• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor

    2019-02-25 07:22:42UshaandSubha
    Chinese Physics B 2019年2期

    K Usha and P A Subha

    1 Department of physics,University of Calicut,Kerala 673635,India

    2 Department of physics,Farook College,University of Calicut,Kerala 673632,India

    Keywords:HR model,memristor,Hamilton energy,energy feedback,synchronization

    1.Introduction

    The transmission of nerve impulses in the brain occurs via the propagation of action potentials and a large fraction of the total energy consumed by brain is utilized to generate the firing patterns.The evaluation of required metabolic energy to maintain the signaling activity in neurons is an active research area.[1]The collective dynamics of neural networks have a considerable in fluence in the propagation of information from one region to another and their collective behavior can be greatly in fluenced by the energy demands.Neuron models are used to analyze the connection between energy demands and firing modes.[2]The Hamilton energy associated with the dynamical system can be derived using the generalized Hamiltonian approach.[3]Using this formalism,Sarasola et al.have derived the energy function associated with Lorenz,Rossler,and Chua systems.[4]Moujahid et al.have reported the energy consumption during the synchronization process in electrically coupled HR neurons.[5]The consumption of energy in transmitting nerve impulse using Hodgkin-Huxley model has also been reported.[6]

    It is important to investigate the energy utilization of neurons subjected to different kinds of external force during information encoding.Biological experiments confirm that the electrical activities of neurons change by adjusting extracellular calcium or potassium concentrations.[7]The Hindmarsh-Rose(HR)neuron oscillates periodically for small and large external current,whereas for intermediate currents they become chaotic.[8]The periodic external forcing also in fluences the bursting modes and neuronal activities.[9]In addition,computational models have been developed to study the effect of noise.[10-12]The statistical features of Gaussian white noise seem to be appropriate to mimic the complex behavior shown by a neuron under the in fluence of other neurons and the environment.Zambrano et al.have analyzed the synchronization of uncoupled FitzHugh-Nagumo neurons with common noise both experimentally and numerically.[13]Noise-induced resonances in the HR model has also been studied.[14]Wang et al.have reported that,the forced HR neurons with white Gaussian noise leads to firing modes like multi-modal firing,intrinsic oscillation,and bi-modal firing.[15]Lindner et al.have studied the dynamics of mathematical models of excitable systems in the presence of white Gaussian noise.[16]

    Recent studies confirm that a two terminal electric device called memristor can mimic the the key characteristics of synapses and neurons.A memristor models the effect of electromagnetic field created as a result of the exchange of ions across the nerve membrane.The electrical activities in the cardiac tissues exposed to electromagnetic radiation can be described using memristor models.This provides signi ficant clues about the mechanism of heart disorders induced by electromagnetic radiation.[17]The synchronization of coupled memristive neural network via pinning control has been proposed by Guan et al.[18]Recently Ma et al.have discussed the RCL-shunted junction circuit with memristor.[19]The control of dynamical systems with negative feedback in energy has recently been reported.[20]

    In this paper,we analyze the energy aspects of single and coupled HR neuron model with a memristor.The HR neuron model with quadratic flux controlled memristor is presented in Section 2.The Hamilton energy of the system is derived in Section 3 and the energy change in the presence of different external stimuli has been discussed.In addition,the control of chaotic trajectories by applying a negative feedback is discussed in this section.The energy aspects during the synchronization process of electrically and chemically coupled HR neurons are studied in Section 4.Finally,Section 5 concludes the study.

    2.Model

    The continuous exchange ofcharged ions across the nerve membrane induce an electromagnetic field that controls the membrane potential of neurons.Recently Ma et al.proposed that memristors can be used to bridge the magnetic flux and membrane potential.This coupling in fluences signal transmission via the superposition of electric field.[9,21]Memristors are used to realize the coupling.The HR model with memristor is capable of producing biologically relevant dynamical states such as anti-phase oscillations,co-existence of resting and spiking state etc.[22]The dynamical equations of HR neuron model with quadratic flux controlled memristor have the form:[9]

    where ρ(φ)= αφ2+βφ +γ.The membrane potential of the neuron is represented using the variable x.y denotes the recovery variable representing the rate of change of fast current of K+or Na+ions and z denotes the adaptation variable that capture the slower dynamics of other ion channels.The parameters a and b denote activation and inactivation of the fast ion channel.R and xedescribe activation and inactivation of the slow ion channel.The speed of variation of z is controlled by r.[23-25]The parameter I represents the external stimuli.[26,27]The fourth variable φ denotes magnetic flux across the nerve membrane.A memristor with memductance ρ(φ)=d q(φ)/dφ is used to realize the coupling between magnetic flux of the field and membrane potential.It is possible to model ρ(φ)using a quadratic term.The memductance after suitable scaling is taken as ρ(φ)= αφ2+βφ +γ,α,β,and γ are parameters.[28]The term k1ρ(φ)x denotes the induced current through electromagnetic induction,where k1represents the modulation intensity of electromagnetic field.Relation between induced current and flux change can be understood using Faraday’s law of electromagnetic induction.[29]The term k2x represents the change in magnetic flux induced by membrane potential of the cell and k3φ denotes the leakage of magnetic flux.The parameters used are a=3.0,b=5.0,R=4.0,r=0.006,I=3.1,and xe=-1.61.[30]

