• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    2014-10-14 03:45:16DINGXiaoChunCHENXiuZHOUJianHuaWANGTaoSUNDunHEJianPing
    物理化學(xué)學(xué)報 2014年5期
    關(guān)鍵詞:南京航空航天大學(xué)建平建華

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Pt-Ni Catalyst Supported on CMK-5 for the Electrochemical Oxidation of Methanol

    DING Xiao-Chun CHEN Xiu ZHOU Jian-Hua WANG Tao SUN Dun HE Jian-Ping*

    (College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,P.R.China)

    Abstract: Pt-Ni alloy catalysts with different atomic ratios were deposited on CMK-5(carbon replicated from SBA-15 silica)by NaBH4reduction.X-ray diffraction(XRD)suggests alloy formation between Pt and Ni.X-ray photoelectron spectroscopy(XPS)shows that Pt-Ni/CMK-5(5:1)has more detectable oxidized Ni.More metallic Pt is present on Pt-Ni/CMK-5(5:1)(atomic ratio)than on Pt/CMK-5.Oxidized Ni species,such as NiO,Ni(OH)2,and NiOOH,favor the adsorption of methanol and the dissociation of methanol from the surface of Pt.Cyclic voltammetry shows that Pt-Ni/CMK-5(5:1)has the highest specific activity among the as-made catalysts and its electrochemical active area is 63.9 m2·g-1.It has more resistance to CO poisoning than Pt/CMK-5.

    Key Words:CMK-5;Pt/CMK-5 catalyst;Pt-Ni/CMK-5 catalyst;Methanol;Electrooxidation

    1 Introduction

    Fuel cells are appealing alternative power sources as they offer high energy density with zero or low emission of pollutants.Among the diverse types of fuel cells,the proton exchange membrane fuel cells(PEMFC)and direct methanol fuel cells(DMFC)are the most suitable candidates for transportation applications,portable electronics,and residential power sources due to their relatively low operating temperature(<100°C)and fast starting-up function.However,the commercial viability of PEMFC and DMFC is still hindered by several drawbacks,including the low catalytic activity of electrodes,the high cost of the Pt-based catalysts,and the poor durability and reliability.One of the main obstacles for the application of PEMFC in vehicles is the long-term durability of the cathodecatalysts,especially when the fuel cells are operated under the cycle duty.Up to now,the carbon-supported Pt is still a conventional electro-catalyst for PEMFC and DMFC.The degradation of Pt/C cathode catalysts results from both the reduction of electrochemical active surface area(EAS)of Pt and the corrosion of carbon support.1The overpotential caused by the highly irreversible oxygen reduction reaction(ORR)and the methanol crossed over from anode poisoning cathode is the major performance limitation for cathode catalyst.2So there are two solutions to the above problems,one is to quest for alternative catalyst supports,such as carbon nanotubes,carbon spheres,graphitic carbon nanofibers,3-7which are beneficial to improve the dispersion of Pt and consequently enhance its electro-catalytic activity.The other approach is to prepare Pt-based alloy,such as Pt-Ru,Pt-Ni,Pt-Co.8-10Based upon bifunctional mechanism,CO-poisoned Pt nanoparticles can be regenerated via the reaction of surface CO with O-type species associated with a second metal yielding CO2.11Over the last two decades,various Pt-based alloy catalysts had been widely investigated,among which Pt-Ni bimetallic catalyst had attracted more interest.12-21Ni can decrease the oxidation activation potential of H2O,which can dissociate into active oxygen species at a lower potential.The formed active Ni-(OH)adscan react with CO into CO2.Besides,various oxidized Ni accelerate the reaction of Pt-CO with oxygen-containing species produced by oxidized Ni,and thus decreasing the CO-poisoning of Pt.Therefore,Pt-Ni alloy catalyst shows improved electrocatalytic activity.17

    In order to enhance the catalytic activity of the Pt-Ni alloy catalyst,the choice of the support plays a very important role in obtaining high-performance catalysts.CMK-5,a carbon replicated from SBA-15 silica,is among promising support candidates due to its large pore volume,high structural stability and large surface area.22,23Based on our previous research work,the electrochemical active surface of Pt/CMK-5 approximately equals to that of Pt/C(E-ETK).24

    In the present work,CMK-5 was applied to support catalyst nanoparticles via the NaBH4-reduction method.With the fixed total Pt-Ni loading,more Pt loading can absorb more methanol,however displaying a lower electrocatalytic activity.Because less Ni loading forms less Ni-(OH)ads,unfavorable for the oxidation activation of methanol.However a lower Pt loading provides less active sites for absorbing methanol.The present work is undertaken to determine the optimum nominal Pt-Ni atomic ratio among 1:1,3:1,5:1,and 7:1.The physical and morphological characteristics of these bimetallic catalysts were systematically investigated.And the electro-catalytic properties of the catalysts for hydrogen and methanol oxidation were evaluated by cyclic voltammetry.Furthermore,the relationship between the structure and the electrochemical performance and the mechanism interpretation for catalysts were investigated in detail.

