• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenidefiber?

    2019-02-25 07:22:50HuaChen陳華KeLunXia夏克倫ZiJunLiu劉自軍XunSiWang王訓(xùn)四XiangHuaZhang章向華YinShengXu許銀生andShiXunDai戴世勛
    Chinese Physics B 2019年2期
    關(guān)鍵詞:陳華

    Hua Chen(陳華),Ke-Lun Xia(夏克倫),Zi-Jun Liu(劉自軍),?,Xun-Si Wang(王訓(xùn)四),Xiang-Hua Zhang(章向華),Yin-Sheng Xu(許銀生) and Shi-Xun Dai(戴世勛)

    1 Laboratory of Infrared Materials and Devices,Advanced Technology Research Institute,Ningbo University,Ningbo 315211,China

    2 Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province,Ningbo 315211,China

    3 Laboratory of Glasses and Ceramics,UMR CNRS 6226,University of Rennes 1,Rennes Cedex 135042,France

    Keywords:mid-infrared fiber laser,chalcogenide glass fiber,rare earth doped glass fiber,laser modelling

    1.Introduction

    The broadband optical transmission of chalcogenide glasses in the infrared range offers a wide range of potential applications,such as biological and chemical sensing,nonlinear optics,or optical fibers.[1-5]Notably,selenium-based glasses transmit in the second(3μm-5μm)and third(8μm-12μm)atmospheric windows.Moreover,selenium glasses,as potential mid-IR laser media,have low phonon energy values and high refractive index values,which result in low probability of de-excitation due to multiphonon relaxation and high absorption/emission cross-section.[6-9]Since 1982,when Reisfeld first reported the spectral characteristics of Er3+-,Nd3+-,and Ho3+-doped Ga-La-S and Al-La-S glasses,many scholars have conducted research on the infrared emission of rare earth-doped chalcogenide glasses.[10]In the near-infrared case,some progress in fiber amplifiers and lasers has been made,including the Nd:1.08-μm continuous fiber laser output and the fiber optic amplification and the optical fiber ampli fication of Pr3+ions 1.34μm with a maximum internal gain of 6.8 dB at a pump power of 180 mW.[11,12]However,reports on the mid-infrared cases are mainly concentrated on the fluorescence of glasses and fibers.Studies at home and abroad have shown that although rare earth-doped chalcogenidefibers are the best gain medium for mid-infrared fiber lasers,many problems still remain unsolved,which limits their development and applications.The main problems that stop this technology include the difficulty in manufacturing high-purity rare earth-doped chalcogenidefibers and the self-terminating effect,which makes achieving population inversion difficult.

    The Ge-As-Ga-Se(GAGS)glass system has a low tendency to crystallize,high mechanical properties,and high solubility for rare-earth ions.Shiryaev et al.[13]provided a new vapor phase transport approach to purify and add the batch of metallic gallium into the silica glass reactor for the GAGS glass synthesis.The content of residual impurities of Se-H can be reduced to 0.023 cm-1.Among the rare-earth dopants,praseodymium is among best to exploit the generation of radiation with 3μm-5μm wavelength.However,the upperenergy level of Pr3+ion has a long lifetime,which results in a selfterminating effect and makes achieving population inversion difficult.The cascade lasing scheme is an effective solution to depopulate the(3F2,3H6)levels and significantly improve the 4.89-μm laser output power.[3,6,14]

    In this work,the cascade lasing approach was used to enhance efficiency and was numerically investigated.To obtain realistic results,the Ge10As24Ga4Se62-Pr0.1mol%(GAGSPr0.1mol%)glasses and fibers were prepared and measured for further calculation and analysis.The emission spectra of the fiber and glass under 2.0-μm laser excitation were then compared.The modeling parameters were directly extracted from the FTIR absorption measurements of the fabricated bulk glass samples using J-O theory and McCumber theory.[15-17]For the proposed laser structures,a numerical model of the threelevel fiber laser was developed with the Pr3+doping concentration of 0.1 mol%(4.5×1025ions/m3),and the dependence of laser performance on fiber length,pump power,doping concentration,and fiber losses were calculated.Moreover,the effect of the idler laser on the in fluence of the signal laser power wasdiscussed.Finally,to maximize the outputpower,the fiber laser structural parameters were optimized by using a particle swarm optimization(PSO)algorithm.

    2.Numerical model

    Figure 1 illustrates the fiber laser cavity composed of two suitable fiber Bragg gratings(FBGs)mirrors.In this model,fiber gratings trapped the idler light at~3.7μm to promote lasing at~4.89μm.The reflectivity of the input FBG2/1 for the idler R1and signal wavelength R3are all 0.95.The output reflectivity was 0.05 for the signal R4and 0.95 for the idler wavelength R2.

    Fig.1.Schematic illustration of the Pr3+-doped chalcogenidefiber laser cavity.