    We have analyzed the dynamics of the system in Eq.(1)by varying the external current I.The fourth order Runge-Kutta algorithm is applied for numerical calculations.The memristor parameters are taken as β =1.0,γ=1.0,k2=0.9,and k3=0.5.The value of k1is fixed at 0.1 and by increasing the value of α the inter spike interval bifurcation(IS I)diagrams have been plotted.Figures 1(a),1(b),and 1(c)show the distribution of ISI for α=0.1,0.4,and 0.8 respectively.It is found that as the value of α is increased,the system eventually transforms to its normal response state.The study has been extended by fixing α=0.1 and by varying k1.Figures 1(d),1(e),and 1(f)represent the I versus IS I for k1=0.8,0.4,and 0.1 respectively.From the plots it is clear that,for constant α,a decrease in k1is needed for normal firing.The response of a neuron with electromagnetic induction described by quadratic flux controlled memristor to external signals can be enhanced by properly selecting the memristor parameters.[21]

    Fig.1.The ISI bifurcation diagram of HR neuron with memristor.Figures 1(a),1(b),and 1(c)shows I versus ISI for k1=0.1 and α=0.1,0.4,and 0.8.Figures 1(d),1(e),and 1(f)are drawn for α =0.1,k1=0.8,0.4,and 0.1.The parameters β and γ are set as 1.0.

    3.Energy aspects

    In this section,we derive the Hamilton energy of HR model with quadratic flux controlled memristor.The differential equation of an autonomous dynamical system is of the form:˙x=f(x).According to Helmholtz’s theorem the velocity vector field f(x)can be written as:

    where fccomponent of the vector field is conservative.This does not contribute to the energy change along any trajectory of the system and satis fies the following equation,

    The function H(x)is the generalized Hamiltonian for the conservative system as long as it can be rewritten in the form˙x=J(x)?H,where J is a skew symmetric matrix that satis fies Jacobi’s closure condition.[31]The component fdis composed of velocity-dependent terms and contribute to the divergence.[9]The dissipation of energy due to the fdpart obeys the relation:

    The conservative and dissipative part of HR model in Eq.(1)can be expressed in the form:

    where

    and

    Then,according to Eq.(3),the Hamilton energy associated with the system will satisfy the following partial differential equation:

    A general solution for Eq.(5)is of the form:

    The rate of change of Hamilton energy function is:

    simplifying and rearranging Eq.(9),the expression for˙H takes the form,and hence obeys the relation in Eq.(4).

    The average energy of the system is evaluated using the expression,

    where T is the energy calculation period(1000 time units)and t0is the starting time to calculate the average energy.Figure 2 shows the variations in the average energy with the external forcing current(I).The parameters used are taken as:a=3.0,b=5.0,R=4.0,r=0.006,xe=-1.61,k1=0.1,k2=0.9,and k3=0.5,α =0.4,β =0.02,and γ=0.1.[9]From the plot it is clear that as I is increased,the average energy decreases.

    Fig.2.The variations in average energy of HR neuron with quadratic flux controlled memristor for different values of external current.

    We have further analyzed the rate of change of Hamilton energy in the resting and bursting state of membrane potential by applying various external stimuli.

    Case 1:Constant external stimulus

    A constant external current(I)has been applied to the system.The value of I is changed from 2.0 to 3.0 at t=1000 and then switched to 1.0 at t=1500,as depicted in Fig.3(a).

    Fig.3.(a)Variation of external current(b)rate of change of energy function and(c)time evolution of membrane potential of neuron.The external current I is changed from 2.0 to 3.0 at t=1000 time units and switched to 1.0 at t=1500 time units.

    The corresponding variations in energy utilization and membrane potential are shown in Figs.3(b)and 3(c)respectively.From the plots it is clear that as the external current is varied the bursting mode of neuron change and for generating each action potential energy is consumed.The energy demand is a maximum during the repolarization period of the spike and at a minimum during the refractory period between two spikes.The energy utilization approaches zero when the membrane potential is close to the quiescent state.

    Case 2:Periodic external stimulus

    The effect of periodic stimulus in neural activity has been analyzed by applying an inputofthe form I=I1+A sin(0.05t),where I1=3.1 and A represents the amplitude.The membrane potential and energy utilization during the electrical activities are plotted.The value of A is changed from 0.1 to 1.0 at t=1000 and then switched to 2.0 at t=1500,as shown in Fig.4(a).In the case of periodic input,A acts as a control parameter for generating different types of electrical responses.As A is increased,the number of spikes per burst in membrane potential is also increased;as shown in Fig.4(c).The transition in bursting mode induce some transition in Hamilton energy.In the case of state with less number of spikes per burst,the Hamilton energy consumed also become smaller as depicted in Fig.4(b).

    Fig.4.(a)Variation of periodic input(b)rate of change of energy function and(c)time evolution of membrane potential of neuron.The external periodic forcing has the form I=I1+A sin(0.05t).I1 is fixed at 3.1 and A is changed from 0.1 to 1.0 at t=1000 and then switched to 2.0 at t=1500.

    Case 3:White Gaussian noise

    The in fluence of noise in the firing pattern is discussed in Fig.5.

    Fig.5.External noise variations(b)rate of change of energy function and(c)time evolution of membrane potential of neuron.The noise applied is I=I1+ζξ(t).I1=3.1,ζ is changed from 0.01 to 0.1 at t=1000 and then switched to 1.0 at t=1500.

    White Gaussian noise is added through the electrical potential of the membrane;i.e.,the effective current imposed to the neuron contains a random term.[32]The noise is of the form I=I1+ζξ(t),with parameters 〈ξ(t)〉=0,〈ξ(t)ξT(t+τ)〉=δ(τ)and ζ defines the noise intensity.The value of I1is fixed as 3.1 and ζ is changed from 0.01 to 0.1 at t=1000 and then switched to 1.0 at t=1500 as shown in Fig.5(a).The corresponding variations in membrane potential are shown in Fig.5(c).From the plotitisclearthatthe bursting mode changes with the increase in noise intensity.The energy utilization in the presence of noise is depicted in Fig.5(b).It is confirmed that noisy external stimulus can trigger complex discharge in energy utilization and the effect of noise is more evident in the refractory period of the action potential.