    2 Experimental

    2.1 Synthesis of catalyst

    Nano-casting carbon of ordered large pore structure was synthesized via a nanocasting process using SBA-15 as a template,furfuryl alcohol(FA)as a carbon precursor.It was denoted as CMK-5,22,23employed as the catalyst support.The catalyst was obtained via the chemical reduction method by NaBH4.40 mg of CMK-5 was impregnated with 0.038 mol·L-1H2PtCl6in the mixture of water and isopropanol.Then the suspension was constantly stirred to obtain a homogenously dispersed solution,adjusting pH to 9 with NaOH,and subsequently the temperature was increased to 60°C.Afterwards,excessive 0.1 mol·L-1NaBH4solution(31.8 mg NaBH4added into 80 mL of 2 g·L-1NaOH solution)were added dropwise into the suspension under vigorous stirring,followed by 3 h of continuous stirring for the complete reduction of Pt(and Ni).Finally,the resulting material was washed with distilled water several times and dried in a vacuum oven at 80°C,labeled as Pt/CMK-5.The mixture of 0.038 mol·L-1H2PtCl6and 0.01 mol·L-1Ni(NO3)2solution with Pt-Ni atomic ratios of respective 1:1,3:1,5:1,7:1 was used as the Pt-Ni alloy catalyst precursor solution,the following experimental steps were the same as above.And the final samples were signified as Pt-Ni/CMK-5(1:1),Pt-Ni/CMK-5(3:1),Pt-Ni/CMK-5(5:1),and Pt-Ni/CMK-5(7:1),respectively.The metal loading(mass fraction)of all catalysts was 20%.

    2.2 Characterization

    The porous structure of the carbon support was measured by N2adsorption isotherm using Micromeritics ASAP 2010 at 77 K.X-ray diffraction(XRD)patterns of the catalysts were recorded by a Bruker D8 ADVANCE diffractometer using Cu Kαradiation(λ=0.154056 nm).Transmission electron microscopy(TEM,FEI Tecnai G2)operating at 200 kV was applied to characterize the morphology and the particle size distribution of all catalysts.The samples for TEM measurement were prepared by ultrasonically suspending the powder in ethanol and placing a drop of the suspension on a carbon film supported by Cu grids.X-ray photoelectron spectroscopy(XPS)analysis was carried out on an ESCALAB 250(Thermo Electron Co.,America)spectrometer with monochromatic Al Kαradiation(150 W,15 kV).The compositions of the samples were analyzed by inductively coupled plasma atomic emission spectroscopy(ICP-AES,Jarrell-Ash 1100).

    An electrochemical interface(Solartron 1287)and a conventional three-electrode system were employed to conduct the cyclic voltammetry of catalysts in 0.5 mol·L-1H2SO4and 1 mol·L-1H2SO4+2 mol·L-1CH3OH solutions.The working electrode was prepared as follows:5 mg of the catalyst was mixed with 1 mL of ethanol and 50 μL of 5%(mass fraction)Nafion solution(Du Pont).The mixture was sonicated for 30 min to obtain inky slurry.Approximately 25 μL of the slurry was applied onto the surface of the glassy carbon electrode to form a thin layer of ca 0.1256 cm2in geometrical area.A saturated calomel electrode(SCE)and a platinum foil were used as the referenceelectrode and the counter electrode,respectively.The cyclic voltammograms were collected between-0.22 and 0.98 V in H2SO4system(or between 0 and 1 V in methanol system)versusSCE with a scan rate of 20 mV·s?1at room temperature.From the cyclic voltammetry curve,we can calculate the electrochemical active surface area(EASA)of Pt,which are based on Eq.(1).25,26

    where,QHis the total charge of hydrogen atoms electro-absorpted on the Pt surface,mPtis the mass of Pt andQHrefis assumed to be 0.21 mC·cm-2corresponding to a Pt surface density of 1.3×1015cm-2.

