• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    液態(tài)金屬凝固過程原子團簇結(jié)構(gòu)表征的新方法

    2015-03-23 11:56:28侯兆陽劉讓蘇田澤安王晉國
    原子與分子物理學(xué)報 2015年2期
    關(guān)鍵詞:原子團金屬鈉湖南大學(xué)

    侯兆陽, 劉讓蘇, 田澤安, 王晉國

    (1.長安大學(xué)應(yīng)用物理系,西安 710064; 2. 湖南大學(xué)物理與微電子科學(xué)學(xué)院,長沙 410082)

    液態(tài)金屬凝固過程原子團簇結(jié)構(gòu)表征的新方法

    侯兆陽1, 劉讓蘇2, 田澤安2, 王晉國1

    (1.長安大學(xué)應(yīng)用物理系,西安 710064; 2. 湖南大學(xué)物理與微電子科學(xué)學(xué)院,長沙 410082)

    采用分子動力學(xué)方法對液態(tài)金屬鈉的凝固過程進行了模擬計算,運用團簇結(jié)構(gòu)表征新方法――團簇類型指數(shù)法(CTIM)對凝固過程中的團簇結(jié)構(gòu)進行了識別.為了闡明CTIM在識別團簇結(jié)構(gòu)上的準確性和效率,將其與廣為采用的Voronoi多面體方法(VPM)進行比較.結(jié)果表明:當采用CTIM和VPM分別對液態(tài)金屬鈉凝固結(jié)構(gòu)中的原子團簇結(jié)構(gòu)進行表征時,它們所得到的微觀結(jié)構(gòu)特征是一致的.非晶態(tài)結(jié)構(gòu)中,原子團簇類型的分布呈現(xiàn)明顯的區(qū)段特征,每一區(qū)段都存在一種主要團簇類型,它們分別是二十面體或其缺陷結(jié)構(gòu).晶體結(jié)構(gòu)中,體系形成以BCC團簇為主體的晶態(tài)結(jié)構(gòu).同時發(fā)現(xiàn),VPM不易區(qū)分不同團簇構(gòu)型之間的細微差別,不同構(gòu)型的原子團簇可能被歸為同種結(jié)構(gòu)類型;而CTIM根據(jù)近鄰原子之間相對位置關(guān)系,直接準確描述原子團簇的構(gòu)型.不但由CTIM分析獲得的凝固體系結(jié)構(gòu)特征與VPM的分析結(jié)果一致;而且CTIM抓住了體系微觀結(jié)構(gòu)特征的主要方面,簡化了團簇結(jié)構(gòu)的表征形式,這在大尺度模擬體系的結(jié)構(gòu)分析中將具有較高效率.

    原子團簇;結(jié)構(gòu)表征方法;分子動力學(xué);凝固結(jié)構(gòu)

    1 Introduction

    Atomic clusters are basic configurations in liquid metals, and their evolution properties play an important role in understanding the solidification mechanism[1,2]. At present, computer simulation methods have been widely used to investigate the microstructures during the solidification processes of liquids. However, only atom positions are recorded in the computer simulations, so the method of characterizing atomic clusters is of essential importance to study the solidification mechanism of liquid metals.

    Several methods have been proposed in the past to characterize atomic clusters in the solidification processes of liquids. Based on bond-orientational order parameters[3], ten Woldeetal.[4]proposed a method to identify individual atoms as either solid- or liquid-like, and then extended to solid- or liquid-like clusters. This method has gained increasing interests for its simple algorithm and high computational efficiency[5-7], but the detailed topology information of atomic clusters is absent, since the bond-orientational order parameters are statistical average quantities. There are alternative approaches to characterize atomic clusters based on the operation of graphs. One is the Voronoi polyhedron method (VPM), which was first used by Finney as early as 1970[8]. In this method, the configuration of an atomic cluster composed of a central atom along with its surrounding neighbor atoms is characterized by the shape of Voronoi polyhedron associated with the central atom. However, some vertices in the Voronoi polyhedron often split into small faces because of thermal fluctuations and rounding errors in computation, then the Voronoi polyhedron is distorted. Some approximate approaches[9-11]were adopted to eliminate the small faces, but these approximate treatments are not very reasonable since the small faces resulted from thermal vibrations may be comparable to the original ones. In addition, VPM is hard to describe the atomic clusters with larger size as the computational complexity. Another widely used method for cluster characterization is the Honeycutt and Andersen (HA) bond-type index method[12]. This method adopts a set of indices to describe the configuration of atomic cluster composed of a pair of atoms along with their common neighbor atoms. While the atomic clusters described by the HA bond-type index method usually contain no more than ten atoms[13]. In order to characterize the atomic clusters with larger size, we have proposed the cluster-type index method (CTIM)[14-16]based on the HA bond-type index method.

    The reliability and efficiency of structural characterization method of atomic clusters are believed to be a key issue to achieve reliable results in the investigation of solidification mechanism of liquids by computer simulations. Accordingly, in this paper, we present the cluster characterization method of CTIM[14-16]proposed by us in detail, and evaluate its reliability and efficiency by comparing it with the widely used VPM. To compare the structural features of atomic clusters obtained by the VPM and CTIM, respectively, the solidification processes of liquid metal Na are simulated since extensive researches have been carried out on it[17-19].

    2 Molecular dynamics simulation

    The solidification processes of liquid metal Na are simulated by the molecular dynamics (MD) method. MD simulations are performed for a system containing 1000 Na atoms in a cubic box with periodic boundary conditions under constant-pressure. The equations of motion are integrated by the leap-frog algorithm with a time step of 2 fs. The interatomic potential adopted here is the effective pair potential derived from the generalized non-local model pseudopotential (GNMP) based upon the first-principle interaction force in the second order perturbation theory[20, 21]. For simple metals and their alloys, the accuracy and reliability of this effective pair potential have been demonstrated extensively by computing their structural, dynamic and thermodynamics properties[20-23]. The pair potential is cut off at 20 a.u. (atomic unit).