    The bifurcation diagrams in(A-Xmax)and(A-ISI)planes for periodic input are shown in Figs.6(a)and 6(b)respectively.The amplitude of periodic forcing is varied as 0≤A≤4.The plots show that,an alternate sequence bursting states occur with the increase in A.The bifurcations in the presence of the noisy external forcing are shown in Figs.6(c)and 6(d).The noise intensity is varied in the range 0≤ζ≤1.It is found that an increase in ζ produces the complex rhythm and the electrical discharge of the nerve cell becomes more complex leading to chaos.

    Fig.6.The bifurcation diagrams.Figures 6(a)and 6(b)show X max and IS I by varying the amplitude of periodic forcing.Figures 6(c)and 6(d)show X max and ISI by varying the intensity of external noise.

    4.Energy feedback

    The Hamilton energy of the system depends on all system parameters,and hence the changes made to energy function causes significant change in the phase space of the dynamic system.[20]The change in energy is realized by giving a negative feedback as follows:

    where k4is the feedback gain.The phase space dynamics in the(X-H)plane by varying k4has been plotted.

    Case 1:Constant external stimulus

    The formation of attractors in the presence of constant current(I=3.1)is illustrated in Fig.7.The phase space for k4=0.0,k4=1.0,k4=5.0,k4=10.0 are shown in Figs.7(a),7(b),7(c),and 7(d),respectively.As the feedback gain is increased,the number of dense orbits in the attractor is reduced and the chaotic trajectories are controlled.The results are further confirmed by plotting the largest Lyapunov exponent(LLE).The variation of LLE with k4is shown in Fig.8.It is found that the LLE is decreased below zero with increase in k4and ensure the stabilization of chaotic trajectories.

    Fig.7.The phase space of dynamics for I=3.1.The energy feedback obeys Eq.(12).(a)k4=0,(b)k4=1.0,(c)k4=5.0,and(d)k4=10.0.

    Fig.8.Transition of LLE for different feedback gains in energy function in the presence of constant external current.The inserted figure is the enlarged version.

    Case 2:Periodic external stimulus

    The phase space dynamics in the presence periodic input I=I1+2sin(0.05t)for k4=0,k4=1.0,k4=5.0,and k4=10.0 are shown in Figs.9(a),9(b),9(c),and 9(d)respectively.

    Fig.9. The phase space of dynamics for periodic external forcing I=I1+A sin(0.05t),where I1=3.1 and A=2.0.The energy feedback is according to Eq.(12).(a)k4=0,(b)k4=1.0,(c)k4=5.0,and(d)k4=10.0.

    The plots show that,as the feedback gain k4is increased the Hamilton energy function which is composed of the variables and bifurcation parameters controls the evolution of the system and the chaotic trajectories are stabilized.The variation of LLE is shown in Fig.10.The maximum value of LLE is nearly equal to 0.008,greater than compared to the one obtained for constant external current.

    Fig.10.Transition of LLE with k4.Periodic variations are applied in the external current.The inserted figure is the enlarged version.

    Case 3.White Gaussian noise

    The phase portrait of the system with energy feedback in the presence of the external noise I=I1+ζξ(t)has also been studied with I1=3.1 and ζ=1.As the feedback gain k4is increased,the noisy trajectories are controlled.Figures 11(a),11(b),11(c),and 11(d)represent the mechanism of the chaos control for k4=0,k4=1.0,k4=5.0,and k4=10.0 respectively.The LLE for noisy external forcing has the largest value in comparison with the previous cases as shown in Fig.12.The increased Lyapunov exponent indicates sensitivity to initial conditions.

    Fig.11.Phase space in the presence of white Gaussian noise,(I=2+ξ(t)).The energy feedback obeys Eq.(12).(a)k4=0,(b)k4=1.0,(c)k4=5.0,and(d)k4=10.0.

    Fig.12.Variations of LLE with k4.White Gaussian noise is added as the external stimuli.The inserted figure is the enlarged version.

    5.Synchronous dynamics

    5.1.Electrical coupling

    The dynamic equations for electrically coupled HR neuron model with quadratic flux controlled memristor has the form,

    where

    The parameter geis the coupling strength of synaptic junction and D describes the field coupling strength.The parameters used are a=3.0,b=5.0,R=4.0,r=0.006,xe=-1.61,k1=0.1,k2=0.9,and k3=0.5,α=0.4,β=0.02,and γ=0.1.[9]We have evaluated the effect of modulation intensity of electromagnetic field in regulating the average energy of neurons in the synchronized state.

    Figure 13(a)shows the average energy variations for k1=0.1.The plot verifies that with increase in coupling strength the〈H〉changes in a waving pattern and it suddenly stabilizes at the point of synchronization.The membrane potential of both neurons are equal in the synchronized state and this leads to the vanishing of coupling term.As a result the energy in the synchronized state returns to its initial uncoupled value.Our results with quadratic flux controlled memristor are in accordance with the results obtained for HR model without memristor in Ref.[1].The variation in〈H〉for an increased value of k1(k1=0.5)is shown in Fig.13(b).From the plot it is clear that as the value of k1is increased,the onset of synchronization occurs at a low value of ge.The results imply that,an autonomous chaotic system with linear feedback coupling will move to its natural oscillatory regime in the synchronized state by gaining or dissipating energy.If the system continues in the same state,then the change in total average energy will be zero due to the repeating nature of trajectories with arbitrarily close energy values.