    Figure 2 illustrates the Pr3+ion leveldiagram by pumping at the wavelength of 2.04μm.Relevant transitions between the three lowest levels of Pr3+are spontaneous transitions and stimulated emission and absorption transitions between each pair of levels.The rare earth behavior can be modelled as a three-level laser system.

    Fig.2.Three-level model of praseodymium.The most important phenomena are represented(absorption and emission).

    Pump light at 2.04μm is coupled into the Pr3+chalcogenide glass fiber,where it promotes Pr3+ions to the(3F2,3H6)(level 3).Moreover,the3F2level will be transferred to the3H6level through non-radiative transitions quickly due to the multi-phonon relaxation,so that the3F2and3H6levels can be considered as one level.[18]Transition from this level to the3H5(level 2)occurs and is accompanied by fluorescence between 3.3μm and 4.5μm.Lasing at a wavelength within this range is obtained using two fiber Bragg gratings(FBG1)tuned to 3.7μm.Fluorescence from level 2 to the ground state3H4(level 1)occurs between 3.8μm and 5.7μm,and simultaneous lasing at a wavelength within this range is obtained using two additional fiber Bragg gratings(FBG2)tuned to 4.89μm.

    In steady state,the rate equations can be represented in the following matrix,which forms a set of three algebraic equations:

    The coefficients in the equations are as follows:C11=where τ3and τ2are the lifetime of levels 3 and 2,respectively,β32is the branching ratio of transition of levels 3 to 2,Niwith i=1,2,3 are the steady-state ion populations of the i-th Pr3+energy level.[19]

    The stimulated rates for the pump,signal,and idler are given by

    where x=p represents the pump,s represents the signal,and i represents the idler;Γxis the confinement factor;σijis the absorption or emission cross-section for the ij transition;and Pxdenotes the propagating signal and pump powers,respectively.A is the doping cross-section area,h is Planck’s constant,and c is the speed of light in free space.

    The laser power propagation equations are as follows:

    P(z)=P+(z)+P-(z)is the optical mode power(superscript‘+’represents the forward propagating beam and superscript‘-’represents the backward propagating beam).The coupled equations(1)-(3)were solved self-consistently using the coupled solution method.

    3.Experiment and calculation

    Fig.3.Absorption spectrum(a)and mid-infrared emission spectral(b)of the 0.1-mol%Pr3+:GAGS glass and fiber.

    Figure 3(a)shows the absorption spectra of 0.1-mol%Pr3+:Ge10As24Ga4Se62glasses. The absorption band at 2.94μm is assigned to O-H impurity vibrational absorption.The absorption band observed at 4.5μm is attributed to the ground state electronic absorption band3H5→3H4and also encompasses Se-H extrinsic impurity vibrational absorption.In the actual calculation,this should be reasonably deducted.Figure 3(b)shows the photoluminescence intensity of the 0.1-mol%Pr3+for bulk and fiber sample together to compare their band shapes.The fiber sample exhibits a greater proportion of its observed emission intensity at wavelengths>4800 nm compared with the bulk sample.This method is expected due to the longer path length of the fiber sample.For emission in the fiber,the shorter wavelength emission overlaps with the absorption from the ground state(3H5→3H4).Therefore,the shorterwavelength emission is self-absorbed and then re-emitted at longer wavelengths.The emission spectra were measured for the calculation of emission cross-sections.

    Table 1.Probable radiative electron transitions in Pr3+ions with corresponding wavelengths,spontaneous emission probabilities,A,branching rations β ,and the radiative lifetime τ.

    The J-O theory can quantitatively calculate the luminous intensity of rare earth ions in a certain precision.The number of spectral absorption bands that have been used in the J-O computations for Pr3+contains six peaks(Fig.3(a))centered at 1022,1478,1584,2039,2345,and 4890 nm.[20,21]To minimize the error,the measured FTIR spectra were corrected by extracting the baseline,each represented by atleast 50 selected points.This procedure yielded nine sets of J-O parameters.

    Table 2.Parameters used for simulations of Pr3+-doped chalcogenidefiber lasers.

    Radiative transition probabilities(A),branching ratios(β),and radiative lifetime(τ)of the excited states of Pr3+were calculated based on the J-O theory and are summarized in Table 1.Based on these data,the absorption cross sections for each wavelength were calculated,and the emission crosssections were determined from the measured emission spectra(Fig.3(b))and from the spontaneous radiative transition probabilities,A,by using the Füchtbaure-Ladenburg relation,which are all shown in Table 2.

    In this modeling,considering the feasibility of the laser’s design,the Pr3+concentration 4.5×1025ions/m3was selected. The GAGS fiber doped with 4.5×1025ions/m3of Pr3+allows to achieve a favorable compromise for easy implementation of fiber drawing,optical attenuation,and fluorescence.[22]The minimum background losses of the GAGS-Pr glass fibers are about 1 dB/m at 2μm and 4μm and 3 dB/m at 4.89μm.To avoid a deleterious nonlinear effect,the maximum pump power is set to 5 W.