    Simulation calculations are started at 973 K (the melting point Tmof Na is near 371 K). First of all, let the system run 20000 time steps at 973 K to obtain the equilibrium liquid determined by the energy changes of system. Then the Gaussian thermostatis adopted to decrease the system temperature to 73 K at two cooling rates of 1×1014K/s and 1×1011K/s. The intervals between two temperature points are 50 K. At each given temperature, the instantaneous spatial coordinates of each atom are recorded for the structural analyses below. Finally, the structural analyses are performed in terms of the radical distribution function (RDF), VPM, and CTIM.

    3 Cluster characterization methods

    3.1 VPM

    The Voronoi polyhedron associated with a given atom is defined as the smallest closed convex polyhedron consisting of the planes that perpendicularly bisect the coordination vectors from the atom to its neighbors[8]. The Voronoi polyhedron corresponds to the Wigner-Seitz cell in the crystalline state. It is customary to define the signature of a Voronoi polyhedron as a set of integers (n3n4n5…ni……), whereniis the number ofi-edged faces of the polyhedron. For example, (0 0 12 0) denotes a polyhedron composed of 12 pentagons, whose shape corresponds to the icosahedron cluster; while the atoms in bcc and fcc environments are associated with the (0 6 0 8) and (0 12 0 0) Voronoi polyhedra, respectively. Their schematic configurations under perfect conditions are shown in Fig. 1. As the thermal fluctuations in the realistic solidification system, Voronoi polyhedra would be distorted, as shown in Fig. 2.

    Fig. 1 Schematic configurations of (0 0 12 0), (0 6 0 8) and (0 12 0 0) Voronoi polyhedra under perfect conditions. The quadrangle, pentagon and hexagon faces are colored with cyan, white, and buff, respectively

    Fig. 2 Schematic configurations of (0 0 12 0) and (0 6 0 8) Voronoi polyhedra in present simulation system.The quadrangle, pentagon and hexagon faces are colored with cyan, white, and buff, respectively

    3.2 CTIM

    The HA bond-type index method[12]adopts a set of four integersijklto describe the configuration of an atomic cluster composed of a pair of atoms along with their common neighbor atoms. The first integeriis to identify the bonding of two given atoms.iis 1 when they are bonded in the root pair, otherwise 2. The second integerjis the number of near-neighbor atoms shared in common by the root pair. The third integerkis the number of bonds among the shared neighbors. The fourth integerlis needed to distinguish configurations having the same first three indices but being different bond geometries. In order to characterize atomic clusters with larger size, we have proposed the CTIM[14-16]based on the HA bond-type index. We define the basic cluster as the smallest cluster composed of one central atom along with its nearest-neighbor atoms, and the CTIM adopts four indices (N,n1,n2,n3) to denote different types of basic clusters, whereNis the number of the nearest-neighbor atoms, namely, the coordination number (CN), andn1,n2,n3denotes the numbers of 1441, 1551 and 1661 bond-types, respectively, by these bond-types the surrounding atoms are connected with the central one of the basic cluster. For example, the (12 0 12 0) denotes an icosahedron basic cluster that is composed of one central atom and 12 neighbor atoms (all of them form 1551 bond-type with the central atom); the (14 0 12 2) expresses a Frank-Kasper polyhedron basic cluster that is composed of one central atom and 14 neighbor atoms (twelve of them form 1551 bond-types with the central atom and two of them form 1661 bond-type with the central atom); the (14 6 0 8) stands for a bcc basic cluster (bcc crystal unit) composed of one central atom and 14 near neighbor atoms (six of them form 1441 bond-type with the central atom and eight of them form 1661 bond-type with the central atom), and so on. The schematics of these basic clusters are shown in Fig. 3.

    By means of CTIM, many kinds of basic clusters in liquid, amorphous as well as the bcc crystal can be represented effectively[14-15]. However, the familiar fcc crystal unit which is made up of twelve 1421 bond-types, and the hcp crystal unit which is made up of six 1421 and six 1422 bond-types, cannot be described clearly. In order to comprehensively describe crystal clusters (containing hcp and fcc basic clusters), two indices (namely, the fifth and sixth ones which respectively represent the numbers of 1421 and 1422 bond-types) are added to the CTIM. For convenience of discussion, the CTIM with six integers is called as CTIM-2. In CTIM-2, the icosahedron, bcc, fcc and hcp crystal units can be expressed in turn by (12 0 12 0 0 0), (14 6 0 8 0 0), (12 0 0 0 12 0) and (12 0 0 0 6 6), respectively. In the solidification processes of liquid Na, fcc and hcp basic clusters are very scarce, so we adopt the CTIM with four indices in this work for simplification.

    Fig. 3 Schematic configurations of (12 0 12 0), (14 0 12 2) and (14 6 0 8) basic clusters in present simulation system. The cyan, white, and yellow spheres denote 1441, 1551, and 1661 bond-types, respectively

    Based on the CTIM, extended clusters with large size can be described clearly, for details see Refs. [14,15]. As examples, Fig. 4(a) is a large cluster including 25 atoms combined by three basic clusters; while Fig. 4(b) contains 49 atoms combined by seven basic clusters.

    Fig. 4 Schematic configurations of two extended clusters. (Schematic configurations of central atoms at bottom right corner) (a) A large cluster including 25 atoms combined by three different basic clusters [one (13 3 6 4), one (14 1 10 3) and one (14 3 6 5) ]; (b) A large cluster including 49 atoms combined by seven basic clusters [two (13 3 6 4), one (13 4 4 5), two (13 5 2 6) , one (15 4 4 7) and one (15 5 2 8)]. The black spheres are the central atoms, and the white spheres are their surface atoms

    4 Results

    To verify the validity of our simulation methods, the RDF obtained in present simulations is compared with that of experimental results of Waseda[24]as shown in Fig. 5. It can be seen that the simulation RDF of liquid Na (573 K) are in agreement with the experimental results. This indicates that present simulations are rather successful in describing the physical nature of the system. Moreover, from the RDFs of the solidification solids (73 K) at different cooling rates (see Fig. 5), it can be found that the solidification solid with the cooling rate of 1×1014K/s displays amorphous feature, while distinct crystal characteristics are shown for that with the cooling rate of 1×1011K/s.