    Fig.13.Average energy of electrically coupled HR model by varying the coupling strength:(a)k1=0.1 and(b)k1=0.5.

    The transition to the synchronized state is further confirmed by plotting the transverse Lyapunov exponents(TLE).[26].Figure 14(a)shows the variations of two of the largest TLEs with gefor k1=0.1.With increase in ge,the largest TLE(λ⊥1)also starts to increase,reaches a maximum,and then starts to decrease.λ⊥1crosses zero at ge=0.41 indicating a transition from desynchronized state to synchrony at this point.

    Fig.14.TLEs of electrically coupled HR model by varying the coupling strength:(a)k1=0.1 and(b)k1=0.5.

    Figure 14(b)shows the variations in TLEs for k1=0.5.Here λ⊥1crosses zero at a low value of ge(ge=0.37).These results are consistent with the average energy changes shown in Fig.13.

    5.2.Chemical coupling

    The equationsgoverning the dynamicsofchemically coupled HR neuron model with quadratic flux controlled memristor has the form,

    where

    The parameter gcis the coupling strength of synaptic junction and D describes the field coupling strength.Vs,the reversal potential is always greater than x for all neuron at all times.For each neuron to reach the threshold,we choose θ=-0.25,Vs=2,and λ=7.5.[33]

    The change in average energy with gcfor k1=0.1 is shown in Fig.15(a).From the plot it is clear that the fluctuating nature of average energy disappears at the point of synchronization.This occurs at gc=1.55.After that,the system shows an interesting behavior;i.e.,〈H〉linearly increases with increase in gc.

    Fig.15.Average energy of chemically coupled HR model by varying g c for(a)k1=0.1.The green,red,black,and blue lines in the inset plot shows the AD state obtained for g c=1.55,1.7,1.8,and 2,respectively.(b)Average energy variations for k1=0.2.The inset plot represents the time series of membrane potential corresponding to periodically oscillating(red)and AD(black)states.

    To unravel the reason for increase in〈H〉after gc=1.55,we have examined the time series of the system in the linearly increasing regime of 〈H〉.The results are shown in the inset plot of Fig.15(a).The ‘X’axis represents time and ‘Y’axis denotes the membrane potential.The plot verifies that,even though both neurons are synchronized(gc≥1.55),their membrane potential is in the amplitude death state(AD).The green,red,black and blue lines show the AD state which has been obtained for gc=1.55,1.7,1.8,and 2 respectively.As the value of gcis increased the value of membrane potential at which AD takes place also increases.Thus,in chemical synaptic coupling where the interaction terms do not go to zero permits a change in average energy in the synchronized state.We have further analyzed the effect of k1in regulating〈H〉.Figure 15(b)shows the 〈H〉variations for k1=0.2.For 0< gc≤ 0.55,〈H〉shows some fluctuations and this region corresponds to the desynchronized state.After that,〈H〉remainsconstantfor0.55<gc≤1.484 and linearly increasesfor 1.484<gc≤2.0.The time evolution of membrane potential corresponds to these two cases are shown in the inset plot of Fig.15(b).The periodically oscillating(red)time series is for the constant〈H〉regime,i.e.,in the synchronized state there occurs a transition to stable orbit and the total average energy change is zero due to the repeating nature of trajectories.The black line in the inset plot is the time evolution of membrane potential corresponding to the linearly increasing regime of〈H〉.Here also AD occurs at different points for different values of gcleading to a net average energy change.Thus it can be concluded that,an extra amount of energy is needed when a coupled system is forced to oscillate in different regions of the phase space where the average energy change is not zero.The extra demand of energy required for the collective dynamics is provided by the coupling mechanism.[34]In the central nervous system,some specialized structures are located at the postsynaptic sites for producing ATP molecules to balance the energy demands.[35]

    Fig.16.TLEs of chemically coupled HR model by varying the coupling strength:(a)k1=0.1 and(b)k1=0.2.

    The transition to the synchronized state isverified by plotting the TLEs.Figure 16(a)depicts the variations of two of the largest TLEs with chemical coupling strength for k1=0.1.The λ⊥1crosses zero at gc=1.55 corresponds to the synchronized state.For k1=0.2,this transition occurs at a low value of gc(gc=0.55),as shown in Fig.16(b).

    6.Results and conclusions

    We have analyzed the energy aspects of single and coupled HR neuron models with a quadratic flux controlled memristor.The bifurcation analysis of single system by increasing the value of I suggest that the response of the system in the presence of external stimuli can be improved by properly modulating the electromagnetic induction.Based on Helmholtz theorem the rate of change of Hamilton energy of HR model with memristor has been derived.It is found that the average Hamilton energy decreases with increase in I.The time evolution of membrane potential and the rate of change of energy function for different external stimuli have been analyzed.In the case of constant external current,the electrical mode of neuron changes with the external forcing and energy is consumed for generating each action potential.In the presence of periodic stimuli,the firing mode changes with the change in amplitude of external forcing.The energy consumption of bursting state with less number of spikes per burst is found to be low compared to burst with more number of spikes.The analysis of the system by applying Gaussian white noise reveals that,bursting mode changes with increase in noise intensity.The bifurcation analysis corresponding to periodic input shows the presence of intermittently occurring states with the variations in A.The bifurcation diagram in the presence of noise reveals that as the noise intensity is increased,the system shows complex chaotic dynamics.The dependence of Hamilton energy function on system parameters is used to control and stabilize chaotic trajectories by giving a negative energy feedback.The suppression of chaotic trajectories and the stabilization of phase space of the system for periodic input and noise are discussed.As the feedback gain in the energy function is increased,the initially positive LLE become negative which in turn ensure the stabilization of chaotic trajectories.

