• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transition of photoconductive and photovoltaic operation modes in amorphous Ga2O3-based solar-blind detectors tuned by oxygen vacancies?

    2019-02-25 07:22:38YanFangZhang張彥芳XuanHuChen陳選虎YangXu徐陽(yáng)FangFangRen任芳芳ShuLinGu顧書(shū)林RongZhang張榮YouDouZheng鄭有炓andJianDongYe葉建東
    Chinese Physics B 2019年2期
    關(guān)鍵詞:書(shū)林

    Yan-Fang Zhang(張彥芳),Xuan-Hu Chen(陳選虎),Yang Xu(徐陽(yáng)),Fang-Fang Ren(任芳芳),3,Shu-Lin Gu(顧書(shū)林),3,Rong Zhang(張榮),3,You-Dou Zheng(鄭有炓),3,and Jian-Dong Ye(葉建東),3,?

    1 Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering,Nanjing University,Nanjing 210093,China

    2 Wuxi Institute of Technology,Wuxi 214121,China

    3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics,Nanjing University,Nanjing 210093,China

    Keywords:amorphous gallium oxide,solar-blind photodetector,photovoltaic,photoconductive

    1.Introduction

    Solar blind photodetectors find numerous applications in space communication,missile tracking, flame detection,ozone monitoring,and biological analysis.[1]As an ultra-wide bandgap semiconductor,Ga2O3is a promising candidate for solar-blind photodetectors due to its intrinsic solar-blindness with a desirable bandgap of about 4.8 eV.The advantages of a high breakdown field and a high resistance against radiation are expected to endow Ga2O3detectors with the strong capability to capture weak ultraviolet(UV)signals with low false alarm rates even operated in harsh environments.[2]To date,high performance β-Ga2O3based solar-blind photodetectors have been reported.[3-5]While most of them are based on β-Ga2O3bulk crystal,crystalline epilayers,or nanostructures which require high synthesis temperature and complicated processes,Cui et al.have recently reported a high-responsespeed solar blind photodetector on flexible substrates based on amorphous Ga2O3synthesized at room temperature.[6-8]Therefore,amorphous Ga2O3material has been proven as an alternative platform for delivering high performance solarblind detectors due to its unique advantages of thermal-budget synthesis on flexible substrates and easy fusion with modern high-speed integrated circuitry.[6]

    Since there is no sign of achieving p-type Ga2O3,the most attractive Ga2O3-based photodetectors are constructed in Schottky-barriermetal-semiconductor-metal(MSM)architectures because of their figure-of-merits including low dark current,low capacitance,intrinsic high speed,and fabrication simplicity.However,most of the present Ga2O3detectors exhibit high gains while sacrificing the response speed,because they are operated in a mixing of photoconductive and photovoltaic modes.[8,9]The photoconductive detectors could only ensure the maximum presence of the intrinsic feature of absorbing layers,while the response time even lasts several hours due to the contribution of persistent photoconductivity(PPC)effect induced by oxygen vacancies in oxide semiconductors.[10,11]In the ideal Schottky-barrier photovoltaic detectors,carrier transport can be effectively manipulated by the built-in field,leading to a high efficient separation and collection of excess carriers with a fast speed.However,self-trapped holes in the vicinity of metal-semiconductor(MS)interface were reported to reduce the carrier emission barrier from traps,yielding high internal gains and degrading response speeds.[12]Therefore,carrier transport across MS interface normally controls the operation modes while the quality of absorbing layer and interface predominantly determines the device performance.For amorphous Ga2O3synthesized at a low temperature,insufficient oxygen incorporation inevitably introduces oxygen vacancies within the absorbing layer and in the vicinity of MS interface.[6,13]The correlation of carrier transport,defect behaviors,operation modes,and performance of photodetectors needs further understanding,which is crucial to design high performance solar-blind Ga2O3photodetectors towards practical applications.

    In this work,we demonstrate the tunable conductivities of amorphous Ga2O3films by varying oxygen flux during the sputtering process,which consequently leads to the conversion of contact types and the transition of device operation modes.Interdigital MSM photoconductors with Ohmic contacts exhibit high internal gains but slow response speeds accompanied with an obvious sub-gap absorption,which results from the abundant deep-level traps and their associated PPC effect induced by oxygen vacancies.The oxygen incorporation effectively results in semi-insulating film and the resulting photovoltaic detector delivers superior performance with an ultralow dark leakage current,a high rejection ratio,suppressed sub-gap absorption,and a fast response speed.The correlation of carrier transport and device performance has also been discussed in details.

    2.Experimental section

    The 125-nm-thick Ga2O3thin films were deposited on sapphire(0001)substrate by radio frequency(RF)sputtering on a high purity(99.999%)Ga2O3ceramic target at room temperature(RT).During the growth,the RF power was maintained at 180 W with an argon flux of 40 sccm,and the growth pressure was 0.4 Pa.To distinguish the oxygen incorporation,two samples(denoted as S1 and S2)were grown without or with incorporating oxygen flux of 4 sccm,respectively,while other growth conditions were identical.Both the resultant films exhibit amorphous features with smooth surface morphology as determined by the x-ray diffraction patterns and atomic force microscopy(not shown here).Following standard lithography procedures,Ti/Au(40 nm/10 nm)metalstack was deposited using an e-beam evaporator to form MSM architectures,as shown in the inset of Fig.1(b),which consist of 25-pair fingers with 5 μm in width spaced by a 5-μm gap,and 440μm in length.