    4.Results and discussions

    Figure 4 shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus fiber length L for different pump wavelengths.The dopant concentration NPr=4.5×1025ions/m3and mirror reflectivity(R3=0.95,R4=0.05)were fixed.Based on the experimental data,Pr3+has strong absorption bands at 1.55μm and 2.04μm,and the absorption cross-sections are 1.5×10-24m2and 2.32×10-24m2,respectively.In this study,the detailed calculation of the four-level mode forthe 1.55-μm pump was notexhibited.To improve the accuracy of the simulation,the fiber loss values are varied according to the wavelength.The results plotted for a fiber with a background loss of pump and idler wavelengths are 1 dB/m,and the signal wavelength is 3 dB/m.The energy efficiency is higher,and the optimal fiber length is shorter when pumped by 2.04μm.This result arises because the absorption crosssection at 2.04μm is larger than that at 1.55μm.Therefore,in a shorter fiber length,the power of the pump light is absorbed almost completely.In the future,we will further study the difference between the two pump lasers.

    Figure 5(a)shows the dependence of output power on the cavity length for different levels of fiber background loss.The maximum output signal power was 1.41 W for 1.28 m cavity length,with fiberloss of1 dB/m.For fiberloss fixed at3 dB/m,the maximum output signal power was reduced to 1.07 W for a fiber length of 0.97 m.A rapid decrease of the output power and the optimal fiber length Lmaxwas observed with the increase of fiber background loss.A bigger fiber background loss leads to faster pump power depletion and a reduced signal power and short optimal fiber length.To make a more comprehensive analysis of the proposed fiber laser,the in fluence of background loss on laser performance was investigated.Background loss is a limiting factor that hampers the possibility of achieving mid-IR laser action from selenide-doped fibers.Selenide glass possesses high optical absorption loss at wavelengthsaround 4.5μm due to Se-Hglassimpurities.However,the loss in this spectral region has recently been proven to be reduced to 1.6 dB/m in the host glass by using sophisticated glass purification techniques.[23]The calculated output power as a function of fiber background loss is presented in Fig.5(b).The mirror reflectivity(R3=0.95,R4=0.05)was fixed.The output power decreases from 1.33 W to 0.26 W as fiber loss increased from 1 dB/m to 9 dB/m.Output power above 300 mW is expected for a fiber loss<6 dB/m.Therefore,to obtain efficient laser operation,the fiber loss should be reduced below 6 dB/m.

    Fig.4.Calculated signal laser power(λs=4.89 μm)as a function of fiber length for different pump wavelengths.

    Figure 6(a)shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus length L for different levels of dopant concentration NPr.In the actual fiber laser design,to get a higher output power,a reasonable fiber length is dependent on the doping concentration.As the doping concentration increases,the optimum fiber length will be shorter,and the maximum output power will be higher.Figure 6(b)shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus dopant concentration NPrfor different input pump powers.The mirrors reflectivity(R3=0.95,R4=0.05)were fixed.From Fig.6(b),we can see that when the doping concentration of rare earth ions exceeds 4.5×1025ions/m3,the power enhancement is slow due to the limitation of the pump power.Furthermore,the increase in doping concentration causes the homopolar interaction to increase.Because of the concentration quenching in the emission glasses,we chose 4.5×1025ions/m3as the optimal concentration.

    Fig.5.Optical signal power P s of the Pr3+-doped fiber laser versus the fiber length L for different levels of fiber background loss(a).The signal output power as a function of input pump power for different fiber background losses(b).

    Fig.6.Optical signal power P s of the Pr3+-doped fiber laser versus fiber length L for different levels of dopant concentration(a).Optical signal power P s(L)of the Pr3+-doped fiber laser versus input pump power for different dopant concentrations(b).

    Figure 7(a)shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus output mirror reflectivity R4for different pump powers.The results are plotted for a fiber laser with a background loss of 1 dB/m at 2.04μm and 3.7μm and 3 dB/m at 4.89μm.Decreasing the output mirror reflectivity leads to increase in signal output power.The results presented in Fig.7(a)show that the highest output power can be achieved for an output mirror reflectivity of 0.05 at 4.89μm.Figure 7(b)shows the optical signal power Ps(L)of the Pr3+-doped fiber laser versus fiber length for the idler.Figure 7(a)shows that with the increase of R4,the output signal power monotonically decreased.According to Fig.7(b),the existence of idler can effectively improve the signal output power.This result is because the idler laser promotes the de-excitation of the level(3F2,3H6)faster.Furthermore,such structure promotes the reabsorption of the idler light and improves the cross-relaxation transition probability between(3F2,3H6)→3H5,and3H4→3H5in the Pr3+that can effectively enhance the signal power and energy efficiency.[24]This method will reduce the threshold and improve energy conversion efficiency.Therefore,in the actual research,we should consider reducing R4and increasing R2to increase the laser output power.