    In the case of electrically coupled neurons,as geis increased the〈H〉changes in a fluttering pattern and it stabilizes at the point of synchronization.The energy in the synchronized state returns to its initial uncoupled value due to the vanishing of coupling term in the synchronized state.This study has been repeated by increasing k1and found that for an increased value of k1the onset of synchronization occurs at a low value of ge.The average energy variations exhibit three important regions when the neurons are coupled via chemical synapse.The fluctuating region indicates desynchrony.In the region where the〈H〉remains constant,the system shows synchronization with periodically oscillating dynamicsand the total average energy change is zero due to the repeating nature of trajectories.In the linearly increasing regime,the dynamics are AD.As the value of gcis increased,the value of membrane potential at which the system stabilizes is also increased and leads to a net average energy change.We conclude that if two neurons are coupled and forced to oscillate,then their phase space may contain different oscillatory regimes.As a result,the change in average energy of the system will not be zero and an additional amount of energy is used to sustain the synchronized state.The proposed method will be useful to study the energy aspects of other coupled chaotic and hyperchaotic systems.Possible extensions to neural networks can providefiner insight to the energy modulation mechanism of various biological systems.

    Acknowledgments

    UK would like to acknowledge University Grants Commission,India for providing financial assistance through JRF scheme for doing the research work.PAS would like to acknowledge DST,India for their financial assistance through the FIST program.