    Transmittance spectra were measured at room temperature using a PerkinElmer Lambda 950 system with a sapphire substrate as the reference.The current-voltage(I-V)characteristics were performed using a Keithley source meter model 2636 A in dark or under illumination of 254-nm light(Model ENF-240C/FE)with an incident power density of 0.5 mW/cm2.The spectral photoresponse was measured using a monochromator(model iHR320)equipped with a 300-W xenon-arc lamp as the opticalexcitation source and a low noise current preamplifier(model SR570)with the lock-in measurement technique(model SR830).The incident power density was calibrated by a Si reference photodiode.A 266-nm pulsed laser with a single pulse energy of 2μJ was employed as the excitation source for temporal response measurements,and a digital oscilloscope(TBS 1102)for data collection.

    3.Results and discussion

    The incorporation of oxygen flux is expected to tune the sub-gap states which can be reflected by the optical transmittance spectra as shown in Fig.1(a).In comparison,the sample S2 grown with oxygen flux exhibits steeper absorption edge with a high transmittance,while an obvious absorption shoulder in the spectral range of 280 nm-400 nm is observed for sample S1,indicating the presence of sub-gap states.The optical bandgap and distribution of sub-gap states can be described by using Tauc and Urbach rules.[14,15]Approximated absorption coefficient α can obtained in terms of exp(-αd)=T/(1-R),where d is the film thickness,and T and R represent the transmittance and reflectance components,respectively.As plotted in the inset of Fig.1(a),the dependence of()2on ?ν exhibits linear features and are well fitted by the Tauc relation offor direct semiconductors,where Egis the Tauc optical bandgap,is photon energy,and A2is the slope of absorption edges.[14]As summarized in Table 1,the optical bandgap is estimated to be 4.90 eV,in agreement with the reported value for the amorphous Ga2O3films.It is noted that the optical bandgap has no obvious change but a pronounced suppression of Urbach tail absorption below the bandgap is observed for sample S2 in the inset of Fig.1(a),indicating the reduction of sub-gap states with the incorporation of oxygen flux.It is well accepted that oxygen vacancies are the most dominant intrinsic defects,which are abundant and introduce broad band tails below the conduction band of amorphous and crystalline oxides if grown with insufficient oxygen incorporation.

    Table 1.The summary of the amorphous Ga2O3 photodetectors performance.

    The variation ofsub-gap states below the conduction band also tunes the conductivities of the resultant films.Figure 1(b)shows the current-voltage(I-V)characteristics in dark condition.Without oxygen flux during the growth,the I-V curve shows a linear feature,indicating Ohmic contact of Ti/Au on the conductive Ga2O3layer,and the dark current at a bias of 5 V reaches 16.3μA.In contrast,an obvious rectifying behavior for back-to-back Schottky contacts with a very low dark current less than 1 pA is observed from the I-V characteristics of the sample S2.The asymmetric rectifying behavior is attributed to the inhomogeneous Schottky barriers.The conversion of metal-semiconductor contacts results from the conductivity variation of as-grown Ga2O3films tuned effectively by oxygen incorporation.It is well understood that insuf ficient oxygen incorporation will lead to the abundant oxygen vacancies distributed within the film,which will directly or indirectly donate electrons as donors and modify the conductivity.To understand the in fluence of oxygen vacancies on the carrier transport mechanisms,the schematic energy band diagrams of Ti/Ga2O3interface with Ohmic and Schottky types are shown in Figs.1(c)and 1(d),respectively.For conductive Ga2O3film,despite of the presence of Schottky barrier between Ti/Au and Ga2O3,the Fermi level of amorphous Ga2O3is pinned close to the energy levels of charged oxygen vacancies(),which is near the bottom of the conduction band.[16]Consequently,the barrier width becomes quite narrow,which allows easy passage of carrier via tunneling and thereby results in a good ohmic characteristic.Furthermore,as shown in Fig.1(c),traps under conduction band near the MS interface are also abundant and hence trap-assisted tunneling(TAT)wil also be promoted to increase the reverse current.[17]Oxygen flux incorporation effectively suppresses the formation of oxygen vacancies and donor-like surface traps,resulting in semi-insulating feature of the film and the reduction of interface states near the M-S contacts.In this case,the space charge region is broad enough to suppress the field-emission tunneling or trap-assisted tunneling processes,as shown in Fig.1(d).Thus,a very low dark current is expected in the back-to-back Schottky junction together with a high resistive Ga2O3layer in series.Apart from the injection-limited conduction mechanism,the bulk-limited conduction mechanism such as Ohmic conduction should also be taken into account to describe such low reverse current in the high resistive sample S2.[18]