    Fig.7.Optical signal power P s(L)of the Pr3+-doped fiber laser versus output mirror reflectivity R4 for different pump powers(a).Calculated laser power as a function of fiber length(b).Two cases are considered:without idler and with idler.

    The output power of a fiber laser is affected by many parameters that improve the flexibility of the laser design while making the optimization of the laser output power difficult to accomplish by simple trial and error.In fact,the power of the laser is nonlinearly related to the output mirror reflectivity,fiber length,and dopant concentration.To overcome this problem,the Particle Swarm Optimization(PSO)[25,26]approach is employed to globally optimize the optical source.PSO is a computational method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality,which is a relatively recent heuristic inspired by the choreography of a bird flock.This solves the problem by having a population of candidate solutions,here dubbed particles,and moving these particles around in the search-space according to simple mathematical formulae over the particle’s position and velocity.Each particle’s movement is in fluenced by its local best known position and is also guided toward the best known positions in the search-space,which are updated as better positions are found by other particles.This is expected to move the swarm toward the best solutions.

    Figure 8(a)shows the effects of fiber length and laser output mirror reflectivity on the output of the laser.The input pump power is Pp(0)=5 W,the dopant concentration is NPr=4.50×1025ions/m3,and the mirrors reflectivity is R1=R2=R3=95%.It allows a quick identification of the best fiber laser configuration via a three-dimensional plot.

    Fig.8.Output power of the Pr3+-doped fiber laser versus laser cavity length L and output mirror reflectivity R4(a).Global best fitness value versus iteration(b).

    Figure 8(b)illustrates PSO fitness function(signal output power)versus the iteration number.After iteration for about 10 times,the maximum output power is obtained.The parameters used for optimization are the laser cavity length,output signal reflectivity R4,and dopant concentration NPr.The input pump power is Pp(0)=5 W,and the mirror reflectivity is R1=R2=R3=95%.The laser output reached 1.28 W,and the energy efficiency can reach 25%with background loss of 3 dB/m.The optimal parameters calculated by the particle swarm method are L=0.94 m,R4=0.02,and NPr=4.22×1025ions/m3.These results indicate that chalcogenide glass fiber doped with praseodymium is a good candidate for constructing an efficient fiber laser working in the mid-IR wavelength range.

    5.Conclusions

    In this paper,a GAGS glass fiber doped with Pr3+has been prepared and studied.We have systematically investigated the dependences of pump wavelengths,cascade structure,and fiber features,and also output mirror reflectivity on the laser’s performance.We have demonstrated that threelevel fiber lasing is feasible in Pr3+-doped GAGS glass fiber.We observed strong mid-IR emission in the range of 3.5μm-5.2μm and a lifetime of 14.24 ms for the3H5→3H4transition.These numerical simulations suggest that the proposed cascade lasing scheme will result in a highly efficient laser compared with a traditional single laser wavelength scheme.The output power function is optimized by the particle swarm optimization algorithm to obtain the maximum output power.Our simulations show that an output signal power of 1.28 W and energy efficiency of 25%at 4.89-μm wavelength can be achieved with Pp(0)=5 W,R1=R2=R3=95%,L=0.94 m,R4=0.02,NPr=4.22×1025ions/m3,with fiber loss at 3 dB/m.