    Fig. 5 RDFs of liquid Na (573 K), its amorphous and crystal solids (73 K) at cooling rates of 1×1014 K/s and 1×1011 K/s, respectively. The experimental points at 573 K are taken from Ref.[24]

    To evaluate the feasibility of CTIM, atomic clusters in the same solidification solids are characterized by the VPM and CTIM, respectively. According to the VPM, the statistical numbers of various Voronoi polyhedra in the amorphous and crystal solids (73 K) can be obtained. A total of 134 different types of Voronoi polyhedra are detected in the amorphous structure, while only 24 types in the crystal structure. Among these Voronoi polyhedra, those only composed of quadrangle, pentagon and hexagon faces are dominated. Their total numbers amount to 87.7% of all Voronoi polyhedra in the amorphous solid, while 96.2% in the crystal solid. Thus we only show the statistical numbers of the Voronoi polyhedra composed of quadrangle, pentagon and hexagon faces in Fig. 6 for clearness. From Fig. 6(a), it can be found that when the different Voronoi polyhedra are arranged in turn according to the numbers of quadrangle, pentagon and hexagon faces, distributions of these polyhedra show six broad peaks at (0 0 12 0), (0 1 10 2), (0 2 8 2), (0 3 6 4), (0 4 4 6) and (0 5 2 6). The (0 0 12 0) Voronoi polyhedron corresponding to icosahedron cluster and its defective cases[25]with the (0 1 10 2), (0 2 8 2), (0 2 8 4), (0 3 6 4) signatures are favorable in the amorphous structure, and their total number reaches to 52.9% of all Voronoi polyhedra in the system. It should be noted that the fraction of (0 0 12 0) is not highest among them, even though it is often referred to as the typical configuration of amorphous structures[26,27]. The fraction of (0 6 0 8) signature which corresponds to the bcc crystal unit is very small, but its defective cases with (0 4 4 6) and (0 5 2 6) signatures[17]are abundant. From Fig. 6(b), it can be found that (0 6 0 8) Voronoi polyhedron is the characteristic cluster of crystal solid, and its fraction reaches 93.6% in the system.

    When the atomic clusters in amorphous and crystal solids (73 K) are characterized by the CTIM, the statistical numbers of various basic clusters are obtained, respectively, as shown in Fig. 7. From Fig. 7(a), it can be seen that when the different basis clusters are arranged in turn according to the numbers of 1441, 1551 and 1661 bond-types, distributions of these basic clusters show five broad peaks at (12 0 12 0), (13 1 10 2), (14 2 8 4), (13 3 6 4) and (14 4 4 6). The icosahedron basic cluster (12 0 12 0) and its defective cases (13 1 10 2), (14 1 10 3), (14 2 8 4), (13 3 6 4)[15]are favorable, and their total number occupies 54.4% of all basic clusters in the system. From Fig. 7(b), it can be found that the (14 6 0 8) basic cluster is the characteristic clusters of crystal solid, and its fraction reaches 98.8% in the system.

    Fig. 7 Number distributions of basic clusters in the solidification solids (73 K) of liquid Na. (a) Amorphous solid with the cooling rate of 1×1014 K/s, (b) Crystal solid with the cooling rate of 1×1011 K/s

    5 Discussion

    When we compare the structural features of atomic clusters in the same solidification solids obtained by the VPM and CTIM, respectively, it can be found that their results are consistent with each other. The distributions of atomic clusters in the amorphous structure characterized by the two different methods both display several broad peaks, and each peak corresponds to one favorable cluster type. The favorable cluster types both are icosahedron and its defective cases, described as the (0 0 12 0), (0 1 10 2), (0 2 8 2), (0 2 8 4) and (0 3 6 4) polyhedra in VPM, while the (12 0 12 0), (13 1 10 2), (14 2 8 4) and (13 3 6 4) basic clusters in CTIM. The dominated cluster type in the crystal structure characterized by the two different methods both is bcc crystal unit, described as the (0 6 0 8) polyhedra in VPM, while the (14 6 0 8) basic cluster in CTIM. This indicates the feasibility of CTIM.

    The favorable cluster types in solidification structures have similar representation signatures characterized by the VPM and CTIM. To make clear their relationships in topology, the configurations of the same atomic clusters characterized by the two methods are shown together in Fig. 8. It can be found that the VPM indirectly describes the cluster configurations by means of the shapes of Voronoi polyhedra associated with central atoms; while the CTIM directly describes the cluster configurations according to the position relations of neighbor atoms.

    Fig.8 Schematic configurations of atomic clusters characterized by VPM and CTIM together. (a) Icosahedron with central atom 327-numbered; (b) bcc crystal unit with central atom 200-numbered. The quadrangle, pentagon and hexagon faces of Voronoi polyhedra are colored with cyan, white, and buff, respectively; while these colors respectively denote 1551, 1441, and 1661 bond-types in CTIM

    The neighbor atoms which form 1441, 1551, and 1661 bond-types with central atoms, respectively, correspond to the quadrangle, pentagon and hexagon faces of Voronoi polyhedra. But the inverse is not always true. Namely, the quadrangle, pentagon and hexagon faces of Voronoi polyhedra do not always correspond to the 1441, 1551 and 1661 bond-types, respectively. For example, as shown in Fig. 9, the Voronoi polyhedron associated with the central atom 14-numbered has the (0 0 12 0) signature, reflecting the icosahedron local configuration. However, the neighbor atoms labeled 629 and 879 both form 1431 bond-types with the central atom and those labeled 402 and 879 both form 1543 bond-types, since the distances between 629- and 879-labeled atoms, between 402- and 879 -labeled atoms both are a little farther than the bonding length. Thus this atomic cluster constitutes eight 1551 bond-types, two 1543 bond-types, and two 1431 bond-types. It is not a canonical icosahedron characterized by CTIM. This means that the VPM is difficult to distinguish the small differences between cluster configurations just according to the statistical number of multi-edged faces, and different cluster configurations may be classified into the same type. While the CTIM directly describe the cluster configurations and can exactly present the relative position relations of neighbor atoms.