    3 Results and discussion

    3.1 Structural analysis

    Wide-angle XRD,presented in Fig.1,is utilized to characterize the crystalline structure of the catalysts.The wide peak observed at about 24°is associated with C(002)-plane diffraction.27Four diffraction peaks observed at 2θof 39°,46°,67°,and 81°are indexed to(111),(200),(220),and(311)reflections,suggesting the face-centered-cubic(fcc)structure for Pt.Furthermore,compared with pure Pt supported catalyst,there emerges a slight shift of Pt(111)-plane peak toward the higher diffraction angle in Pt-Ni alloy catalysts,indicative of the alloy formation between Pt and Ni.28As can be noted from the diffractograms,no characteristic lines of Ni fcc structure are observed.The absence of lines corresponding to metallic Ni fcc structure(along with Pt lattice)may be due to the metallic grains that are intermixed with amorphous Ni oxides such as NiO,Ni(OH)2,and NiOOH.17

    According to the wide-angle XRD patterns,Table 1 lists the corresponding parameters,including the displacement angle of Pt(111)-plane peak(DA),the mean particle size(D),and the lattice constant values(afcc),wherein,Dis evaluated by the parameters of the Pt(220)peak according to Scherrer′s equation,andafccis calculated on the assumption that the alloy particles are completely homogeneously-dispersed.29,30In Table 1,as the content of Ni in binary catalysts increases,the crystalline structure of Pt changes,showing that the adding of a foreign metal influences the crystalline structure.31It was noted that with the proportion of Ni in the Pt-Ni alloys decreasing,all diffraction peaks were shifted synchronously to lower 2θvalues.The shift is an indication of the reduction in lattice constant.According to Vegard′s law,lattice constant can be used to measure the extent of alloying.afccfor Pt-Ni/CMK-5 presents a decrease monotonically with the Ni content.The reduction ofafccin Pt-Ni/CMK-5 arose primarily from the substitution of platinum at-oms by Ni atoms,which led to the contraction of the fcc lattice,an indication of the formation of Pt-Ni alloys.17

    Table 1 Lattice parameters,particle sizes of catalysts calculated based upon XRD patterns

    X-ray photoelectron spectroscopy(XPS)analysis is performed to investigate the oxidation states of Pt and Ni.As shown in Fig.2(a),there emerges a doublet at 71.2 eV/74.6 eV indicative of metallic Pt.In Fig.2(b),Pt 4fregion of the spectrum can be deconvoluted into three pairs of doublets,which are signature of Pt(0),Pt(II)and Pt(IV),respectively.The Ni 2p3/2spectrum shows a corresponding complex structure and different nickel species,including Ni,NiO,Ni(OH)2,and NiOOH with the binding energies located at 852.6,853.78,855.5 and 857.3 eV,respectively.28Furthermore,the relative quantitative analysis can be measured by the integrated intensities of the deconvoluted XPS signals.As shown in Table 2,the Pt-Ni alloy presents a much enhanced enrichment of metallic Pt on the surface as compared with pure Pt catalyst,probably because of the electron transfer from a lower electronegativity of Ni(1.19)to a higher electronegativity of Pt(2.28),which is consistent with the abundant amorphous Ni oxides detectable in Fig.2(c).32

    The micrometric morphology of supported catalysts is generally characterized by the TEM images.In Fig.3(b),the Pt-Ni catalyst with the atomic ratio of 5:1 is small-sized and uniformly anchored onto CMK-5.Comparatively,in Fig.3(c),pure Pt catalyst presents a slight agglomeration,with some relatively large-sized nanoparticles in several regions of carbon support.Besides,as for Pt-Ni(1:1)catalyst,there appears large-area agglomeration phenomenon for alloy nanoparticles,showing the most severe agglomeration among such three alloy nanoparticles.It is known that,given a similar size,the metal having a lower sublimation tends to surface segregate in binary alloys.The heats of vaporization of Pt and Ni are 509.6 and 370.3 kJ·mol-1,respectively.28Therefore,Ni is enriched on the surface,resulting in the most severe alloy catalyst segregation among such three catalysts.Conclusively,appropriate Ni in Pt-Ni alloy catalyst facilitates dispersing nanoparticles on the support.