    猜你喜歡
    陳華
    陳華莎、楊艷作品
    廳級(jí)“村官”愧疚成河:母親啊來生再伴您身旁
    水質(zhì)控制與節(jié)水一體化裝置在大榭石化的應(yīng)用
    陳華
    唱吧CEO陳華:你敢行動(dòng),成功就給你機(jī)會(huì)
    哲思(2017年11期)2018-01-23 18:27:56
    Retrieval of high-order susceptibilities of nonlinear metamaterials?
    沒有一只鳥死在覓食的路上
    北方人(2016年19期)2016-10-18 08:53:42
    沒有一只鳥死在覓食的路上
    北方人(2016年10期)2016-05-30 15:07:31
    廣東省人大常委會(huì)原副秘書長(zhǎng)陳華一被“雙開”
    沒有一只鳥會(huì)死在尋食的路上
    男女无遮挡免费网站观看| 久久久精品免费免费高清| 一个人看视频在线观看www免费| 天天躁夜夜躁狠狠久久av| 少妇人妻久久综合中文| 国精品久久久久久国模美| 一区二区三区免费毛片| 黄色怎么调成土黄色| 亚洲人成网站在线观看播放| 亚洲第一av免费看| 日日啪夜夜爽| 亚洲精品中文字幕在线视频| 欧美xxxx性猛交bbbb| 欧美 亚洲 国产 日韩一| 成年人午夜在线观看视频| 精品人妻熟女av久视频| 涩涩av久久男人的天堂| 日韩一区二区三区影片| 成人二区视频| 蜜桃久久精品国产亚洲av| 丝袜喷水一区| 国产淫语在线视频| 91精品三级在线观看| 大陆偷拍与自拍| 在线天堂最新版资源| 五月伊人婷婷丁香| 视频中文字幕在线观看| 国产精品久久久久久精品古装| 97超碰精品成人国产| 亚洲激情五月婷婷啪啪| 国产精品三级大全| 99热这里只有是精品在线观看| 午夜免费观看性视频| 天堂中文最新版在线下载| 日韩伦理黄色片| 天美传媒精品一区二区| 欧美丝袜亚洲另类| 日本黄色日本黄色录像| 国产一区二区在线观看av| 国产成人精品婷婷| 免费大片黄手机在线观看| 国产高清有码在线观看视频| 亚洲情色 制服丝袜| 人人澡人人妻人| 日日爽夜夜爽网站| 午夜91福利影院| 美女国产高潮福利片在线看| 人妻系列 视频| 精品99又大又爽又粗少妇毛片| 蜜桃久久精品国产亚洲av| 天天影视国产精品| 久久久精品免费免费高清| 人妻一区二区av| 伦理电影大哥的女人| 日本黄大片高清| av播播在线观看一区| 成人国语在线视频| 精品一区在线观看国产| 热re99久久精品国产66热6| 国产又色又爽无遮挡免| 汤姆久久久久久久影院中文字幕| 精品一区在线观看国产| 亚洲精品456在线播放app| 精品人妻熟女毛片av久久网站| 亚洲美女黄色视频免费看| 一级二级三级毛片免费看| 99热这里只有是精品在线观看| 国产毛片在线视频| 久久精品国产自在天天线| av国产精品久久久久影院| 一本大道久久a久久精品| 视频在线观看一区二区三区| 免费高清在线观看日韩| 日本-黄色视频高清免费观看| 精品国产一区二区三区久久久樱花| 肉色欧美久久久久久久蜜桃| 国产国拍精品亚洲av在线观看| 中文乱码字字幕精品一区二区三区| 在线观看一区二区三区激情| 天天躁夜夜躁狠狠久久av| www.色视频.com| 国产国拍精品亚洲av在线观看| 免费av中文字幕在线| 少妇被粗大猛烈的视频| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| 精品人妻在线不人妻| 国产免费一级a男人的天堂| 一本色道久久久久久精品综合| 99久久精品国产国产毛片| 日韩电影二区| 婷婷色麻豆天堂久久| 青春草亚洲视频在线观看| 国产亚洲一区二区精品| .国产精品久久| 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| 精品一区二区三卡| 国产黄频视频在线观看| 亚洲高清免费不卡视频| videos熟女内射| 三级国产精品欧美在线观看| 黄片播放在线免费| 国产乱人偷精品视频| 高清午夜精品一区二区三区| 一边亲一边摸免费视频| 一级黄片播放器| 国产精品99久久久久久久久| 精品国产乱码久久久久久小说| 国产成人a∨麻豆精品| 乱码一卡2卡4卡精品| av.