    Fig. 9 Structural configuration of an atomic cluster with central atom 14- numbered characterized by VPM and CTIM together

    In VPM, each atom in a system would correspond to a Voronoi polyhedron, and a complete set of these polyhedra form a Voronoi diagram. But the number of basic clusters characterized by CTIM in the amorphous sample is just 167, because not all cluster configurations meet its bonding conditions. It is interesting that though the CTIM only detects a few atomic clusters in the system, the structural features obtained by the two methods are the same. By further analyzing the cluster structures detected by CTIM, we find they are only part of the cluster configurations detected by VPM, in which the faces of Voronoi polyhedra are close to equilateral polygon. This indicates that though the CTIM can not detect all atomic clusters in a system, it still can exactly reflect the feature of microstructures. And it simplifies the representation format of atomic clusters by outstanding the principal ones. This would be efficient for larger-scale systems[28].

    Based on the CTIM, all atomic clusters around each atom in a system can also be detected by adjusting the bond-type in the indices (N,n1,n2,n3, …ni…)[29,30]. For example, all crystal phases of Mg-Zn alloy can be characterized by adding 1541, 1321, and 1431 bond-types to the CTIM-2, and distributions of the different phases during diffusion processes can be further detected.

    6 Conclusions

    An alternative method of CTIM for characterizing atomic clusters in the solidification processes of liquids is proposed by us. The feasibility of CTIM is clarified by comparing it with the widely used VPM.

    Our results show that when the atomic clusters in the solidification structures of liquid Na are characterized by the VPM and CTIM, respectively, their structural features are identical. The distributions of atomic clusters in the amorphous structure characterized by the two different methods both display several broad peaks, and each peak corresponds to one favorable cluster type. The favorable cluster types both are icosahedron and its defective cases, described as the (0 0 12 0), (0 1 10 2), (0 2 8 2), (0 2 8 4) and (0 3 6 4) polyhedra in VPM, while the (12 0 12 0), (13 1 10 2), (14 2 8 4) and (13 3 6 4) basic clusters in CTIM. The dominated cluster type in the crystal structure characterized by the two different methods both is bcc crystal unit, described as the (0 6 0 8) polyhedra in VPM, while the (14 6 0 8) basic cluster in CTIM.

    It is also found that the VPM indirectly describes cluster configurations by means of the shapes of Voronoi polyhedra associated with central atoms. The VPM is difficult to distinguish the small differences between cluster configurations. Atomic clusters with different configurations may be classified into the same type. The CTIM directly describes the cluster configurations according to the position relations of neighbor atoms. Though the CTIM just describes a part of cluster configurations satisfying certain bonding conditions in a system, the structural features obtained by it are consistent with the VPM. CTIM simplifies the representation format of atomic clusters by outstanding the principal ones. This is efficient for larger-scale systems.

    [1] Wang L, Bian X, Zhang J. Structural simulation of clusters in liquid Ni50Al50alloys[J].ModellingSimul.Mater.Sci.Eng., 2002, 10(3): 331.

    [2] Zhang J X, Li H, Zhang J,etal. Reverse Monte Carlo study on structural order in liquid and glassy Al-Fe alloys[J].Chin.Phys. B, 2009, 18(11): 4949.

    [3] Steinhardt P J, Nelson D R, Ronchetti M. Bond-orientational order in liquids and glasses[J].Phys.Rev. B, 1983, 28(2): 784.

    [4] Ten Wolde P R, Ruiz-Montero M J, Frenkel D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus[J].Phys.Rev.Lett., 1995, 75(14): 2714.

    [5] Gasser U, Weeks E R, Schofield A,etal. Real-space imaging of nucleation and growth in colloidal crystallization[J].Science, 2001, 292(5515): 258.

    [6] Kuhn P, Horbach J. Molecular dynamics simulation of crystal growth in Al50Ni50: The generation of defects[J].Phys.Rev. B, 2013, 87(1): 014105.

    [7] Yu D Q, Chen M, Yang H,etal. Structural evolution during crystal nucleation in supercooled liquids with icosahedral short-range order[J].Phil.Mag.Lett., 2009, 89(1): 44.

    [8] Finney J L. Random Packing and the structure of simple liquids[J].Proc.R.Soc.LondonSer. A, 1970, 319(10): 495.

    [9] Swope W C, Andersen H C. 106particle molecular-dynamics study of homogeneous nucleation of crystals in supercooled atomic liquid[J].Phys.Rev. B, 1990, 41(10): 7042.

    [10] Brostow W, Chybicki M, Laskowski R,etal. Voronoi polyhedra and Delaunay simplexes in the structural analysis of molecular-dynamics-simulated materials[J].Phys.Rev. B, 1998, 57(21): 13448.

    [11] Yu D Q, Chen M, Chen X J. Structure analysis methods for crystalline solids and supercooled liquids[J].Phys.Rev. B, 2005, 72(5): 051202.

    [12] Honeycutt J D, Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters[J].J.Phys.Chem., 1987, 91(19): 4950.

    [13] Tsuzuki H, Branicio P S, Rino J P. Characterization of deformed crystals by analysis of common atomic neighborhood[J].Comput.Phys.Commun., 2007, 177(6): 518.

    [14] Liu R S, Dong K J, Li J Y,etal. Formation and description of nano-clusters formed during rapid solidification processes in liquid metals[J].J.Non-Cryst.Solids, 2005, 351(6-7): 612.

    [15] Hou Z Y, Liu R S, Liu H R,etal. Formation mechanism of critical nucleus during nucleation process of liquid metal sodium[J].J.Chem.Phys., 2007, 127(17): 174503.

    [16] Liu H R, Liu R S, Zhang A L,etal. Formation and evolution characteristics of bcc phase during isothermal relaxation processes of supercooled liquid and amorphous metal Pb[J].Chin.Phys. B, 2011, 21(3): 588.

    [17] Watanabe M S, Tsumuraya K. Crystallization and glass formation processes in liquid sodium: A molecular dynamics study[J].J.Chem.Phys., 1987, 87(8): 4891.

    [18] Qi D W, Moore R A. Molecular dynamic simulations for crystallization of metallic liquids under different pressures[J].J.Chem.Phys., 1993, 99(11): 8948.

    [19] Walker B G, Marzari N, Molteni C. In-plane structure and ordering at liquid sodium surfaces and interfaces from ab initio molecular dynamics[J].J.Chem.Phys., 2007, 127(13): 134703.