    少妇人妻精品综合一区二区| 一区在线观看完整版| 男女免费视频国产| av网站免费在线观看视频| .国产精品久久| 久久国产精品大桥未久av | 夫妻性生交免费视频一级片| 肉色欧美久久久久久久蜜桃| 欧美日韩一区二区视频在线观看视频在线| 久久女婷五月综合色啪小说| 国产高清不卡午夜福利| 国产永久视频网站| 国产精品一区二区性色av| 一级毛片黄色毛片免费观看视频| 日本黄大片高清| 国产高潮美女av| 性高湖久久久久久久久免费观看| 国产在线视频一区二区| 亚洲av成人精品一区久久| 18禁动态无遮挡网站| 国产视频内射| 久久99热6这里只有精品| 婷婷色av中文字幕| 99热这里只有精品一区| 又爽又黄a免费视频| 国产 一区 欧美 日韩| 最近最新中文字幕大全电影3| 国产免费又黄又爽又色| 大又大粗又爽又黄少妇毛片口| 国产在线男女| 国产毛片在线视频| 大香蕉久久网| 日本免费在线观看一区| 18禁裸乳无遮挡动漫免费视频| 免费观看无遮挡的男女| 中文字幕亚洲精品专区| 久久久久国产网址| 搡女人真爽免费视频火全软件| 亚洲欧美日韩卡通动漫| 亚洲不卡免费看| 99re6热这里在线精品视频| 国产黄色免费在线视频| 深爱激情五月婷婷| a级毛色黄片| 在线播放无遮挡| 91午夜精品亚洲一区二区三区| 一边亲一边摸免费视频| 国产成人aa在线观看| 久久精品熟女亚洲av麻豆精品| av.在线天堂| 成人国产av品久久久| 欧美人与善性xxx| av在线观看视频网站免费| 男女国产视频网站| 国产无遮挡羞羞视频在线观看| 丝袜喷水一区| 国产精品久久久久久久电影| 中文精品一卡2卡3卡4更新| 美女cb高潮喷水在线观看| 97在线人人人人妻| 亚洲欧美一区二区三区黑人 | 午夜福利视频精品| 又黄又爽又刺激的免费视频.| 最近中文字幕2019免费版| 日日撸夜夜添| av女优亚洲男人天堂| 欧美一级a爱片免费观看看| 国产精品久久久久久久电影| 多毛熟女@视频| 国产精品一区www在线观看| 成年女人在线观看亚洲视频| 蜜臀久久99精品久久宅男| 亚洲精品国产色婷婷电影| 亚洲欧美日韩另类电影网站 | 亚洲精品乱久久久久久| 51国产日韩欧美| 久久久精品免费免费高清| 亚洲精品亚洲一区二区| 久久ye,这里只有精品| 少妇熟女欧美另类| 中文资源天堂在线| 99热国产这里只有精品6| 久久久久性生活片| 国产日韩欧美亚洲二区| 你懂的网址亚洲精品在线观看| av播播在线观看一区| 久久99精品国语久久久| 交换朋友夫妻互换小说| av在线老鸭窝| 精品久久久噜噜| 中文字幕久久专区| 欧美+日韩+精品| 国产淫语在线视频| 国产又色又爽无遮挡免| 一级爰片在线观看| 日韩一区二区视频免费看| 亚洲欧美成人精品一区二区| 99国产精品免费福利视频| 日韩,欧美,国产一区二区三区| 国产成人精品福利久久| 一个人看视频在线观看www免费| 五月开心婷婷网| 久久精品国产亚洲av涩爱| 成人亚洲欧美一区二区av| 亚洲精品日韩在线中文字幕| 99久久中文字幕三级久久日本| 国产精品欧美亚洲77777| 王馨瑶露胸无遮挡在线观看| 少妇人妻精品综合一区二区| 国产精品99久久久久久久久| 哪个播放器可以免费观看大片| 国产男女内射视频| 在线观看免费高清a一片| 亚洲精品日本国产第一区| 纯流量卡能插随身wifi吗| 一级爰片在线观看| 久久久久久久久久人人人人人人| 精品久久久久久久久亚洲| 中文精品一卡2卡3卡4更新| 久久午夜福利片| 韩国高清视频一区二区三区| 一级爰片在线观看| 女人久久www免费人成看片| av在线蜜桃| 免费人妻精品一区二区三区视频| 精品国产乱码久久久久久小说| 一本色道久久久久久精品综合| 深爱激情五月婷婷| 久久久色成人| .国产精品久久| 两个人的视频大全免费| 日本av免费视频播放| 少妇人妻 视频| 99热国产这里只有精品6| 高清av免费在线| 国产免费视频播放在线视频| 99热6这里只有精品| 国产v大片淫在线免费观看| 极品少妇高潮喷水抽搐| 久久久精品免费免费高清| 肉色欧美久久久久久久蜜桃| 精品久久久久久久久av| 毛片女人毛片| 欧美日本视频| 久久99热这里只有精品18| 一本一本综合久久| 亚洲久久久国产精品| 亚洲真实伦在线观看| 免费观看性生交大片5| 久久久久久久国产电影| av在线蜜桃| 亚洲av电影在线观看一区二区三区| 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| 一级二级三级毛片免费看| 久久久久久久大尺度免费视频| 波野结衣二区三区在线| 多毛熟女@视频| 国产69精品久久久久777片| 国产欧美亚洲国产| 国产成人精品婷婷| 久久99热6这里只有精品| 国产精品.久久久| 久久99热这里只有精品18| 高清欧美精品videossex| 男人添女人高潮全过程视频| 久久国产乱子免费精品| 大片免费播放器 马上看| tube8黄色片| 一个人看的www免费观看视频| 一本—道久久a久久精品蜜桃钙片| 国产淫片久久久久久久久| 另类亚洲欧美激情| 久久99热这里只有精品18| 91精品伊人久久大香线蕉| 国产无遮挡羞羞视频在线观看| 美女中出高潮动态图| 国产精品人妻久久久久久| 亚洲最大成人中文| 男的添女的下面高潮视频| 一级毛片 在线播放| 18禁在线播放成人免费| 乱系列少妇在线播放| 国产大屁股一区二区在线视频| 免费大片黄手机在线观看| 久久久午夜欧美精品| 中文精品一卡2卡3卡4更新| 我要看黄色一级片免费的| 麻豆乱淫一区二区| 日韩视频在线欧美| 欧美日韩一区二区视频在线观看视频在线| 少妇人妻 视频| 成人影院久久| 午夜老司机福利剧场| 熟女人妻精品中文字幕| 蜜桃久久精品国产亚洲av| 91狼人影院| av.在线天堂| 精品久久久久久电影网| 一级毛片久久久久久久久女| 国产老妇伦熟女老妇高清| 又黄又爽又刺激的免费视频.| 欧美日韩一区二区视频在线观看视频在线| 校园人妻丝袜中文字幕| 免费人成在线观看视频色| 只有这里有精品99| 中文乱码字字幕精品一区二区三区| 欧美激情国产日韩精品一区| 一级a做视频免费观看| 日本黄色片子视频| av.