在线天堂| 日本猛色少妇xxxxx猛交久久| 亚洲人与动物交配视频| 99国产精品免费福利视频| av福利片在线| 在现免费观看毛片| 日日摸夜夜添夜夜添av毛片| 精品一区二区免费观看| 美女国产高潮福利片在线看| 国产欧美亚洲国产| 一级片'在线观看视频| 午夜激情福利司机影院| 大香蕉久久网| 色吧在线观看| 国产精品国产三级国产专区5o| 在线精品无人区一区二区三| 中国三级夫妇交换| 人妻系列 视频| 免费大片黄手机在线观看| 亚洲综合色惰| a级毛色黄片| av有码第一页| 亚洲内射少妇av| 久久人人爽人人片av| 看免费成人av毛片| 黑人高潮一二区| 午夜91福利影院| 曰老女人黄片| 国产黄色免费在线视频| 天天躁夜夜躁狠狠久久av| 国产淫语在线视频| 久久精品熟女亚洲av麻豆精品| 免费高清在线观看日韩| 五月伊人婷婷丁香| 日韩强制内射视频| 黄色视频在线播放观看不卡| 999精品在线视频| 精品一品国产午夜福利视频| kizo精华| 免费观看a级毛片全部| 国模一区二区三区四区视频| 午夜免费观看性视频| 欧美精品一区二区免费开放| av不卡在线播放| 国产精品国产av在线观看| 国产精品一国产av| 在线 av 中文字幕| 成年人免费黄色播放视频| 少妇人妻 视频| 中文乱码字字幕精品一区二区三区| 尾随美女入室| 国产一区二区在线观看日韩| 最近手机中文字幕大全| 亚洲,欧美,日韩| 精品国产一区二区久久| 亚洲五月色婷婷综合| 久久鲁丝午夜福利片| 日日撸夜夜添| 欧美亚洲日本最大视频资源| 高清黄色对白视频在线免费看| 狂野欧美激情性xxxx在线观看| 精品99又大又爽又粗少妇毛片| 男女免费视频国产| 亚洲,一卡二卡三卡| 久久久国产欧美日韩av| 精品久久久久久久久亚洲| 亚洲综合精品二区| 97超碰精品成人国产| 日韩不卡一区二区三区视频在线| 最近的中文字幕免费完整| 亚洲,欧美,日韩| 我的女老师完整版在线观看| 婷婷色av中文字幕| 国产女主播在线喷水免费视频网站| 视频中文字幕在线观看| h视频一区二区三区| 一区二区三区精品91| 热re99久久国产66热| 夜夜爽夜夜爽视频| 亚洲国产av新网站| 少妇熟女欧美另类| 国产精品一区二区在线观看99| 一级片'在线观看视频| 嘟嘟电影网在线观看| 熟女电影av网| 亚洲欧美日韩卡通动漫| 欧美变态另类bdsm刘玥| 一本色道久久久久久精品综合| 日韩一区二区三区影片| 我的老师免费观看完整版| 天堂8中文在线网| 在线观看人妻少妇| 少妇丰满av| a 毛片基地| av有码第一页| 免费大片18禁| 成人午夜精彩视频在线观看| 桃花免费在线播放| 少妇熟女欧美另类| kizo精华| 高清午夜精品一区二区三区| 久久99热6这里只有精品| 麻豆乱淫一区二区| 亚洲欧美成人精品一区二区| 国产极品天堂在线| 日日摸夜夜添夜夜爱| 午夜福利视频在线观看免费| 婷婷色麻豆天堂久久| 91精品伊人久久大香线蕉| 久久狼人影院| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 日韩一区二区视频免费看| 日本av免费视频播放| av电影中文网址| 蜜桃在线观看..| 亚洲国产av影院在线观看| 大香蕉97超碰在线| 97超碰精品成人国产| 欧美日韩成人在线一区二区| 亚洲内射少妇av| 99热全是精品| 天天操日日干夜夜撸| 亚洲,一卡二卡三卡| 秋霞伦理黄片| 日日撸夜夜添| 亚洲美女搞黄在线观看| av播播在线观看一区| 一本一本综合久久| 亚洲av二区三区四区| 久久影院123| 一级爰片在线观看| 亚洲国产av影院在线观看| 久久精品国产亚洲网站| 久久热精品热| 亚洲av免费高清在线观看| 国产欧美亚洲国产| 午夜免费鲁丝| 亚洲精华国产精华液的使用体验| 一边亲一边摸免费视频| 亚洲精品一区蜜桃| av福利片在线| 嘟嘟电影网在线观看| 久久热精品热| 男人爽女人下面视频在线观看| 看十八女毛片水多多多| 日韩成人av中文字幕在线观看| 中文字幕久久专区| 国产成人免费观看mmmm| 老熟女久久久| 日韩中字成人| 热re99久久精品国产66热6| 亚洲精品aⅴ在线观看| 美女福利国产在线| 免费大片黄手机在线观看| 中文字幕最新亚洲高清| 精品一品国产午夜福利视频| 欧美精品国产亚洲| 在线观看一区二区三区激情| 最近最新中文字幕免费大全7| 国产一级毛片在线| 只有这里有精品99| 精品人妻熟女av久视频| 亚洲精品aⅴ在线观看| 成人无遮挡网站| 国产精品99久久久久久久久| av一本久久久久| 国产日韩欧美在线精品| 各种免费的搞黄视频| 国产爽快片一区二区三区| 国产黄色免费在线视频| 少妇 在线观看| 肉色欧美久久久久久久蜜桃| 久久韩国三级中文字幕| 国产精品一区二区三区四区免费观看| 久久青草综合色| 赤兔流量卡办理| 777米奇影视久久| 十八禁高潮呻吟视频| 国产熟女午夜一区二区三区 | 日韩在线高清观看一区二区三区| 有码 亚洲区| 丝袜喷水一区| 爱豆传媒免费全集在线观看| 少妇精品久久久久久久| 亚洲一级一片aⅴ在线观看| 