    [20] Wang S, Lai S K. Structure and electrical resistivities of liquid binary alloys[J].J.Phys.F:Met.Phys., 1980, 10(12): 2717.

    [21] Li D H, Li X R, Wang S. Variational calculation of Helmholz free energies with applications to the sp-type liquid metals[J].J.Phys.F:Met.Phys., 1988, 16(3): 309.

    [22] Wu T M, Tsay S F. Instantaneous normal mode analysis of liquid Na[J].J.Chem.Phys., 1996, 105(20): 9281.

    [23] Jin Z H, Lu K, Gong Y D,etal. Glass transition and atomic structures in supercooled Ga0.15Zn0.15Mg0.7metallic liquids: A constant pressure molecular dynamics study[J].J.Chem.Phys., 1997, 106(21): 8830.

    [24] Waseda Y.Thestructureofnon-crystallinematerials[M]. New York: McGraw-Hill, 1980: 268.

    [25] Ma E, Cheng Y Q. Atomic-level structure and structure property relationship in metallic glasses[J].Prog.Mater.Sci., 2011, 56(4): 379.

    [26] Luo W K, Sheng H W, Alamgir F M,etal. Icosahedral short-range order in amorphous alloys[J].Phys.Rev.Lett., 2004, 92(14): 145502.

    [27] Yang L, Guo G Q. Preferred clusters in metallic glasses[J].Chin.Phys. B, 2010, 19(12): 126101.

    [28] Liu R S, Liu H R, Dong K J,etal. Simulation study of size distributions and magic number sequences of clusters during the solidification process in liquid metal Na[J].J.Non-Cry.Solids, 2009, 355(9): 541.

    [29] Tian Z A, Liu R S, Dong K J,etal. A new method for analyzing the local structures of disordered systems[J].EPL, 2011, 96(3): 36001.

    [30] Gao S, Wu Y Q, Shen T,etal. Analysis of Zn-Mg alloy structure and phases distribution of Zn-Mg diffusion system[J].ActaPhys.Chim.Sin., 2012, 28(09): 2037 (in Chinese)

    A new method for structural characterization of atomic clusters in solidification processes of liquid metals

    HOU Zhao-Yang1, LIU Rang-Su2, TIAN Ze-An2, WANG Jin-Guo1

    (1. Department of Applied Physics, Chang'an University, Xi'an 710064, China;2. School of Physics and Microelectronics Science, Hunan University, Changsha 410082, China )

    A molecular dynamics simulation has been performed on the solidification process of liquid Na, and the atomic clusters in the solidification process have been identified by means of a new characterization method -- cluster-type index method (CTIM) proposed by us. In order to evaluate the reliability and efficiency of CTIM, it is compared with the widely used Voronoi polyhedron method (VPM). Our results show that when the atomic clusters in the solidification structures of liquid Na are characterized by the VPM and CTIM, respectively, their structural features are identical. The distributions of atomic clusters in the amorphous structure characterized by the two different methods both display several broad peaks, and each peak corresponds to one favorable cluster type. The favorable cluster types both are icosahedron and its defective cases. The dominated cluster type in the crystal structure characterized by the two different methods both is bcc crystal unit. It is also found that the VPM is difficult to distinguish the small differences between cluster configurations according to the shapes of Voronoi polyhedra, and different cluster configurations may be classified into the same type. The CTIM directly describes cluster configurations according to the position relations of neighbor atoms. CTIM simplifies the representation format of atomic clusters by means of outstanding the principal ones. This will be efficient in the structural analysis of larger-scale simulation systems.

    Atomic cluster; Microstructure characterization method; Molecular dynamic simulation; Solidification

    103969/j.issn.1000-0364.2015.02.010

    2014-05-08

    國家自然科學(xué)基金(51101022, 50831003); 中央高?;究蒲袠I(yè)務(wù)費(CHD2012JC096)