    The conversion of metal contacts to the amorphous Ga2O3layer gives rise to the resultant MSM photodetectors working in different operation modes with different photoresponsivity performance.Figure 2(a)shows the semi-log I-V plots of the photodetector in dark condition and under illumination of 254 nm deep ultraviolet(DUV)light.With oxygen incorporation,both dark current and photocurrent components decrease in 109and 104of magnitudes,respectively,mainly limited by the back-to-back Schottky contacts.As a result,a high photocurrent/dark ratio of 105is achieved,which demonstrates that low background noise with ultralow dark current will enhance the capability to detect weak UV signals.Figures 2(b)and 2(c)show the spectral dependence of absorption coefficient and photoresponsivity of photodetectors biased at 5 V,respectively,plotted in a semi-log scale.The difference in spectral photoresponse characteristics is attributed to the detectors working in photoconductive and photovoltaic modes for samples S1 and S2,respectively.The sample S1 has a peak responsivity of 55.5 A/W at 5.64 eV,yielding a high productofexternalquantum efficiencyηextand internalgain G of 313.[19]For the photoconductor S1,a rather low rejection ratio is obtained accompanied with a distinct and broad response tail down to 4.0 eV,which is very similar to the shape of sub-gap absorption in the absorption coefficient spectrum in Fig.2(b).The sub-gap absorption is known as the Urbach tail and follows an exponential dependence versus energy with a characteristic energy Eu,which depicts the density of states below the bandgap.Both the absorption coefficient and photoresponse below bandgap can be well described by similar relations ofandrespectively.[14,20]The Urbach tail states are originated from defects with their energy level close to the conduction band,and in this work,oxygen vacancies and gallium interstitials are the most possible candidates.It has been widely reported that donor like oxygen vacancies in the absorbing layer captures the excess photogenerated carriers under illumination,leading to serious PPC effect and yielding a high photoconductive gain.[6,10,11]

    Fig.2.(a)Semi-log scaled I-V characteristics of detectors in dark condition and under illumination of 254 nm DUV light;(b)semi-log plots of absorption coefficients α versus hν;(c)semi-log plots of photoresponse versus hν for samples S1 and S2 measured at room temperature with a biase of 5 V.

    In comparison,a peak responsivity of 0.065 A/W at 5.17 eV with a corresponding ηextG ≈ 50%is achieved for sample S2 with a sharp cutoff edge near the energy gap,and a high ultraviolet C(UVC)-to-ultraviolet A(UVA)rejection of about 103with suppressed sub-gap absorption.It is a sign that the sample S2 is operated in the typical photovoltaic mode with its ideal maximum internal gain to be unity,in which,excess electron-hole pairs generated in the depletion region are separated and driven by the built-in field,mainly contributing to the photocurrent.The thermal-noise-limited detectivity D?,a figure of merit used to characterize the smallest detectable signal,is determined to be 1.14×1012cm·Hz1/2·W-1and 9.82 × 1012cm·Hz1/2·W-1for samples S1 and S2 biased at 5 V,respectively,in terms of the relation of D?=RA1/2/(2qId)1/2,where R is the peak responsivity,A is the effective illumination area,q is the electronic charge,and Idis the dark current at the applied bias.[1,21]It can easily come to the conclusion that the photovoltaic detector with tremendous reduction of defects by oxygen incorporation demonstrates superior device performance as summarized in Table 1.Another interesting feature is that both response spectra are composed of two bands located at 5.64 eV and 5.17 eV as shown in Fig.3(a),which are consistent with the energy positions for the maximum of absorption coefficient in Fig.2(b)and the Tauc optical bandgap,respectively.It may be understood in the framework of valance band structure of Ga2O3that is mainly determined by oxygen 2p states.[2,22]Especially for the amorphous materials,the disorders lead to the relaxation of selection rules that are only valid for the transitions at the Γ point in single crystalline materials.As a matter of fact,the optical transitions are not restricted at Γ point but are allowed in the whole Brillouin zone,and thus,transitions from deeper valance sub-bands to the conduction bands are dominant in sample S1,leading to the blue-shift of peak responsivity.

    Fig.3.(a)Frequency-dependent photoresponsivity spectra under the bias of 5 V;(b)the dependence of peak responsivity on the chopping frequency and the fitting of effective lifetime of excess carriers in samples S1 and S2;(c)temporal response characteristics of the photodetectors illuminated by a 266-nm pulse laser at 5-V bias and the fitting plots by a stretched exponential function.