三上悠亚av全集在线观看| 国产极品天堂在线| 麻豆精品久久久久久蜜桃| videossex国产| 国产毛片在线视频| 9色porny在线观看| 人妻一区二区av| 男女国产视频网站| 十八禁高潮呻吟视频| 女性生殖器流出的白浆| 国产色婷婷99| 中文字幕人妻丝袜制服| 亚洲天堂av无毛| 黄色怎么调成土黄色| 中文字幕久久专区| 日韩精品有码人妻一区| a 毛片基地| av有码第一页| 亚洲av男天堂| 女性被躁到高潮视频| 久久毛片免费看一区二区三区| 亚洲色图 男人天堂 中文字幕 | 国产黄频视频在线观看| 91精品国产国语对白视频| 久久久a久久爽久久v久久| 中文天堂在线官网| 成人影院久久| 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 九色成人免费人妻av| 麻豆精品久久久久久蜜桃| 国产白丝娇喘喷水9色精品| xxx大片免费视频| 少妇 在线观看| .国产精品久久| av一本久久久久| 国产爽快片一区二区三区| 欧美精品一区二区免费开放| 亚洲精品456在线播放app| 大香蕉久久成人网| 丰满饥渴人妻一区二区三| 成人毛片a级毛片在线播放| 99久久精品国产国产毛片| 色网站视频免费| 美女内射精品一级片tv| 国产成人精品在线电影| 国模一区二区三区四区视频| 全区人妻精品视频| 日本欧美国产在线视频| 天天操日日干夜夜撸| 亚洲精品日本国产第一区| 制服丝袜香蕉在线| 国产老妇伦熟女老妇高清| 日本免费在线观看一区| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区黑人 | 免费大片18禁| 色5月婷婷丁香| 一级二级三级毛片免费看| 欧美老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 国产午夜精品一二区理论片| 国产高清国产精品国产三级| 国产精品99久久久久久久久| 国产av国产精品国产| 在线精品无人区一区二区三| 高清不卡的av网站| 久久久久久久久久久免费av| 国产免费一区二区三区四区乱码| 一级毛片黄色毛片免费观看视频| 亚洲精品国产av成人精品| 夜夜看夜夜爽夜夜摸| 国产在视频线精品| 在线看a的网站| 老司机影院成人| 欧美xxⅹ黑人| 国产精品久久久久久精品电影小说| 高清黄色对白视频在线免费看| 国产片特级美女逼逼视频| 国产女主播在线喷水免费视频网站| 在线 av 中文字幕| 亚洲精品亚洲一区二区| 国产乱来视频区| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| 国产熟女午夜一区二区三区 | 五月玫瑰六月丁香| 精品视频人人做人人爽| 亚洲欧洲精品一区二区精品久久久 | 亚洲丝袜综合中文字幕| 久久ye,这里只有精品| 99久久精品一区二区三区| 激情五月婷婷亚洲| 两个人免费观看高清视频| 国产片内射在线| 国产精品不卡视频一区二区| 久久青草综合色| 亚洲中文av在线| 午夜福利视频精品| 肉色欧美久久久久久久蜜桃| 国产 精品1| a级毛片在线看网站| 欧美精品亚洲一区二区| 免费人妻精品一区二区三区视频| 亚洲精品456在线播放app| 成人毛片a级毛片在线播放| 一区二区三区免费毛片| 高清不卡的av网站| 亚洲av不卡在线观看| 免费观看av网站的网址| 综合色丁香网| 国产又色又爽无遮挡免| 欧美性感艳星| 亚洲中文av在线| 99久久综合免费| 大香蕉久久网| 夜夜骑夜夜射夜夜干| 高清黄色对白视频在线免费看| 九色亚洲精品在线播放| av播播在线观看一区| 亚洲av不卡在线观看| 亚洲国产av新网站| 夜夜爽夜夜爽视频| 久久影院123| 国产在线视频一区二区| 最后的刺客免费高清国语| 中文字幕人妻丝袜制服| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| 丝瓜视频免费看黄片| 久久久久久久久大av| 日本欧美视频一区| 亚洲欧洲精品一区二区精品久久久 | .