    侯兆陽(1980—), 河南南陽人,副教授,博士,研究方向為液態(tài)金屬凝固理論.E-mail: zhaoyanghou@163.com

    O552.6

    A

    1000-0364(2015)02-0232-09

    猜你喜歡
    原子團金屬鈉湖南大學(xué)
    湖南中煙聯(lián)合湖南大學(xué)揭示植物維持代謝平衡的機制
    Ti3Al 合金凝固過程晶核形成及演變過程的模擬研究*
    PBL教學(xué)法在高中化學(xué)教學(xué)中的應(yīng)用*——以金屬鈉及其化合物為例
    云南化工(2021年8期)2021-12-21 06:38:02
    一種精確測量原子噴泉冷原子團溫度的方法*
    金屬鈉的性質(zhì)與考查方式賞析
    A Study on the Cohesion of English and ChineseBlessing Short Messages
    從水說起學(xué)化學(xué)之鹽
    烴的組成和性質(zhì)考點初探
    從水說起學(xué)化學(xué)之鹽
    Fe團簇在Fe(110)表面上擴散和結(jié)構(gòu)穩(wěn)定性的分子動力學(xué)研究
    真实男女啪啪啪动态图| 成人特级av手机在线观看| 亚洲自拍偷在线| 国内精品一区二区在线观看| 久99久视频精品免费| 国产视频内射| 乱系列少妇在线播放| 五月天丁香电影| av女优亚洲男人天堂| 韩国av在线不卡| 国产在视频线在精品| 青春草视频在线免费观看| 蜜桃亚洲精品一区二区三区| 97热精品久久久久久| 久久久久网色| 成人性生交大片免费视频hd| 国产乱来视频区| 韩国高清视频一区二区三区| 欧美高清性xxxxhd video| 欧美一级a爱片免费观看看| 小蜜桃在线观看免费完整版高清| 天天躁日日操中文字幕| 亚洲国产精品成人综合色| 禁无遮挡网站| 男人爽女人下面视频在线观看| 嘟嘟电影网在线观看| 老师上课跳d突然被开到最大视频| 国产欧美日韩精品一区二区| 免费观看av网站的网址| 天堂√8在线中文| 高清欧美精品videossex| 国产久久久一区二区三区| 看免费成人av毛片| 国产不卡一卡二| 日韩成人av中文字幕在线观看| 99热全是精品| 国产精品人妻久久久久久| 色综合色国产| 亚洲无线观看免费| 综合色av麻豆| 99热网站在线观看| 婷婷六月久久综合丁香| 亚洲av.av天堂| 床上黄色一级片| 午夜亚洲福利在线播放| 禁无遮挡网站| 国产单亲对白刺激| 十八禁国产超污无遮挡网站| 色5月婷婷丁香| 免费av不卡在线播放| 久久精品人妻少妇| 搡女人真爽免费视频火全软件| 又粗又硬又长又爽又黄的视频| 日韩成人av中文字幕在线观看| 日韩亚洲欧美综合| 国产精品久久久久久久久免| 老女人水多毛片| 网址你懂的国产日韩在线| 亚洲欧美成人综合另类久久久| av在线播放精品| 欧美成人精品欧美一级黄| 精品少妇黑人巨大在线播放| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 婷婷色av中文字幕| 久久久久久久久久久免费av| 精品久久久久久电影网| 国产片特级美女逼逼视频| av专区在线播放| 天天躁夜夜躁狠狠久久av| 一级a做视频免费观看| 51国产日韩欧美| 欧美变态另类bdsm刘玥| 深夜a级毛片| 啦啦啦中文免费视频观看日本| 99久国产av精品| 少妇熟女aⅴ在线视频| 看非洲黑人一级黄片| 欧美zozozo另类| 中文字幕亚洲精品专区| 九九在线视频观看精品| 日韩大片免费观看网站| 国产美女午夜福利| 日韩国内少妇激情av| 日本色播在线视频| 大片免费播放器 马上看| 久久精品国产亚洲av天美| 免费av不卡在线播放| 我的女老师完整版在线观看| 简卡轻食公司| 99re6热这里在线精品视频| eeuss影院久久| 国产免费视频播放在线视频 | 一个人看的www免费观看视频| 日韩不卡一区二区三区视频在线| 大香蕉97超碰在线| 日韩电影二区| 亚洲欧美日韩无卡精品| 一级毛片我不卡| 亚洲人成网站高清观看| 神马国产精品三级电影在线观看| 青春草亚洲视频在线观看| 免费看av在线观看网站| 国产男女超爽视频在线观看| 精品久久久久久久久av| 国产单亲对白刺激| 免费观看av网站的网址| 久久精品综合一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲欧美精品自产自拍| 色哟哟·www| 一级黄片播放器| 色5月婷婷丁香| 欧美bdsm另类| 亚洲综合精品二区| kizo精华| 国产精品久久久久久精品电影| 亚洲av免费高清在线观看| 美女被艹到高潮喷水动态| 亚洲av中文av极速乱| 亚洲av一区综合| 狠狠精品人妻久久久久久综合| 成人亚洲欧美一区二区av| 爱豆传媒免费全集在线观看| 韩国av在线不卡| 日韩,欧美,国产一区二区三区| 亚洲美女视频黄频| 简卡轻食公司| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| 午夜福利视频1000在线观看| 乱码一卡2卡4卡精品| 国产毛片a区久久久久| 国产精品麻豆人妻色哟哟久久 | 日韩欧美国产在线观看| 美女被艹到高潮喷水动态| 最近中文字幕2019免费版| 免费观看a级毛片全部| 丰满乱子伦码专区| 国产精品熟女久久久久浪| 蜜桃久久精品国产亚洲av| 欧美+日韩+精品| 亚洲av中文av极速乱| 爱豆传媒免费全集在线观看| 好男人视频免费观看在线| 国产91av在线免费观看| 伊人久久精品亚洲午夜| 精品人妻偷拍中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 能在线免费观看的黄片| 国内精品一区二区在线观看| 久久久久久国产a免费观看| 亚洲精品中文字幕在线视频 | 啦啦啦中文免费视频观看日本| 精品久久久久久久久久久久久| 国产精品一区二区性色av| 国产亚洲最大av| 亚洲精品456在线播放app| 欧美激情久久久久久爽电影| 最近最新中文字幕免费大全7| 人妻少妇偷人精品九色| 精品少妇黑人巨大在线播放| 免费av毛片视频| 深爱激情五月婷婷| 97热精品久久久久久| 日韩欧美 国产精品| freevideosex欧美| 久久99热这里只有精品18| 精品久久久久久久久av| 亚洲最大成人手机在线| 亚洲精品一区蜜桃| 国产成人精品福利久久| 国产 一区精品| 免费大片18禁| 日韩一区二区三区影片| 波多野结衣巨乳人妻| 久久热精品热| 国产亚洲午夜精品一区二区久久 | 亚洲欧美日韩卡通动漫| 成年免费大片在线观看| 精品一区二区三区人妻视频| 91久久精品国产一区二区成人| 欧美一级a爱片免费观看看| 国产黄频视频在线观看| 一本一本综合久久| 三级经典国产精品| 男女边吃奶边做爰视频| 18禁动态无遮挡网站| 午夜福利在线观看免费完整高清在| 一级毛片电影观看| 国产综合懂色| 免费高清在线观看视频在线观看| 免费观看的影片在线观看| av在线亚洲专区| 国产成人91sexporn| 亚洲欧美一区二区三区国产| 人体艺术视频欧美日本| 一个人免费在线观看电影| 亚洲天堂国产精品一区在线| 街头女战士在线观看网站| 一级毛片我不卡| 国产亚洲精品av在线| 日日撸夜夜添| 麻豆精品久久久久久蜜桃| .