在线天堂| 国产高清国产精品国产三级 | 国产伦在线观看视频一区| 99精国产麻豆久久婷婷| 国产高潮美女av| 黑人高潮一二区| av国产久精品久网站免费入址| av线在线观看网站| 久久久久久久久久人人人人人人| 舔av片在线| 伊人久久国产一区二区| 欧美精品一区二区免费开放| 久久久久网色| 成人亚洲欧美一区二区av| 成人影院久久| 美女中出高潮动态图| 少妇被粗大猛烈的视频| 久久久久国产精品人妻一区二区| av福利片在线观看| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 久久久久久久久大av| 国产中年淑女户外野战色| 一个人看的www免费观看视频| 久久久精品94久久精品| 免费黄频网站在线观看国产| 国内揄拍国产精品人妻在线| 最近的中文字幕免费完整| 性高湖久久久久久久久免费观看| 国产精品三级大全| 99热这里只有是精品50| 免费播放大片免费观看视频在线观看| 天堂俺去俺来也www色官网| 日本-黄色视频高清免费观看| 黑人猛操日本美女一级片| 日日啪夜夜爽| 国产午夜精品久久久久久一区二区三区| 男男h啪啪无遮挡| 国产淫语在线视频| 日日撸夜夜添| 久久99热6这里只有精品| 午夜福利在线观看免费完整高清在| 亚洲自偷自拍三级| 欧美成人一区二区免费高清观看| 国产精品一二三区在线看| 欧美人与善性xxx| 精华霜和精华液先用哪个| 国产成人免费无遮挡视频| 免费黄网站久久成人精品| 久久这里有精品视频免费| 日本-黄色视频高清免费观看| 九九久久精品国产亚洲av麻豆| 亚洲成人手机| 久久久久久人妻| 中文字幕人妻熟人妻熟丝袜美| 一个人看视频在线观看www免费| 国产黄色免费在线视频| 男女国产视频网站| 亚洲人与动物交配视频| h视频一区二区三区| 22中文网久久字幕| 国产免费视频播放在线视频| 国产毛片在线视频| 亚洲精品国产成人久久av| 精品亚洲成国产av| 久久99热这里只有精品18| 国产视频内射| 边亲边吃奶的免费视频| 性色avwww在线观看| 亚洲性久久影院| 大码成人一级视频| 欧美成人午夜免费资源| 国产精品福利在线免费观看| 亚洲欧美日韩另类电影网站 | 在线观看国产h片| 99热这里只有是精品50| 十分钟在线观看高清视频www | 一二三四中文在线观看免费高清| 国产爽快片一区二区三区| 夫妻性生交免费视频一级片| 亚洲精品色激情综合| 成年人午夜在线观看视频| 欧美变态另类bdsm刘玥| 五月伊人婷婷丁香| 韩国av在线不卡| 永久网站在线| 日韩欧美精品免费久久| 免费大片黄手机在线观看| 久久久久人妻精品一区果冻| 日韩欧美一区视频在线观看 | 欧美日韩国产mv在线观看视频 | 美女cb高潮喷水在线观看| 色综合色国产| 啦啦啦视频在线资源免费观看| 久久毛片免费看一区二区三区| 一本色道久久久久久精品综合| 久久久久久人妻| 精品人妻视频免费看| 亚洲国产色片| av视频免费观看在线观看| 黄片无遮挡物在线观看| 我要看日韩黄色一级片| 99久久人妻综合| 国产免费一级a男人的天堂| 九色成人免费人妻av| 免费黄色在线免费观看| 免费看光身美女| 七月丁香在线播放| 99热6这里只有精品| 国产黄片美女视频| 啦啦啦在线观看免费高清www| 精品亚洲乱码少妇综合久久| 午夜福利网站1000一区二区三区| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 丰满乱子伦码专区| 国产欧美日韩一区二区三区在线 | 狂野欧美白嫩少妇大欣赏| 亚洲在久久综合| 少妇人妻久久综合中文| 一本一本综合久久| 欧美日本视频| 欧美日韩精品成人综合77777| 午夜激情福利司机影院| 久久久亚洲精品成人影院| 2021少妇久久久久久久久久久| 99精国产麻豆久久婷婷| 精品久久久精品久久久| 你懂的网址亚洲精品在线观看| 国产免费一区二区三区四区乱码| 亚洲成人av在线免费| 六月丁香七月| 亚洲av二区三区四区| 嫩草影院新地址| 在线播放无遮挡| 丰满乱子伦码专区| 97超碰精品成人国产| 亚洲国产欧美人成| 日韩欧美一区视频在线观看 | 国内精品宾馆在线| 亚洲av日韩在线播放| 亚洲色图综合在线观看| 国产又色又爽无遮挡免| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美日韩另类电影网站 | 美女cb高潮喷水在线观看| www.av在线官网国产| 激情 狠狠 欧美| 尤物成人国产欧美一区二区三区| 男的添女的下面高潮视频| 欧美性感艳星| 国产乱人偷精品视频| 日韩中字成人| 亚洲美女搞黄在线观看| 色婷婷av一区二区三区视频| 极品少妇高潮喷水抽搐| 亚州av有码| 新久久久久国产一级毛片| 亚洲欧美成人综合另类久久久| 国产v大片淫在线免费观看| 亚洲精品日韩av片在线观看| 欧美 日韩 精品 国产| 免费观看a级毛片全部| 啦啦啦啦在线视频资源| 欧美日韩视频精品一区| 国产精品久久久久久久久免| 久久精品久久久久久噜噜老黄| 纯流量卡能插随身wifi吗| 3wmmmm亚洲av在线观看| 狠狠精品人妻久久久久久综合| 免费观看a级毛片全部| 国产v大片淫在线免费观看| 日本午夜av视频| 女的被弄到高潮叫床怎么办| 少妇人妻 视频| av线在线观看网站| 97超视频在线观看视频| 亚洲第一av免费看| 国产精品欧美亚洲77777| 国产在线男女| 久久人人爽av亚洲精品天堂 | 男男h啪啪无遮挡| 日韩,欧美,国产一区二区三区| 麻豆国产97在线/欧美| 老熟女久久久| 日日啪夜夜撸| 好男人视频免费观看在线| 亚洲国产精品999| 一级二级三级毛片免费看| 欧美+日韩+精品| 91在线精品国自产拍蜜月| 亚洲性久久影院| 天美传媒精品一区二区| 欧美激情极品国产一区二区三区 | 肉色欧美久久久久久久蜜桃| av女优亚洲男人天堂| 精品人妻偷拍中文字幕| 99热全是精品| 