国产精品久久| 国产亚洲精品久久久com| 午夜福利网站1000一区二区三区| 亚洲欧美日韩另类电影网站| 国产一区二区三区av在线| 三上悠亚av全集在线观看| 桃花免费在线播放| 久久久精品免费免费高清| 免费大片18禁| 久久国产精品大桥未久av| 亚洲av免费高清在线观看| a级毛片在线看网站| 妹子高潮喷水视频| 亚洲综合色惰| 久热这里只有精品99| 免费大片18禁| 黑丝袜美女国产一区| 女性被躁到高潮视频| 午夜日本视频在线| 午夜精品国产一区二区电影| 国产精品人妻久久久影院| 一区二区日韩欧美中文字幕 | 精品少妇内射三级| 永久网站在线| 建设人人有责人人尽责人人享有的| 久久精品国产自在天天线| 乱码一卡2卡4卡精品| 午夜久久久在线观看| 亚洲,欧美,日韩| 大片免费播放器 马上看| 日本黄大片高清| 一边摸一边做爽爽视频免费| 日韩不卡一区二区三区视频在线| 中文字幕久久专区| 天堂8中文在线网| 久久国产精品大桥未久av| 久久久久精品性色| 国产熟女午夜一区二区三区 | 搡老乐熟女国产| 不卡视频在线观看欧美| 亚洲综合精品二区| 亚洲精品久久久久久婷婷小说| 久热久热在线精品观看| 亚洲精品乱久久久久久| 亚洲欧美成人精品一区二区| 大片免费播放器 马上看| 国产成人精品无人区| 韩国高清视频一区二区三区| 日本vs欧美在线观看视频| 亚洲丝袜综合中文字幕| 91在线精品国自产拍蜜月| 你懂的网址亚洲精品在线观看| 少妇 在线观看| 日韩伦理黄色片| 只有这里有精品99| 乱人伦中国视频| 日本猛色少妇xxxxx猛交久久| 国产精品99久久久久久久久| 免费播放大片免费观看视频在线观看| 国产精品国产三级国产av玫瑰| 亚洲精品一区蜜桃| 极品人妻少妇av视频| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 亚洲少妇的诱惑av| 日本vs欧美在线观看视频| 女的被弄到高潮叫床怎么办| 男人操女人黄网站| 久久精品国产亚洲网站| 亚洲精品乱码久久久久久按摩| 亚洲国产精品成人久久小说| 色网站视频免费| 卡戴珊不雅视频在线播放| 不卡视频在线观看欧美| 狂野欧美激情性xxxx在线观看| 日韩一区二区视频免费看| 亚洲av男天堂| 亚洲av在线观看美女高潮| 免费观看a级毛片全部| 亚洲欧美日韩另类电影网站| 精品熟女少妇av免费看| 91精品国产国语对白视频| 国产精品人妻久久久久久| 十分钟在线观看高清视频www| 飞空精品影院首页| 边亲边吃奶的免费视频| 亚洲av免费高清在线观看| 免费高清在线观看日韩| 亚洲精品国产av成人精品| 男女边摸边吃奶| 纯流量卡能插随身wifi吗| 精品久久蜜臀av无| 尾随美女入室| 国模一区二区三区四区视频| 亚洲av中文av极速乱| 熟妇人妻不卡中文字幕| 精品久久国产蜜桃| 国产成人精品福利久久| a级毛片黄视频| 午夜av观看不卡| 亚洲少妇的诱惑av| 国产高清国产精品国产三级| 亚洲经典国产精华液单| 国产精品久久久久久精品电影小说| 亚洲精品日韩av片在线观看| av在线老鸭窝| 黑人欧美特级aaaaaa片| kizo精华| 天堂8中文在线网| 中国美白少妇内射xxxbb| 九色成人免费人妻av| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频 | 欧美人与性动交α欧美精品济南到 | 国产在线一区二区三区精| 免费播放大片免费观看视频在线观看| 欧美成人午夜免费资源| 亚洲美女视频黄频| 三上悠亚av全集在线观看| 日韩一本色道免费dvd| 秋霞在线观看毛片| 色婷婷av一区二区三区视频| 日日摸夜夜添夜夜添av毛片| av不卡在线播放| 免费观看a级毛片全部| 久久狼人影院| av卡一久久| 国产精品国产三级专区第一集| videos熟女内射| 国产综合精华液| 成年美女黄网站色视频大全免费 | 桃花免费在线播放| 国产精品99久久久久久久久| 在线 av 中文字幕| 国产国语露脸激情在线看| 国产精品国产av在线观看| 一区二区三区乱码不卡18| 日本av免费视频播放| 欧美97在线视频| 亚洲精品av麻豆狂野| 日韩一本色道免费dvd| 十八禁高潮呻吟视频| 免费大片18禁| 成人毛片60女人毛片免费| 欧美成人午夜免费资源| 中国国产av一级| 亚洲欧美一区二区三区黑人 | 欧美3d第一页| 2018国产大陆天天弄谢| 女性生殖器流出的白浆| 麻豆乱淫一区二区| 国产一区亚洲一区在线观看| 精品酒店卫生间| 国产成人aa在线观看| 久久久久久伊人网av| 人妻一区二区av| av女优亚洲男人天堂| 亚洲欧美成人综合另类久久久| 国产精品不卡视频一区二区| 日本欧美国产在线视频| 视频区图区小说| 日韩在线高清观看一区二区三区| av不卡在线播放| 国产国语露脸激情在线看| 在线播放无遮挡| 五月天丁香电影| 亚洲怡红院男人天堂| 国产精品99久久久久久久久| 欧美日韩av久久| 亚洲av男天堂| 人妻制服诱惑在线中文字幕| 午夜激情福利司机影院| 国产欧美另类精品又又久久亚洲欧美| 国产精品一区二区三区四区免费观看| 韩国av在线不卡| 亚洲精品乱久久久久久| 亚洲中文av在线| 天堂俺去俺来也www色官网| 大片电影免费在线观看免费| 亚洲人成77777在线视频| 人妻少妇偷人精品九色| 国产精品无大码| 老女人水多毛片| 国产片内射在线| 伊人久久精品亚洲午夜|