国产精品久久| 国产亚洲最大av| 亚洲国产精品国产精品| 久久国产乱子免费精品| 少妇人妻精品综合一区二区| 大话2 男鬼变身卡| 欧美成人一区二区免费高清观看| 久久久久久久久久成人| 久久精品综合一区二区三区| 亚洲av成人精品一区久久| 亚洲乱码一区二区免费版| 亚洲综合精品二区| 成年版毛片免费区| 成人漫画全彩无遮挡| 精品人妻一区二区三区麻豆| 亚洲欧美精品专区久久| 精品人妻熟女av久视频| 天堂中文最新版在线下载 | 亚洲综合精品二区| 天天一区二区日本电影三级| 一级毛片电影观看| 国产免费又黄又爽又色| 国产伦精品一区二区三区视频9| 最近2019中文字幕mv第一页| 免费观看av网站的网址| 国产精品久久视频播放| 成人高潮视频无遮挡免费网站| 床上黄色一级片| 国产久久久一区二区三区| 亚洲精品日韩在线中文字幕| 丰满少妇做爰视频| 欧美激情久久久久久爽电影| 18禁在线播放成人免费| 秋霞伦理黄片| 国产成人精品婷婷| 老师上课跳d突然被开到最大视频| 亚洲乱码一区二区免费版| 久久久色成人| 插逼视频在线观看| 欧美成人a在线观看| 在线播放无遮挡| 国产成年人精品一区二区| 一级av片app| 国产免费一级a男人的天堂| 国产成人a∨麻豆精品| 小蜜桃在线观看免费完整版高清| 成年女人在线观看亚洲视频 | 欧美性猛交╳xxx乱大交人| 日本一本二区三区精品| 九九久久精品国产亚洲av麻豆| 麻豆乱淫一区二区| ponron亚洲| 一级毛片我不卡| 国产成人freesex在线| 2018国产大陆天天弄谢| 久久久久久久亚洲中文字幕| 99久久精品热视频| 久久久久久久大尺度免费视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品影视一区二区三区av| 97超碰精品成人国产| 久久久久久久久大av| 啦啦啦啦在线视频资源| 亚洲真实伦在线观看| 国内精品宾馆在线| 波野结衣二区三区在线| 久久6这里有精品| 99久久精品一区二区三区| 免费看a级黄色片| 国产精品久久久久久av不卡| 亚洲精品日韩在线中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美 国产精品| 综合色av麻豆| 欧美3d第一页| 精品酒店卫生间| 美女黄网站色视频| 国产精品美女特级片免费视频播放器| 欧美高清成人免费视频www| 五月伊人婷婷丁香| 最近手机中文字幕大全| 天堂av国产一区二区熟女人妻| 精华霜和精华液先用哪个| 久久午夜福利片| 欧美人与善性xxx| 成人特级av手机在线观看| 亚洲av成人精品一区久久| 综合色av麻豆| 看黄色毛片网站| 欧美精品国产亚洲| 国产免费又黄又爽又色| xxx大片免费视频| 天堂影院成人在线观看| 国产精品国产三级专区第一集| 高清欧美精品videossex| 女人久久www免费人成看片| 在线观看美女被高潮喷水网站| 天堂av国产一区二区熟女人妻| 爱豆传媒免费全集在线观看| 高清在线视频一区二区三区| 精品一区二区免费观看| 色尼玛亚洲综合影院| 啦啦啦韩国在线观看视频| 免费高清在线观看视频在线观看| 国产中年淑女户外野战色| 麻豆久久精品国产亚洲av| av国产久精品久网站免费入址| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 亚洲国产日韩欧美精品在线观看| 久久久精品欧美日韩精品| 国产日韩欧美在线精品| 亚州av有码| 久久精品国产亚洲av天美| 精品久久久久久久久亚洲| 三级国产精品片| 亚洲激情五月婷婷啪啪| 一级黄片播放器| 久久热精品热| 午夜激情欧美在线| 久久久午夜欧美精品| 国产淫片久久久久久久久| 免费观看av网站的网址| 2021少妇久久久久久久久久久| av天堂中文字幕网| 精品久久久久久久末码| 最近中文字幕2019免费版| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| 毛片一级片免费看久久久久| 亚洲经典国产精华液单| 毛片一级片免费看久久久久| 国产男女超爽视频在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区在线观看99 | 国产亚洲精品av在线| 一级毛片电影观看| 亚洲精品一二三| 日韩强制内射视频| 国产午夜精品一二区理论片| 最近视频中文字幕2019在线8| 80岁老熟妇乱子伦牲交| 久久久精品94久久精品| 国产伦精品一区二区三区四那| 国产一区亚洲一区在线观看| 精品国内亚洲2022精品成人| 爱豆传媒免费全集在线观看| 大又大粗又爽又黄少妇毛片口| 97超视频在线观看视频| 亚洲av成人精品一区久久| 97超视频在线观看视频| 免费少妇av软件| 亚洲av免费在线观看| 极品少妇高潮喷水抽搐| 国产欧美另类精品又又久久亚洲欧美| 国产成人a区在线观看| av女优亚洲男人天堂| 永久免费av网站大全| 国内精品宾馆在线| 成人毛片a级毛片在线播放| 中文乱码字字幕精品一区二区三区 | 校园人妻丝袜中文字幕| 天天一区二区日本电影三级| 一个人观看的视频www高清免费观看| 国产毛片a区久久久久| 免费观看无遮挡的男女| 亚洲av二区三区四区| 亚洲国产精品成人综合色| 免费无遮挡裸体视频| 丝袜美腿在线中文| 看十八女毛片水多多多| 亚洲综合精品二区| 成人毛片60女人毛片免费| av女优亚洲男人天堂| ponron亚洲| 国产黄色视频一区二区在线观看| 亚洲av国产av综合av卡| 色视频www国产| 深夜a级毛片| 欧美 日韩 精品 国产| 美女大奶头视频| 国产精品伦人一区二区| 亚洲欧洲国产日韩| 久久久a久久爽久久v久久| av又黄又爽大尺度在线免费看| 国产色婷婷99| 狂野欧美激情性xxxx在线观看| 在线播放无遮挡| 欧美日韩视频高清一区二区三区二| 一个人看视频在线观看www免费| 久久精品久久精品一区二区三区| .