    Table 2 Valance states,binding energy(EB),and atomic ratios(AR)of integrated intensity of pure Pt in Pt/CMK-5,as well as Pt-Ni and Ni in Pt-Ni/CMK-5(5:1)

    3.2 Electro-catalytic performances

    To evaluate the electro-catalytic properties of supported Pt,CV curves are generally referred to as a means of electrocatalytic characterization.25,26The CV curves for different catalysts in 0.5 mol·L-1H2SO4solution are shown in Fig.4.The reversible hydrogen adsorption/desorption and preoxidation/reduction doublet peaks of Pt are clearly seen for all catalysts except for Pt-Ni/CMK-5(1:1),suggesting that excessive alloy metal is unfavorable to the formation of uniformly-dispersed catalyst particles,and thus resulting in the relative poor electro-catalytic property.

    The electrochemical active surface area(EASA)of metal nanoparticles is one most important parameter in the evaluation of hydrogen electro-oxidation properties.25,26As listed in Table 3,among the as-prepared catalysts,the EASA of Pt-Ni/CMK-5(5:1)reaches a peak value of 63.9 m2·g?1,higher than that reported in literatures(56 m2·g-1).27Compared with Pt/CMK-5,the adding of appropriate Ni can significantly increase the EASA.

    Table 3 Electrochemical active surface area of different catalysts

    Methanol electro-oxidation of all catalysts is showed in Fig.5.The Pt-Ni/CMK-5(5:1)catalyst exhibits better performance than Pt/CMK-5.As the generally accepted interpretation of bifunctional mechanism explained,33metallic Pt facilitates the adsorption/dissociation process of methanol anchored on the surface of Pt.More oxidative Ni can remove the intermediary products derived from the oxidation of methanol,and release more active sites provided by metallic Pt,28as is confirmed by the above XPS analysis.Moreover,the enhanced activity of Pt-Ni/CMK-5(5:1)catalyst can be attributed to optimized electronic properties in Pt 4fwhen it is alloyed with Ni.Electron transfer from Ni to Pt can be explained by the electronegativities of Ni(1.91)and Pt(2.28).The shift indelectron density from Ni to Pt would be expected to lower the density of states(DOS)at the Fermi level and to reduce the bond energy of Pt and CO as a byproduct of methanol electrooxidation.It has already been pointed out that Ni(hydro)oxides on the Pt/Ni nanoparticles could promote methanol oxidationviaa surface redox process.These two contributions to enhancing methanol electrooxidation would exist in the Pt/Ni based electrodes.34

    The ratio of the forward anodic peak current(If)to the backward anodic peak current(Ib)is commonly used to determine the tolerance of catalysts to carbonaceous species accumulation.35Ordinarily,a higherIf/Ibvalue implies more tolerant toward CO-poisoning.In our experiments,the ratio(listed in Table 3)was estimated to be higher for bimetallic catalyst(except Pt-Ni/CMK-5(1:1))than the pure Pt catalyst.A highIf/Ibindicates that most of the intermediate carbonaceous species were oxidized to CO2in the forward scan,further suggesting that the presence of Ni oxides(detectable in XPS)in the catalyst provides an oxygen source for CO oxidation at lower potential.9,18Therefore,Pt-Ni alloy catalyst exhibits an improved resistance to CO poisoning.TheIf/Ibvalue of Pt-Ni/CMK-5(1:1)catalyst is lowest,probably due to the poorly-dispersed Pt nanoparticles.

    4 Conclusions

    In this paper,pure Pt and Pt-Ni alloy catalysts are supported on CMK-5 by chemical reduction method.Based on XRD and XPS results,it is hypothesized that Ni is present in an oxide/hydroxid amorphous form,as confirmed by the XPS.The physical characterization shows that Pt-Ni with the atomic ratio of 5:1 possesses the best dispersity,and provides far more metallic Pt.Due to the favorable structural property,Pt-Ni/CMK-5(5:1)offers the best electro-chemical performance amongst all the as-prepared catalysts.Conclusively,the research work of doping Ni into the lattice of Pt,undoubtedly,is meaningful in solving the problems encountered by fuel cells.

    (1) Liu,X.;Chen,J.;Liu,G.;Zhang,L.;Zhang,H.M.;Yi,B.L.J.Power Sources2010,195,4098.

    (2)Li,W.Z.;Zhou,W.J.;Li,H.Q.;Zhou,Z.H.;Zhou,B.;Sun,G.Q.;Xin,Q.Electrochim.Acta2004,49,1045.

    (3)Yang,C.W.;Wang,D.L.;Hu,X.G.;Dai,C.S.;Liang,Z.J.Alloy.Compd.2008,448,109.