    The devices operated in photoconductive and photovoltaic modes are also expected to have different transient photoresponse characteristics.Figure 3(a)shows the spectral photoresponsivity of devices recorded at different chopper frequencies.Apparently,as the chopping frequencies increase,the magnitude of peak responsivity for sample S1 decreases much quicker with respect to that of sample S2.The dependence of peak responsivity on the modulation frequency is extracted in Fig.3(b).The effective lifetime of excess carriers can be determined by the relation of R=Aτeff/?1+ω2τeff?1/2,where A is the function of intrinsic carrier concentration,quantum efficiency,detection wavelength,and applied bias.[1]The good fitting to the solid experimental points in Fig.3(b)gives rise to a carrier lifetime of 23 ms and 2.3 ms for samples S1 and S2,respectively.Finally,the temporal photoresponse was measured with 5-V bias under illumination of a 266-nm pulsed laser.The decay curves can be well described by a stretched exponential function of,where τ is the response decay time,andβ isthe stretching parameterbounded between 0 and 1.[23]The variation of β from unity is a measure for the degree of disorder in the material and has been widely used to describe the decay processes involved in the localized centers such as InGaN,[24]II-VI quantum dots,[25]and porous Si.[26]The good fitting in Fig.3(c)gives rise to the decay times of 769.4 μs and 243.9 μs as well as the β values of 0.67 and 1.0 for samples S1 and S2,respectively.The increased β value in S2,together with sharp edges of absorption and photoresponse,indicates the decreased trap densities by oxygen incorporation.It is noted that the extracted decay time in Fig.3(c)is much shorter than the response time determined by chopper-modulated Xe-lamp light due to its low incident light power.The excitation-dependent response could be attributed to the redistribution of the excess carriers with increased excitation level,which are also observed in the photoconductive detectors fabricated from wide bandgap materials.[21]Nevertheless,the different photoresponse characteristics of two devices operated at different modes are strongly linked to the carrier transport mechanisms,including electron-hole generation,trapping,and recombination.It is expected that the transport time of excess carriers driven by built-in field in the depletion region for the photovoltaic detector is much shorter than the transition time of carriers between two interdigital fingers of photoconductors.In particular,with the presence of abundant oxygen vacancies,trapping of photogenerated holes slows the recombination process and thus leads to long decay time.Oxygen incorporation in the growth process is essential to reduce deep-level traps,and therefore the photogenerated electrons and holes undergo a rapid separation and combination process,promoting a fast response recovery.To improve the photodetector performance,some further strategies are required,including improving the carrier mobility to reduce the carrier transit time,[1]reducing the deeplevel trapping of minority carriers to suppress the persistentphotoconductivity effect,[27]surface passivation to reduce surface recombination,[28]or inducing additional built-in field by using novel designs of heterostructure[5,29]or three-terminal phototransistors.[30]

    4.Conclusions

    In conclusion,an Ohmic-type phtoconductive and a Schottky-type photovoltaic photodetectors based on amor-phous Ga2O3film have been fabricated by tuning the oxygen flux during the sputtering process.The conversion of contact types and the operation mode transition of photodetectors are attributed to the variation of oxygen vacancy concentration in Ga2O3films.Oxygen incorporation tremendously reduces the oxygen vacancies within the absorbing layer and interface states at the metal-semiconductor contacts,which suppresses the sub-bandgap absorption and persistent photoconduction effect.Consequently,the Schottky photovoltaic detector shows superior performance with an ultra-low dark current at pA level,a high detectivity of 9.82×1012cm·Hz1/2·W-1,a fast response time of 243.9μs,and a high UVC-to-UVA rejection ratio of 103.The results provide a paradigm for the realization of high performance and cost-effective amorphous Ga2O3based solar blind photodetectors with broad applications.

    Acknowledgment

    We would like to thank Prof.Yi Yang and A/Prof.Dongming Tang to provide the sputtering system for the synthesis of Ga2O3materials.

