蛮人人尽说江南好唐韦庄 | 两个人视频免费观看高清| 亚洲最大成人中文| 毛片一级片免费看久久久久| 国产老妇女一区| 久久久久国内视频| 日本-黄色视频高清免费观看| 一级毛片我不卡| 插逼视频在线观看| 亚洲va在线va天堂va国产| 欧美最新免费一区二区三区| 春色校园在线视频观看| 午夜福利在线观看免费完整高清在 | 别揉我奶头~嗯~啊~动态视频| 我的老师免费观看完整版| 国产片特级美女逼逼视频| 成人av一区二区三区在线看| 三级毛片av免费| 天天躁夜夜躁狠狠久久av| 亚洲人与动物交配视频| 2021天堂中文幕一二区在线观| 久久人人爽人人片av| 日本五十路高清| 婷婷精品国产亚洲av| av卡一久久| 网址你懂的国产日韩在线| 91久久精品国产一区二区成人| 伦理电影大哥的女人| 99国产精品一区二区蜜桃av| 在线观看66精品国产| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看| 亚洲av免费高清在线观看| 精品一区二区三区视频在线观看免费| 成人av在线播放网站| 寂寞人妻少妇视频99o| 观看美女的网站| 可以在线观看毛片的网站| 在线观看一区二区三区| 麻豆国产av国片精品| 国产精品国产高清国产av| 少妇猛男粗大的猛烈进出视频 | 久久亚洲精品不卡| 国产色爽女视频免费观看| 国产精品一区二区三区四区久久| 国产精品电影一区二区三区| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av涩爱 | 亚洲精品乱码久久久v下载方式| 男人舔女人下体高潮全视频| 国产又黄又爽又无遮挡在线| 精品久久久久久久久av| 欧美高清成人免费视频www| 超碰av人人做人人爽久久| 少妇熟女aⅴ在线视频| av卡一久久| 高清午夜精品一区二区三区 | 国产欧美日韩精品一区二区| 深爱激情五月婷婷| 免费无遮挡裸体视频| 日韩欧美精品免费久久| 日韩欧美 国产精品| 非洲黑人性xxxx精品又粗又长| 日产精品乱码卡一卡2卡三| 男人狂女人下面高潮的视频| 国内揄拍国产精品人妻在线| 亚洲av成人精品一区久久| 国产精品三级大全| 欧美激情国产日韩精品一区| 亚洲自偷自拍三级| 国产探花在线观看一区二区| 少妇丰满av| 欧美高清性xxxxhd video| 色吧在线观看| 欧美潮喷喷水| 欧美日韩乱码在线| 精品福利观看| 在现免费观看毛片| 日韩精品青青久久久久久| 欧美中文日本在线观看视频| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲最大成人手机在线| 亚洲精品日韩在线中文字幕 | 大香蕉久久网| 99久久精品国产国产毛片| 国产爱豆传媒在线观看| 国产69精品久久久久777片| 国产不卡一卡二| 久久精品国产鲁丝片午夜精品| 色吧在线观看| 午夜免费男女啪啪视频观看 | 精品一区二区三区视频在线观看免费| 少妇人妻精品综合一区二区 | 亚洲精品色激情综合| 99精品在免费线老司机午夜| 午夜亚洲福利在线播放| 在线观看免费视频日本深夜| 午夜福利视频1000在线观看| 日日啪夜夜撸| 亚洲久久久久久中文字幕| 亚洲av美国av| 中文资源天堂在线| 亚洲五月天丁香| 两个人的视频大全免费| 干丝袜人妻中文字幕| 九九久久精品国产亚洲av麻豆| 国产色婷婷99| 综合色丁香网| 亚洲中文字幕日韩| 韩国av在线不卡| avwww免费| 欧美一级a爱片免费观看看| 嫩草影院精品99| 国内精品一区二区在线观看| 插阴视频在线观看视频| 此物有八面人人有两片| 欧美高清性xxxxhd video| 国产男人的电影天堂91| 伦精品一区二区三区| 一个人观看的视频www高清免费观看| 