    (4) Wang,X.M.;Li,N.;Pfefferle,L.D.;Haller,G.L.J.Phys.Chem.,C2010,114,16996.

    (5)Tang,H.;Chen,J.H.;Nie,L.H.;Liu,D.Y.;Deng,W.;Kuang,Y.F.;Yao,S.Z.J.Colloid Interface Sci.2004,269,26.

    (6) Steigerwalt,E.S.;Deluga,G.A.;Lukehart,C.M.J.Nanosci.Nanotechnol.2003,3,247.

    (7)Yen,C.H.;Shimizu,K.;Lin,Y.Y.;Bailey,F.;Cheng,I.F.;Wai,C.M.Energy Fuels2007,21,2268.

    (8)Shimazaki,Y.;Hayasaka,S.;Koyama,T.;Nagao,D.;Kobayashi,Y.;Konno,M.J.Colloid Interface Sci.2010,350,580.

    (9) Zhao,Y.;E,Y.F.;Fan,L.Z.;Qiu,Y.F.;Yang,S.H.Electrochim.Acta2007,52,5873.

    (10) Do,J.S.;Chen,Y.T.;Lee,M.H.J.Power Sources2007,172,623.

    (11) Choi,J.H.;Park,K.W.;Kwon,B.K.;Sung,Y.E.J.Electrochem.Soc.2003,150,773.

    (12) Liu,F.;Lee,J.Y.;Zhou,W.J.J.Phys.Chem.B2004,108,17959.

    (13) Jeon,T.Y.;Yoo,S.J.;Cho,Y.H.;Lee,K.S.;Kang,S.H.;Sung,Y.E.J.Phys.Chem.C2009,113,19732.

    (14)Jiang,S.J.;Ma,Y.W.;Tao,H.S.;Jian,G.Q.;Wang,X.Z.;Fan,Y.N.;Zhu,J.M.;Hu,Z.J.Nanosci.Nanotechnol.2010,10,3895.

    (15)Yano,H.;Kataoka,M.;Yamashita,H.;Uchida,H.;Watanabe,M.Langmuir2007,23,6438.

    (16) He,C.Z.;Kunz,H.R.;Fenton,J.M.J.Electrochem.Soc.2003,150,A1071.

    (17)Mathiyarasu,J.;Remona,A.M.;Mani,A.;Phani,K.L.N.;Yegnaraman,V.J.Solid State Electrochem.2004,8,968.

    (18)Liu,Z.L.;Ling,X.Y.;Su,X.D.;Lee,J.Y.J.Phys.Chem.B 2004,108,8234.

    (19) Wang,Z.B.;Yin,G.P.;Shi,P.F.J.Electrochem.Soc.2005,153,A2406.

    (20) Park,K.W.;Choi,J.H.;Ahn,K.S.;Sung,Y.E.J.Phys.Chem.B 2004,108,5989.

    (21) Sun,D.;He,J.P.;Zhou,J.H.;Wang,T.;Di,Z.Y.;Ding,X.C.Acta Phys.-Chim.Sin.2010,26,1219.[孫 盾,何建平,周建華,王 濤,狄志勇,丁曉春.物理化學(xué)學(xué)報,2010,26,1219.]

    (22)Lu,A.H.;Li,W.C.;Schmidt,W.G.;Schuth,F.Microporous Mesoporous Mat.2005,80,117.

    (23) Antolini,E.;Salgado,J.R.C.;Gonzalez,E.R.J.Electroanal.Chem.2005,580,145.

    (24)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.;Mei,T.Q.Electrochem.Solid-State Lett.2007,10,B191.

    (25) Pozio,A.;Francesco,D.M.;Cemmi,A.J.Power Sources 2002,105,13.

    (26)Yang,R.Z.;Liu,X.P.;Zhang,H.R.Carbon 2005,43,11.

    (27)Zhou,J.H.;He,J.P.;Dang,W.J.;Zhao,G.W.;Zhang,C.X.Electrochem.Solid-State Lett.2007,10,B191.

    (28)Park,K.W.;Choi,J.H.;Kwon,B.K.;Lee,S.A.;Sung,Y.E.J.Phys.Chem.B 2002,106,1869.

    (29) Gojkovic,S.L.;Vidakovic,T.R.;Durovic,D.R.Electrochim.Acta 2003,48,3607.

    (30) Radmilovic,V.;Gasteiger,H.A.;Ross,P.N.J.Catal.1995,154,98.