国产精品久久| 亚洲va在线va天堂va国产| 高清午夜精品一区二区三区| 精品欧美国产一区二区三| 一区二区三区高清视频在线| 午夜激情福利司机影院| 欧美日韩在线观看h| 免费看日本二区| 美女主播在线视频| 亚洲人成网站在线播| 又大又黄又爽视频免费| 好男人视频免费观看在线| 3wmmmm亚洲av在线观看| 亚洲欧美日韩东京热| 亚洲最大成人中文| 日本色播在线视频| 视频中文字幕在线观看| 精品人妻一区二区三区麻豆| 亚洲欧美精品自产自拍| 国产精品日韩av在线免费观看| 天堂俺去俺来也www色官网 | 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 寂寞人妻少妇视频99o| 搡老妇女老女人老熟妇| 午夜精品一区二区三区免费看| 午夜福利高清视频| 亚洲欧美日韩卡通动漫| 午夜免费观看性视频| 亚洲熟女精品中文字幕| 午夜精品在线福利| 亚洲精品一二三| 在线免费观看的www视频| 成人二区视频| 日本黄大片高清| 免费观看无遮挡的男女| 国产精品一区二区在线观看99 | 韩国高清视频一区二区三区| 国产午夜福利久久久久久| 啦啦啦中文免费视频观看日本| 又黄又爽又刺激的免费视频.| 蜜臀久久99精品久久宅男| 久久久久九九精品影院| 欧美+日韩+精品| 久久久国产一区二区| 蜜桃久久精品国产亚洲av| 日日啪夜夜撸| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 色综合站精品国产| 老师上课跳d突然被开到最大视频| 亚洲乱码一区二区免费版| 亚洲国产精品成人久久小说| 最近中文字幕2019免费版| 777米奇影视久久| 免费黄网站久久成人精品| 2022亚洲国产成人精品| 亚洲综合精品二区| 日本熟妇午夜| 麻豆国产97在线/欧美| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 亚洲一区高清亚洲精品| 成人毛片a级毛片在线播放| 亚洲高清免费不卡视频| 亚洲,欧美,日韩| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 欧美日韩在线观看h| 国产成人aa在线观看| 国产有黄有色有爽视频| 国精品久久久久久国模美| 看黄色毛片网站| xxx大片免费视频| 久久久久久久久久久丰满| 日韩欧美精品v在线| 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 亚洲aⅴ乱码一区二区在线播放| 日韩在线高清观看一区二区三区| 国产成人精品婷婷| 乱码一卡2卡4卡精品| 日韩伦理黄色片| 亚洲一区高清亚洲精品| 久久精品人妻少妇| 精品一区二区三区视频在线| 你懂的网址亚洲精品在线观看| 69av精品久久久久久| 91狼人影院| 男女边吃奶边做爰视频| 国产成人a区在线观看| 色综合亚洲欧美另类图片| 亚洲av电影不卡..在线观看| 久久99精品国语久久久| 亚洲精品成人av观看孕妇| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 日日摸夜夜添夜夜爱| 久久久久久久久久成人| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频 | 男女国产视频网站| 久久这里有精品视频免费| 有码 亚洲区| 联通29元200g的流量卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 大片免费播放器 马上看| 日韩,欧美,国产一区二区三区| 在线观看美女被高潮喷水网站| 久久久欧美国产精品| 欧美精品国产亚洲| 国产成人a区在线观看| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品一区蜜桃| 亚洲欧洲国产日韩| 成人亚洲精品av一区二区| 91av网一区二区| 亚洲成人一二三区av| 国产三级在线视频| 国产av不卡久久| 十八禁国产超污无遮挡网站| 国产精品久久久久久精品电影| 99久久人妻综合| 婷婷六月久久综合丁香| 亚洲久久久久久中文字幕| 五月伊人婷婷丁香| 18禁动态无遮挡网站| 美女主播在线视频| 欧美 日韩 精品 国产| 日韩伦理黄色片| 免费黄网站久久成人精品| 国产精品av视频在线免费观看| 九九爱精品视频在线观看| 亚洲欧洲国产日韩| 直男gayav资源| 免费av毛片视频| 国产乱人偷精品视频| 国产成人91sexporn| 又爽又黄a免费视频| 亚洲av.av天堂| 在线观看人妻少妇| 亚洲精品乱久久久久久| 亚洲天堂国产精品一区在线| 久久久久久久久大av| 精品人妻一区二区三区麻豆| 丰满人妻一区二区三区视频av| videos熟女内射| 亚洲一级一片aⅴ在线观看| 国产高清三级在线| 中文精品一卡2卡3卡4更新| 啦啦啦韩国在线观看视频| 国产成人福利小说| 亚洲av中文字字幕乱码综合| 国产视频首页在线观看| 国产精品不卡视频一区二区| 最近视频中文字幕2019在线8| 久久亚洲国产成人精品v| 嫩草影院新地址| 欧美不卡视频在线免费观看| 一个人观看的视频www高清免费观看| 看十八女毛片水多多多| 18禁在线无遮挡免费观看视频| 精品不卡国产一区二区三区| 99久国产av精品国产电影| 精品一区二区三区人妻视频| 国产淫片久久久久久久久| 国产精品综合久久久久久久免费| 亚洲成人久久爱视频| 国产黄色免费在线视频| 久久精品久久久久久久性| 日韩伦理黄色片| 午夜久久久久精精品| 免费电影在线观看免费观看| 精品久久久噜噜| 夫妻午夜视频| 特级一级黄色大片| 亚洲aⅴ乱码一区二区在线播放| 成人亚洲欧美一区二区av| 久久久色成人| 亚洲精品日韩av片在线观看| 嘟嘟电影网在线观看| 亚洲国产精品专区欧美| 精品久久久噜噜| 国国产精品蜜臀av免费| 日韩成人伦理影院| 国产黄色小视频在线观看| 国产白丝娇喘喷水9色精品| 一级毛片我不卡| 成人毛片a级毛片在线播放| 青春草国产在线视频| 精品久久久久久成人av| 日韩伦理黄色片| 十八禁国产超污无遮挡网站| 国产一区二区亚洲精品在线观看| 97超碰精品成人国产| 69人妻影院| av天堂中文字幕网| 国产精品熟女久久久久浪| 天天躁夜夜躁狠狠久久av| 国产精品伦人一区二区| 日本wwww免费看| 真实男女啪啪啪动态图| 亚洲欧洲日产国产| 国产伦一二天堂av在线观看| 亚洲国产精品成人综合色| 国产精品久久久久久久电影| 狂野欧美白嫩少妇大欣赏| 亚洲自拍偷在线| 国产在视频线在精品| 少妇的逼好多水| 日韩成人伦理影院| 六月丁香七月| av在线蜜桃| 建设人人有责人人尽责人人享有的 | 两个人的视频大全免费| 99热全是精品| 少妇丰满av| 亚洲av成人精品一区久久| 乱人视频在线观看|