    猜你喜歡
    書(shū)林
    Effects of oxygen/nitrogen co-incorporation on regulation of growth and properties of boron-doped diamond films
    Effect of oxygen on regulation of properties of moderately boron-doped diamond films
    Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
    大西北兒女
    心跟祖國(guó)在一起
    歌海(2020年5期)2020-11-16 06:04:02
    最美的風(fēng)景
    ——江蘇邳州老年大學(xué)校歌
    中國(guó)舊書(shū)店訪書(shū)舉隅——見(jiàn)于《書(shū)林掇英——魏隱儒古籍版本知見(jiàn)錄》
    天一閣文叢(2019年0期)2019-11-25 01:31:54
    鄔書(shū)林:如何推進(jìn)教育出版高質(zhì)量發(fā)展
    商周刊(2019年18期)2019-10-12 08:51:28
    構(gòu)建黨的建設(shè)制度改革運(yùn)行機(jī)制
    理論探索(2014年5期)2014-04-29 00:44:03
    書(shū)林穿梭
    熟女少妇亚洲综合色aaa.| 国产免费av片在线观看野外av| 高清欧美精品videossex| 精品欧美一区二区三区在线| 在线看a的网站| 成年动漫av网址| 日韩欧美国产一区二区入口| 亚洲欧美一区二区三区久久| 中出人妻视频一区二区| 最近最新免费中文字幕在线| 午夜免费观看网址| 老熟女久久久| 欧美成人午夜精品| 久久精品亚洲熟妇少妇任你| 欧美国产精品va在线观看不卡| 久久国产精品人妻蜜桃| 老司机午夜福利在线观看视频| 国产极品粉嫩免费观看在线| 久久亚洲真实| 中文字幕另类日韩欧美亚洲嫩草| 在线观看舔阴道视频| 欧美日韩一级在线毛片| 在线观看午夜福利视频| 丝袜美腿诱惑在线| 亚洲成人国产一区在线观看| 日韩成人在线观看一区二区三区| 国产无遮挡羞羞视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩高清在线视频| 国产成人欧美在线观看 | 午夜精品在线福利| 国产亚洲精品久久久久5区| 免费在线观看完整版高清| 高清欧美精品videossex| 欧美一级毛片孕妇| 免费观看人在逋| 啦啦啦 在线观看视频| 国产精品免费一区二区三区在线 | 国产一卡二卡三卡精品| 婷婷精品国产亚洲av在线 | 老司机亚洲免费影院| 国产高清videossex| 亚洲一码二码三码区别大吗| 如日韩欧美国产精品一区二区三区| 人妻一区二区av| 日本黄色视频三级网站网址 | 久久久精品免费免费高清| 好男人电影高清在线观看| 成年版毛片免费区| 午夜福利影视在线免费观看| 免费久久久久久久精品成人欧美视频| 国产成人一区二区三区免费视频网站| 欧美亚洲 丝袜 人妻 在线| 美女高潮喷水抽搐中文字幕| 欧美精品高潮呻吟av久久| 亚洲欧美激情在线| 老司机深夜福利视频在线观看| 好看av亚洲va欧美ⅴa在| xxx96com| 夫妻午夜视频| 最新在线观看一区二区三区| 久久性视频一级片| 在线看a的网站| 亚洲av日韩精品久久久久久密| 亚洲熟妇中文字幕五十中出 | 亚洲专区国产一区二区| 精品久久久精品久久久| 国产精品免费大片| 国产成人免费观看mmmm| 亚洲人成电影观看| 最近最新中文字幕大全免费视频| 欧美日韩中文字幕国产精品一区二区三区 | 三级毛片av免费| 狠狠狠狠99中文字幕| 极品教师在线免费播放| 五月开心婷婷网| 久热这里只有精品99| 婷婷精品国产亚洲av在线 | 免费女性裸体啪啪无遮挡网站| 久久中文看片网| 一级a爱片免费观看的视频| 99久久人妻综合| 在线观看www视频免费| 国产精品亚洲一级av第二区| 建设人人有责人人尽责人人享有的| 看黄色毛片网站| 免费观看精品视频网站| 国内久久婷婷六月综合欲色啪| 黄片大片在线免费观看| 在线观看午夜福利视频| 久久亚洲真实| 亚洲黑人精品在线| 亚洲av欧美aⅴ国产| 国产精品av久久久久免费| 久久久国产精品麻豆| 午夜亚洲福利在线播放| 丝袜人妻中文字幕| 亚洲性夜色夜夜综合| 女人久久www免费人成看片| 亚洲久久久国产精品| 深夜精品福利| 日韩欧美三级三区| 国产精品久久久人人做人人爽| 看黄色毛片网站| 国产1区2区3区精品| 一区二区三区国产精品乱码| 亚洲国产欧美网| 午夜日韩欧美国产| 久久热在线av| 一级毛片高清免费大全| 看片在线看免费视频| 日日夜夜操网爽| 久久人妻av系列| 伦理电影免费视频| 黄片播放在线免费| 黄片播放在线免费| 窝窝影院91人妻| 人人妻人人添人人爽欧美一区卜| 