    (31)Geng,D.S.;Lu,G.X.J.Phys.Chem.C 2007,111,11897.

    (32) Liu,F.;Lee,J.Y.;Zhou,W.J.Small 2006,2,121.

    (33)Watanabe,M.;Uchida,M.;Motoo,S.J.Electroanal.Chem.1987,229,395.

    (34) Park,K.W.;Choi,J.H.;Sung,Y.E.J.Phys.Chem.B 2003,107,5851.

    (35)Lin,Y.;Cui,X.;Yen,C.;Wai,C.M.J.Phys.Chem.B 2005,109,14410.

    CMK-5負載Pt-Ni合金催化劑及其甲醇電化學(xué)氧化性能

    丁曉春 陳 秀 周建華 王 濤 孫 盾 何建平*

    (南京航空航天大學(xué)材料科學(xué)與技術(shù)學(xué)院,南京210016)

    采用NaBH4還原法將不同原子比的鉑鎳負載于CMK-5(由SBA-15模板所得的碳載體)表面.X射線衍射(XRD)和X射線光電子能譜(XPS)測試結(jié)果表明,所得催化劑是以鉑鎳合金的形式存在,相對于Pt/CMK-5而言,這種合金化的催化劑中Pt表現(xiàn)出更多的金屬態(tài).電化學(xué)測試結(jié)果顯示,在催化劑中主要以化合態(tài)存在的鎳(包括NiO、Ni(OH)2和NiOOH)可能更有利于甲醇的吸附和氧化產(chǎn)物從催化劑表面的脫附.另外,從循環(huán)伏安測試結(jié)果可知,Pt-Ni/CMK-5(5:1)(原子比)具有較大的比表面活性,其電化學(xué)活性面積高達63.9 m2·g-1,且與Pt/CMK-5相比抗CO中毒能力有明顯改善.

    CMK-5;Pt/CMK-5催化劑;Pt-Ni/CMK-5催化劑; 甲醇; 電化學(xué)氧化

    O646

    Received:October 27,2010;Revised:January 10,2011;Published on Web:February 16,2011.

    ?Corresponding author.Email:jianph@nuaa.edu.cn;Tel:+86-25-52112900;Fax:+86-25-52112626.The project was supported by the National Natural Science Foundation of China(50871053).