精品一区二区三区视频在线观看免费| 国产视频内射| 久久精品国产亚洲av香蕉五月| 淫妇啪啪啪对白视频| 最近视频中文字幕2019在线8| 白带黄色成豆腐渣| 久久午夜亚洲精品久久| 无遮挡黄片免费观看| 尤物成人国产欧美一区二区三区| 少妇的逼好多水| 搞女人的毛片| 国产亚洲av嫩草精品影院| 日产精品乱码卡一卡2卡三| 欧洲精品卡2卡3卡4卡5卡区| 有码 亚洲区| 国产精品乱码一区二三区的特点| 俺也久久电影网| 男女啪啪激烈高潮av片| 欧美成人免费av一区二区三区| 国产一区亚洲一区在线观看| 欧美日本视频| 一级毛片我不卡| 欧美又色又爽又黄视频| 在线播放国产精品三级| 亚洲18禁久久av| 亚洲,欧美,日韩| 亚洲精品国产av成人精品 | 色尼玛亚洲综合影院| 男女边吃奶边做爰视频| 久久久久国产网址| 国内精品宾馆在线| 少妇人妻一区二区三区视频| 国产 一区 欧美 日韩| 嫩草影院精品99| 成人亚洲欧美一区二区av| 能在线免费观看的黄片| 成人国产麻豆网| 国产精品野战在线观看| 夜夜爽天天搞| 亚洲激情五月婷婷啪啪| videossex国产| 97碰自拍视频| 在线播放国产精品三级| 狂野欧美激情性xxxx在线观看| 婷婷亚洲欧美| 最近2019中文字幕mv第一页| 在线观看一区二区三区| a级一级毛片免费在线观看| 91久久精品国产一区二区成人| 一区二区三区高清视频在线| 欧美成人精品欧美一级黄| 亚洲av美国av| 伊人久久精品亚洲午夜| 精品一区二区三区视频在线| 欧美bdsm另类| 国产精品野战在线观看| 欧美成人a在线观看| 嫩草影视91久久| 亚洲第一电影网av| 听说在线观看完整版免费高清| 在线观看66精品国产| 久久精品国产亚洲网站| 免费电影在线观看免费观看| 伦精品一区二区三区| 亚洲四区av| 美女免费视频网站| 成人一区二区视频在线观看| 一个人观看的视频www高清免费观看| 精品人妻偷拍中文字幕| 99热这里只有精品一区| 女生性感内裤真人,穿戴方法视频| 看十八女毛片水多多多| 热99re8久久精品国产| 丰满的人妻完整版| 亚洲性久久影院| 最近手机中文字幕大全| 97人妻精品一区二区三区麻豆| 欧美极品一区二区三区四区| 色综合站精品国产| 在线a可以看的网站| 夜夜夜夜夜久久久久| 99久久中文字幕三级久久日本| 国产亚洲精品av在线| 日本一二三区视频观看| 搡老岳熟女国产| 可以在线观看毛片的网站| 性插视频无遮挡在线免费观看| 欧美又色又爽又黄视频| 久久久a久久爽久久v久久| 一夜夜www| 成人毛片a级毛片在线播放| 亚洲国产精品久久男人天堂| 欧美性猛交╳xxx乱大交人| 午夜福利在线观看免费完整高清在 | 国产乱人偷精品视频| 国产一区二区三区在线臀色熟女| 日本黄色视频三级网站网址| 晚上一个人看的免费电影| 成年女人永久免费观看视频| 欧美日韩综合久久久久久| 欧美中文日本在线观看视频| 精品久久久久久久久av| 一级黄色大片毛片| 又爽又黄无遮挡网站| 波多野结衣高清作品| 成年版毛片免费区| 免费在线观看成人毛片| 亚洲自偷自拍三级| 成年版毛片免费区| 国产精品一二三区在线看| 亚洲熟妇中文字幕五十中出| 久久久久国产精品人妻aⅴ院| 国产精品一区www在线观看| 国产成人91sexporn| 欧美绝顶高潮抽搐喷水| 国产精品美女特级片免费视频播放器| 香蕉av资源在线| 久久鲁丝午夜福利片| 中文字幕精品亚洲无线码一区| 免费不卡的大黄色大毛片视频在线观看 | 十八禁网站免费在线| 免费看光身美女| 插阴视频在线观看视频| 成人毛片a级毛片在线播放| 免费在线观看成人毛片| 嫩草影视91久久| 老司机午夜福利在线观看视频| 国产伦精品一区二区三区视频9|