正在播放国产对白刺激| 亚洲欧洲精品一区二区精品久久久| 国产精品永久免费网站| 两个人看的免费小视频| 黑人猛操日本美女一级片| 黄色a级毛片大全视频| 久久青草综合色| 午夜免费鲁丝| 韩国av一区二区三区四区| 免费在线观看日本一区| 亚洲av成人一区二区三| 国产精品国产高清国产av | 色94色欧美一区二区| 国产男女超爽视频在线观看| 亚洲精品中文字幕一二三四区| 最新的欧美精品一区二区| 黄色片一级片一级黄色片| 久久久久久亚洲精品国产蜜桃av| 成人三级做爰电影| 欧美大码av| 欧美最黄视频在线播放免费 | 如日韩欧美国产精品一区二区三区| 嫁个100分男人电影在线观看| 两性夫妻黄色片| av片东京热男人的天堂| 搡老乐熟女国产| 欧美日韩国产mv在线观看视频| 国产精品99久久99久久久不卡| 身体一侧抽搐| 搡老岳熟女国产| 成年人免费黄色播放视频| 久久久国产精品麻豆| 亚洲精华国产精华精| 日本wwww免费看| 国产精品久久电影中文字幕 | 曰老女人黄片| 国产亚洲av高清不卡| www.自偷自拍.com| 啦啦啦免费观看视频1| 少妇被粗大的猛进出69影院| videosex国产| 交换朋友夫妻互换小说| 两性夫妻黄色片| 女人被狂操c到高潮| 日韩欧美在线二视频 | 欧美激情极品国产一区二区三区| а√天堂www在线а√下载 | 水蜜桃什么品种好| 国产成人欧美| 美女午夜性视频免费| 亚洲成av片中文字幕在线观看| 大陆偷拍与自拍| 亚洲人成电影观看| av片东京热男人的天堂| 亚洲精品国产一区二区精华液| 中文字幕av电影在线播放| 757午夜福利合集在线观看| 中文亚洲av片在线观看爽 | 又大又爽又粗| 久久久精品国产亚洲av高清涩受| 一级片'在线观看视频| 脱女人内裤的视频| 成年人午夜在线观看视频| 午夜精品国产一区二区电影| av视频免费观看在线观看| 国产免费现黄频在线看| 极品教师在线免费播放| 中亚洲国语对白在线视频| 免费观看a级毛片全部| 亚洲免费av在线视频| 亚洲欧美激情综合另类| 久久久久久亚洲精品国产蜜桃av| 欧美成人免费av一区二区三区 | 欧美性长视频在线观看| 建设人人有责人人尽责人人享有的| 国产日韩欧美亚洲二区| 午夜福利一区二区在线看| 欧美日韩亚洲综合一区二区三区_| 桃红色精品国产亚洲av| 多毛熟女@视频| 午夜久久久在线观看| 国产1区2区3区精品| 午夜两性在线视频| 啦啦啦免费观看视频1| 中文字幕人妻丝袜一区二区| 国产有黄有色有爽视频| 嫁个100分男人电影在线观看| 久久精品国产亚洲av香蕉五月 | 精品久久蜜臀av无| 日日摸夜夜添夜夜添小说| 高清欧美精品videossex| 午夜视频精品福利| 一进一出好大好爽视频| 国产男女超爽视频在线观看| 欧美人与性动交α欧美精品济南到| 91麻豆av在线| 在线观看免费高清a一片| 亚洲精品成人av观看孕妇| 国产一区有黄有色的免费视频| 天堂√8在线中文| 日韩人妻精品一区2区三区| 欧美丝袜亚洲另类 | 亚洲七黄色美女视频| 欧美精品一区二区免费开放| 黑人猛操日本美女一级片| netflix在线观看网站| 老汉色∧v一级毛片| avwww免费| 久久中文字幕一级| 国产欧美日韩综合在线一区二区| 亚洲精品国产色婷婷电影| 手机成人av网站| 国产日韩欧美亚洲二区| 天堂√8在线中文| 久久精品成人免费网站| 婷婷丁香在线五月| netflix在线观看网站| 亚洲全国av大片| 18禁国产床啪视频网站| 亚洲aⅴ乱码一区二区在线播放 | 婷婷精品国产亚洲av在线 | 中文字幕色久视频| 日日爽夜夜爽网站| 每晚都被弄得嗷嗷叫到高潮| 午夜福利一区二区在线看| 亚洲黑人精品在线| 婷婷丁香在线五月| 韩国av一区二区三区四区| 欧美日韩亚洲高清精品| 精品国产美女av久久久久小说| 少妇裸体淫交视频免费看高清 | 久久 成人 亚洲| 9热在线视频观看99| 乱人伦中国视频| 国产精品九九99| 欧美日韩视频精品一区| 久久影院123| 精品少妇一区二区三区视频日本电影| 国产成人系列免费观看| 天天添夜夜摸| 国产成人av教育| 国产精品电影一区二区三区 | 天天操日日干夜夜撸| 中出人妻视频一区二区| 欧美精品啪啪一区二区三区| 国产野战对白在线观看| 国内毛片毛片毛片毛片毛片| 精品无人区乱码1区二区| 99国产精品99久久久久| 精品电影一区二区在线| 天堂√8在线中文| 久9热在线精品视频| 精品第一国产精品| 久久久精品区二区三区| 一进一出好大好爽视频| 精品福利永久在线观看| 99久久综合精品五月天人人| 男男h啪啪无遮挡| 丝瓜视频免费看黄片| 欧美日韩中文字幕国产精品一区二区三区 | 80岁老熟妇乱子伦牲交| 狠狠狠狠99中文字幕| 午夜久久久在线观看| 一边摸一边抽搐一进一出视频| 国产精品久久久av美女十八| 国产一区二区三区在线臀色熟女 | 久久性视频一级片| av天堂久久9| 侵犯人妻中文字幕一二三四区| 在线观看一区二区三区激情| 丝袜美腿诱惑在线| 