    國家自然科學(xué)基金(50871053)資助項目

    猜你喜歡
    南京航空航天大學(xué)建平建華
    Her dream came true她的夢想成真了
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)機電學(xué)院
    南京航空航天大學(xué)
    南京航空航天大學(xué)生物醫(yī)學(xué)光子學(xué)實驗室
    米沙在書里
    可怕的事
    變變變
    阿嗚想做貓
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    狠狠狠狠99中文字幕| 天堂影院成人在线观看| 日本爱情动作片www.在线观看| 爱豆传媒免费全集在线观看| 国产成人免费观看mmmm| 国产乱人视频| 免费无遮挡裸体视频| av在线亚洲专区| 亚洲成人久久爱视频| 97在线视频观看| 国产不卡一卡二| 又粗又爽又猛毛片免费看| 久久人人爽人人片av| 色播亚洲综合网| av播播在线观看一区| 亚洲色图av天堂| 久久久久国产网址| 黄片wwwwww| 国产女主播在线喷水免费视频网站 | 日本熟妇午夜| 97超碰精品成人国产| 国产综合懂色| 国产大屁股一区二区在线视频| 欧美成人午夜免费资源| 少妇熟女欧美另类| 久久精品夜色国产| 日韩欧美精品免费久久| 嫩草影院新地址| 国产高清有码在线观看视频| 在线观看美女被高潮喷水网站| 村上凉子中文字幕在线| 色网站视频免费| 特级一级黄色大片| 国语自产精品视频在线第100页| 成人亚洲欧美一区二区av| 一级毛片aaaaaa免费看小| 亚洲欧美精品综合久久99| 日本欧美国产在线视频| 好男人视频免费观看在线| 欧美成人一区二区免费高清观看| 校园人妻丝袜中文字幕| 欧美性感艳星| 免费大片18禁| 免费观看性生交大片5| 欧美成人a在线观看| 久久久精品94久久精品| 久久精品综合一区二区三区| 色综合站精品国产| 国产精品爽爽va在线观看网站| 久久久久久久午夜电影| 有码 亚洲区| 在线免费观看的www视频| 七月丁香在线播放| 午夜a级毛片| 日韩中字成人| 91aial.com中文字幕在线观看| 久久精品久久久久久噜噜老黄 | 99在线人妻在线中文字幕| 国产成人精品久久久久久| 国产乱人视频| 亚洲激情五月婷婷啪啪| 我的老师免费观看完整版| av播播在线观看一区| 婷婷色综合大香蕉| 亚洲欧洲国产日韩| 亚洲国产欧美在线一区| 精品久久国产蜜桃| 亚洲精品日韩av片在线观看| 男女啪啪激烈高潮av片| 麻豆久久精品国产亚洲av| 欧美三级亚洲精品| 国产老妇女一区| 日本-黄色视频高清免费观看| 国产精品人妻久久久久久| 久久久久久久亚洲中文字幕| 99久久人妻综合| 99热这里只有精品一区| 非洲黑人性xxxx精品又粗又长| 午夜福利成人在线免费观看| 亚洲国产成人一精品久久久| 亚洲人成网站在线播| 欧美高清性xxxxhd video| 99久久成人亚洲精品观看| 国产色婷婷99| 久热久热在线精品观看| 毛片女人毛片| 国模一区二区三区四区视频| 嫩草影院精品99| 亚洲18禁久久av| 久久精品国产自在天天线| 国产精品福利在线免费观看| 2022亚洲国产成人精品| ponron亚洲| 久久精品91蜜桃| h日本视频在线播放| 免费看光身美女| 成年版毛片免费区| 日韩一区二区视频免费看| 亚洲在线观看片| 99热这里只有是精品在线观看| 国产精品嫩草影院av在线观看| 国产黄a三级三级三级人| 爱豆传媒免费全集在线观看| 黄片无遮挡物在线观看| 婷婷色综合大香蕉| 国产精品久久久久久精品电影| 我的女老师完整版在线观看| 国产精品人妻久久久影院| 久久久久精品久久久久真实原创| 精品久久久久久久久亚洲| 日日撸夜夜添| 狂野欧美激情性xxxx在线观看| 色哟哟·www| a级毛片免费高清观看在线播放| 色哟哟·www| 一边亲一边摸免费视频| 成年av动漫网址| 联通29元200g的流量卡| 欧美一级a爱片免费观看看| 亚洲av中文字字幕乱码综合| 国产高清不卡午夜福利| 日韩一本色道免费dvd| 国产高潮美女av| 美女大奶头视频| 国产一区二区在线观看日韩| 高清日韩中文字幕在线| 国产精品人妻久久久影院| 亚洲欧洲日产国产| 国产亚洲午夜精品一区二区久久 | 国产在视频线在精品| 极品教师在线视频| 久久久色成人| 日韩 亚洲 欧美在线| 成人av在线播放网站| 国产精品一区www在线观看| 国内精品宾馆在线| 亚洲四区av| 亚洲四区av| 毛片女人毛片| 亚洲综合精品二区| 日韩高清综合在线| 欧美成人一区二区免费高清观看| 亚洲精品影视一区二区三区av| 亚洲av熟女| 女人十人毛片免费观看3o分钟| 国产黄色小视频在线观看| 深爱激情五月婷婷| 国产一区二区在线观看日韩| 日本wwww免费看| 日韩制服骚丝袜av| 床上黄色一级片| 亚洲精品国产成人久久av| 舔av片在线| 狂野欧美激情性xxxx在线观看| 