五月伊人婷婷丁香| 日日啪夜夜爽| 久久人人爽人人爽人人片va| 国产精品人妻久久久久久| 欧美性感艳星| 黄色一级大片看看| 亚洲va在线va天堂va国产| 成年美女黄网站色视频大全免费 | 国产免费视频播放在线视频| 插逼视频在线观看| 国产精品久久久久久精品电影小说 | 精品午夜福利在线看| 青春草视频在线免费观看| 国产亚洲欧美精品永久| 国产大屁股一区二区在线视频| 最黄视频免费看| 欧美日韩视频精品一区| av卡一久久| 人妻一区二区av| 国产成人精品婷婷| 高清毛片免费看| av免费观看日本| 国产爽快片一区二区三区| 亚洲伊人久久精品综合| 大又大粗又爽又黄少妇毛片口| 欧美少妇被猛烈插入视频| 人人妻人人看人人澡| 天堂8中文在线网| 色综合色国产| 大香蕉97超碰在线| 中文字幕av成人在线电影| 性色av一级| 只有这里有精品99| 最近的中文字幕免费完整| 在线看a的网站| 又大又黄又爽视频免费| 成年美女黄网站色视频大全免费 | 亚洲国产成人一精品久久久| 自拍偷自拍亚洲精品老妇| 欧美xxxx性猛交bbbb| 免费观看在线日韩| 欧美成人一区二区免费高清观看| 三级经典国产精品| 亚洲av电影在线观看一区二区三区| 99久久精品一区二区三区| 18禁裸乳无遮挡动漫免费视频| 一本色道久久久久久精品综合| 久久久色成人| 汤姆久久久久久久影院中文字幕| 国产中年淑女户外野战色| 中文欧美无线码| 亚洲精品国产av蜜桃| 中国三级夫妇交换| 国产午夜精品一二区理论片| 最近中文字幕高清免费大全6| av福利片在线观看| 麻豆成人午夜福利视频| 久久久午夜欧美精品| 国产精品蜜桃在线观看| 国产成人免费观看mmmm| 蜜桃久久精品国产亚洲av| 日韩中字成人| 亚洲精品456在线播放app| 国产精品福利在线免费观看| 亚洲欧美一区二区三区国产| 免费观看在线日韩| 插阴视频在线观看视频| 边亲边吃奶的免费视频| 成人二区视频| 丰满人妻一区二区三区视频av| 联通29元200g的流量卡| 亚洲av电影在线观看一区二区三区| www.av在线官网国产| 最近手机中文字幕大全| 日日啪夜夜撸| 久久精品国产亚洲av天美| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美精品一区二区大全| 亚洲精品456在线播放app| 亚洲av.av天堂| 久久婷婷青草| 天美传媒精品一区二区| 日本免费在线观看一区| 青春草国产在线视频| 亚洲欧美成人综合另类久久久| 国产色婷婷99| 黄色怎么调成土黄色| 亚洲av二区三区四区| 亚洲国产色片| 观看av在线不卡| 国产一区有黄有色的免费视频| 噜噜噜噜噜久久久久久91| 女人久久www免费人成看片| av不卡在线播放| 精品人妻偷拍中文字幕| 日韩 亚洲 欧美在线| av网站免费在线观看视频| 亚洲国产色片| 亚洲av欧美aⅴ国产| 水蜜桃什么品种好| 亚洲精品亚洲一区二区| 狂野欧美白嫩少妇大欣赏| 边亲边吃奶的免费视频| 日韩亚洲欧美综合| 汤姆久久久久久久影院中文字幕| 亚洲av在线观看美女高潮| 一级片'在线观看视频| 中文资源天堂在线| 性色avwww在线观看| 婷婷色麻豆天堂久久| 老熟女久久久| 国产亚洲最大av| 国产成人精品福利久久| 亚洲国产精品成人久久小说| 少妇被粗大猛烈的视频| 精品视频人人做人人爽| 激情五月婷婷亚洲| 伦理电影大哥的女人| 亚洲国产色片| 26uuu在线亚洲综合色| 一级爰片在线观看| 校园人妻丝袜中文字幕| 大话2 男鬼变身卡| 亚洲精品中文字幕在线视频 | 成人特级av手机在线观看| 亚洲经典国产精华液单| 久久久久国产精品人妻一区二区| 日本wwww免费看| 欧美变态另类bdsm刘玥| 王馨瑶露胸无遮挡在线观看| 午夜日本视频在线| 成年av动漫网址| 国产精品欧美亚洲77777| 亚洲中文av在线| 在线 av 中文字幕| 五月伊人婷婷丁香| 久久婷婷青草| 天天躁日日操中文字幕| 亚洲精品自拍成人| 晚上一个人看的免费电影| 亚洲怡红院男人天堂| 精品亚洲成国产av| 国产亚洲91精品色在线| 成年女人在线观看亚洲视频| 日韩强制内射视频| 久久久久久久久久成人| av国产精品久久久久影院| 女人久久www免费人成看片| 欧美xxxx黑人xx丫x性爽| 永久免费av网站大全| 在线亚洲精品国产二区图片欧美 | 日本vs欧美在线观看视频 | 这个男人来自地球电影免费观看 | 日本黄色片子视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲无线观看免费| 日本欧美国产在线视频| 婷婷色综合大香蕉| 秋霞伦理黄片| 啦啦啦视频在线资源免费观看| 永久网站在线| 51国产日韩欧美| 亚洲熟女精品中文字幕| 极品教师在线视频| 一区二区av电影网| 国产亚洲av片在线观看秒播厂| 亚洲精品色激情综合| a级一级毛片免费在线观看| 国产成人a∨麻豆精品| 亚洲精品日韩在线中文字幕| 精品亚洲成国产av| 日本av手机在线免费观看| 纵有疾风起免费观看全集完整版| 熟妇人妻不卡中文字幕| 亚洲国产欧美人成| 成人亚洲欧美一区二区av| 国产69精品久久久久777片| 在线观看三级黄色| 性高湖久久久久久久久免费观看| 国产中年淑女户外野战色| 丰满人妻一区二区三区视频av| 十八禁网站网址无遮挡 | 99久久精品一区二区三区| 18禁在线无遮挡免费观看视频| av在线观看视频网站免费| 成人美女网站在线观看视频| 久久99热这里只频精品6学生| av在线蜜桃| 国产久久久一区二区三区| 91久久精品国产一区二区三区| 夫妻性生交免费视频一级片| 热re99久久精品国产66热6| 国产亚洲欧美精品永久| 亚洲成色77777| 久久久久性生活片| 国产男人的电影天堂91| h日本视频在线播放| 性高湖久久久久久久久免费观看| 国产人妻一区二区三区在| 草草在线视频免费看| 亚洲性久久影院| 丝袜脚勾引网站| 一级毛片 在线播放| 久久鲁丝午夜福利片| 精品人妻熟女av久视频| 成人国产av品久久久|