国产亚洲欧美98| 亚洲国产欧美网| 村上凉子中文字幕在线| 久久中文字幕一级| 精品无人区乱码1区二区| 国产99久久九九免费精品| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久久久99蜜臀| 99riav亚洲国产免费| 国产高清videossex| 九色亚洲精品在线播放| 搡老岳熟女国产| 亚洲aⅴ乱码一区二区在线播放 | 日韩欧美一区二区三区在线观看 | 久久香蕉激情| 人人妻人人添人人爽欧美一区卜| 超碰97精品在线观看| 在线免费观看的www视频| 国产成人影院久久av| 国产精品一区二区免费欧美| 在线观看66精品国产| 亚洲av日韩在线播放| 亚洲成国产人片在线观看| 好看av亚洲va欧美ⅴa在| 自线自在国产av| 91精品三级在线观看| 在线观看日韩欧美| 国产成人免费无遮挡视频| 欧美+亚洲+日韩+国产| 国产精品一区二区在线观看99| 午夜精品久久久久久毛片777| 国产精品电影一区二区三区 | 一边摸一边抽搐一进一小说 | 国产不卡av网站在线观看| 99国产精品一区二区蜜桃av | 久久人人97超碰香蕉20202| 视频区欧美日本亚洲| 女警被强在线播放| netflix在线观看网站| 欧美av亚洲av综合av国产av| 日本a在线网址| 91麻豆av在线| 欧美日韩精品网址| avwww免费| 又大又爽又粗| 亚洲情色 制服丝袜| 国产一区二区三区视频了| 美女高潮到喷水免费观看| x7x7x7水蜜桃| 精品国产国语对白av| 日韩成人在线观看一区二区三区| 极品教师在线免费播放| 精品久久蜜臀av无| 欧美精品亚洲一区二区| 久热这里只有精品99| 视频在线观看一区二区三区| 成人18禁在线播放| 国产亚洲一区二区精品| 一本一本久久a久久精品综合妖精| 久9热在线精品视频| 久久 成人 亚洲| 村上凉子中文字幕在线| 国产成人精品无人区| 国产人伦9x9x在线观看| 成人特级黄色片久久久久久久| 美女高潮喷水抽搐中文字幕| 如日韩欧美国产精品一区二区三区| 成人精品一区二区免费| 久久久国产欧美日韩av| 国产精品久久久久久人妻精品电影| 男女高潮啪啪啪动态图| 国产精品久久久久久精品古装| 久久国产精品大桥未久av| 婷婷丁香在线五月| 精品福利观看| 在线免费观看的www视频| 制服诱惑二区| 真人做人爱边吃奶动态| 国产一区在线观看成人免费| 性色av乱码一区二区三区2| av网站在线播放免费| 亚洲中文字幕日韩| 久久香蕉国产精品| 欧美黄色淫秽网站| 老司机在亚洲福利影院| 深夜精品福利| 无人区码免费观看不卡| 在线观看舔阴道视频| 亚洲片人在线观看| 如日韩欧美国产精品一区二区三区| 人人澡人人妻人| 亚洲av成人不卡在线观看播放网| 岛国毛片在线播放| 最新在线观看一区二区三区| 丝袜美足系列| 亚洲国产毛片av蜜桃av| 99riav亚洲国产免费| 成人精品一区二区免费| 啦啦啦免费观看视频1| 丝袜人妻中文字幕| 精品久久久久久久久久免费视频 | 成人18禁在线播放| 激情视频va一区二区三区| 19禁男女啪啪无遮挡网站| 国产熟女午夜一区二区三区| 一本综合久久免费| 久久国产精品男人的天堂亚洲| 日本a在线网址| 成人三级做爰电影| 欧美精品啪啪一区二区三区| 美女午夜性视频免费| 热99久久久久精品小说推荐| 日韩 欧美 亚洲 中文字幕| 成人精品一区二区免费| 中出人妻视频一区二区| 午夜精品久久久久久毛片777| 一边摸一边抽搐一进一小说 | 欧美精品啪啪一区二区三区| 热99久久久久精品小说推荐| 一区在线观看完整版| 久久久久国产精品人妻aⅴ院 | 精品一区二区三区av网在线观看| 午夜影院日韩av| 制服诱惑二区| 老司机深夜福利视频在线观看| 精品国产美女av久久久久小说| 精品无人区乱码1区二区| 一级黄色大片毛片| 99精国产麻豆久久婷婷| 国产精品欧美亚洲77777| 国产高清视频在线播放一区| cao死你这个sao货| 怎么达到女性高潮| av欧美777| 国产麻豆69| 在线观看www视频免费| 久久中文字幕一级| 欧美成人免费av一区二区三区 | 美女高潮到喷水免费观看| 欧美国产精品一级二级三级| 99re在线观看精品视频| 男女午夜视频在线观看| 可以免费在线观看a视频的电影网站| 亚洲一区中文字幕在线| 黄色视频不卡| www.精华液| 色在线成人网| 别揉我奶头~嗯~啊~动态视频| 欧美不卡视频在线免费观看 | 欧美乱码精品一区二区三区| 亚洲精品一二三| 久久久精品国产亚洲av高清涩受| 亚洲色图av天堂| 午夜福利免费观看在线| 在线播放国产精品三级| tube8黄色片| 国产熟女午夜一区二区三区| 美女国产高潮福利片在线看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧洲精品一区二区精品久久久| 午夜视频精品福利| 国内毛片毛片毛片毛片毛片| 成人国语在线视频| 在线观看免费视频日本深夜| 国产一区二区激情短视频| 国产极品粉嫩免费观看在线| 手机成人av网站| 老司机影院毛片| 久久人妻av系列| 久久狼人影院| 极品人妻少妇av视频| 成人特级黄色片久久久久久久| 叶爱在线成人免费视频播放| 一级毛片女人18水好多| 欧美黑人精品巨大| 女人精品久久久久毛片| 少妇粗大呻吟视频| a在线观看视频网站| 国产精品乱码一区二三区的特点 | 国精品久久久久久国模美| 国产主播在线观看一区二区| 色婷婷av一区二区三区视频| 黄色 视频免费看| 一级片免费观看大全| 欧美日韩国产mv在线观看视频| 老汉色av国产亚洲站长工具| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看日韩欧美| 黑人巨大精品欧美一区二区mp4| 性色av乱码一区二区三区2| 精品卡一卡二卡四卡免费| 久久久久精品人妻al黑| 国产精品 欧美亚洲| videos熟女内射| 三级毛片av免费| 身体一侧抽搐| 这个男人来自地球电影免费观看| 老司机深夜福利视频在线观看| 国产免费现黄频在线看| 91老司机精品| 18禁国产床啪视频网站| 免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| 亚洲人成伊人成综合网2020| 老熟妇仑乱视频hdxx| 如日韩欧美国产精品一区二区三区| 一二三四在线观看免费中文在| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添小说| 亚洲av美国av| 国产成人啪精品午夜网站| 亚洲国产毛片av蜜桃av| 老司机午夜十八禁免费视频| 欧美日韩亚洲高清精品| 桃红色精品国产亚洲av| 国产精品99久久99久久久不卡| 免费观看人在逋| 亚洲成人手机| 国产一区二区激情短视频| 丰满迷人的少妇在线观看| 国产高清激情床上av| 99热网站在线观看| 午夜精品国产一区二区电影| 国产av又大| 丰满饥渴人妻一区二区三| 一边摸一边抽搐一进一小说 | 男女之事视频高清在线观看| 美女福利国产在线| 国产精品九九99| 免费在线观看日本一区| 一本一本久久a久久精品综合妖精| 亚洲欧洲精品一区二区精品久久久| 久久国产精品男人的天堂亚洲| 最新在线观看一区二区三区| 久久久久久人人人人人| 欧美日韩视频精品一区| 午夜两性在线视频| 这个男人来自地球电影免费观看| 午夜激情av网站| 黄频高清免费视频| 咕卡用的链子| 精品久久久久久久毛片微露脸| 窝窝影院91人妻| 国产午夜精品久久久久久| 国产在线精品亚洲第一网站| 精品人妻在线不人妻| 免费av中文字幕在线| 久久精品熟女亚洲av麻豆精品| 成人三级做爰电影| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 女人高潮潮喷娇喘18禁视频| 精品久久久久久电影网| 中文字幕制服av| 99香蕉大伊视频| 国产精品综合久久久久久久免费 | 一级毛片女人18水好多| 99热只有精品国产| 丰满迷人的少妇在线观看| 国产一卡二卡三卡精品| 伦理电影免费视频| 国产不卡av网站在线观看| 久久影院123| 高清视频免费观看一区二区| xxx96com| 久久久久精品人妻al黑| 欧美最黄视频在线播放免费 | 中文字幕制服av| 欧美日韩福利视频一区二区| 国产一区二区三区视频了| 国产欧美日韩一区二区精品| 国产精品综合久久久久久久免费 | 啦啦啦视频在线资源免费观看| 精品人妻熟女毛片av久久网站| 高潮久久久久久久久久久不卡| 一本一本久久a久久精品综合妖精| 人人妻人人添人人爽欧美一区卜| 在线免费观看的www视频| 午夜成年电影在线免费观看| 日韩欧美一区二区三区在线观看 | 757午夜福利合集在线观看| 狠狠狠狠99中文字幕| 亚洲一区中文字幕在线| 18禁美女被吸乳视频| 韩国av一区二区三区四区| а√天堂www在线а√下载 | 天堂动漫精品| 看免费av毛片| 岛国毛片在线播放| 丝袜美足系列| 久久中文字幕一级| 99国产精品一区二区三区| 国产成人精品无人区| 一边摸一边抽搐一进一出视频| 亚洲av日韩在线播放| 777久久人妻少妇嫩草av网站| 久久亚洲真实| 水蜜桃什么品种好| 久久久久国内视频| 午夜老司机福利片| 嫩草影视91久久| 99久久精品国产亚洲精品| av中文乱码字幕在线| 亚洲精品乱久久久久久| 精品一区二区三卡| 日韩欧美在线二视频 | 亚洲第一欧美日韩一区二区三区| 国产一区在线观看成人免费| 亚洲国产中文字幕在线视频| 欧美老熟妇乱子伦牲交| 精品少妇久久久久久888优播| av有码第一页| 精品久久久精品久久久| 91av网站免费观看| 又黄又爽又免费观看的视频| 又大又爽又粗| 国产欧美日韩一区二区三区在线| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 多毛熟女@视频| 天堂动漫精品| 午夜日韩欧美国产| 亚洲av日韩在线播放| 女同久久另类99精品国产91| 一级作爱视频免费观看|