国产一区二区亚洲精品在线观看| 九色成人免费人妻av| 六月丁香七月| 国产乱来视频区| 亚洲图色成人| 精品久久久久久久人妻蜜臀av| 看免费成人av毛片| 国产精品久久久久久久电影| 日韩一本色道免费dvd| 看非洲黑人一级黄片| 九九热线精品视视频播放| 亚洲精品国产成人久久av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色噜噜av男人的天堂激情| 亚洲av成人精品一二三区| 爱豆传媒免费全集在线观看| 亚洲av福利一区| 男女国产视频网站| 91久久精品国产一区二区成人| 精品久久久久久久末码| 男人的好看免费观看在线视频| 亚洲av免费高清在线观看| 国产精品一区www在线观看| 99热这里只有是精品在线观看| 精品99又大又爽又粗少妇毛片| 亚洲人成网站在线播| 中文在线观看免费www的网站| 天堂网av新在线| 亚洲欧美成人精品一区二区| 一个人看视频在线观看www免费| 综合色丁香网| 国产成人福利小说| 国产黄色小视频在线观看| 亚洲高清免费不卡视频| 老司机影院成人| 国产亚洲一区二区精品| 啦啦啦啦在线视频资源| 级片在线观看| 亚洲三级黄色毛片| 大又大粗又爽又黄少妇毛片口| 欧美丝袜亚洲另类| 大香蕉97超碰在线| 女人十人毛片免费观看3o分钟| 免费观看的影片在线观看| 亚洲人与动物交配视频| 免费看日本二区| 国产精品伦人一区二区| 色尼玛亚洲综合影院| 国产精品电影一区二区三区| 色综合色国产| 精品不卡国产一区二区三区| 日本黄大片高清| 日韩人妻高清精品专区| 只有这里有精品99| 国产不卡一卡二| 国产亚洲91精品色在线| a级毛片免费高清观看在线播放| 成人高潮视频无遮挡免费网站| 国产精品99久久久久久久久| 岛国毛片在线播放| 欧美日韩一区二区视频在线观看视频在线 | 国产在视频线在精品| 啦啦啦观看免费观看视频高清| 亚洲精华国产精华液的使用体验| 成人高潮视频无遮挡免费网站| 成人亚洲欧美一区二区av| 纵有疾风起免费观看全集完整版 | 国产淫语在线视频| 欧美激情久久久久久爽电影| 欧美精品一区二区大全| 黄片无遮挡物在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 深爱激情五月婷婷| 六月丁香七月| 国产精品一区www在线观看| 色尼玛亚洲综合影院| 日韩成人伦理影院| 精品熟女少妇av免费看| 哪个播放器可以免费观看大片| 中文精品一卡2卡3卡4更新| 一个人免费在线观看电影| 亚洲欧美一区二区三区国产| 国产 一区 欧美 日韩| 色5月婷婷丁香| 身体一侧抽搐| 久久99热这里只有精品18| 欧美性猛交黑人性爽| 高清视频免费观看一区二区 | 三级毛片av免费| 亚洲久久久久久中文字幕| 99热这里只有是精品50| 免费观看在线日韩| 夫妻性生交免费视频一级片| 1000部很黄的大片| 99久久精品热视频| 乱人视频在线观看| 好男人视频免费观看在线| 狂野欧美白嫩少妇大欣赏| 成人亚洲精品av一区二区| 精品久久久久久久久久久久久| 午夜视频国产福利| h日本视频在线播放| 久久久亚洲精品成人影院| 成人国产麻豆网| 亚洲av成人av| 超碰av人人做人人爽久久| 性色avwww在线观看| 99热这里只有是精品在线观看| 国产综合懂色| 国产精品99久久久久久久久| 国产午夜福利久久久久久| 午夜日本视频在线| www.色视频.com| 日本爱情动作片www.在线观看| 国产精品久久久久久精品电影小说 | 国产乱人视频| 欧美性猛交黑人性爽| 三级毛片av免费| 欧美97在线视频| 伊人久久精品亚洲午夜| 嫩草影院精品99| 水蜜桃什么品种好| 久久久精品大字幕| 三级男女做爰猛烈吃奶摸视频| 日产精品乱码卡一卡2卡三| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品女同一区二区软件| 国产精品美女特级片免费视频播放器| 国产一区有黄有色的免费视频 | 别揉我奶头 嗯啊视频| 亚洲最大成人中文| 男人舔奶头视频| 乱人视频在线观看| 日韩一区二区三区影片| 国产 一区 欧美 日韩| 国产老妇女一区| av播播在线观看一区| 亚洲内射少妇av| 禁无遮挡网站| 一级爰片在线观看| 看免费成人av毛片| 欧美日韩精品成人综合77777| 视频中文字幕在线观看| 久久99热6这里只有精品| 中文资源天堂在线| 波多野结衣高清无吗| АⅤ资源中文在线天堂| 国产精品熟女久久久久浪| 国产一区有黄有色的免费视频 | 少妇人妻精品综合一区二区| 国产免费又黄又爽又色| 国产伦一二天堂av在线观看| 亚洲精品亚洲一区二区| 国产高清视频在线观看网站| 国产成人a∨麻豆精品| 国产视频内射| 99久久精品一区二区三区| 我的老师免费观看完整版| 最近最新中文字幕免费大全7| 日本免费a在线| 99久国产av精品| 日韩成人伦理影院| 午夜福利高清视频| 国产国拍精品亚洲av在线观看| 久久午夜福利片| 精品久久久久久成人av| 黄色配什么色好看| 亚洲真实伦在线观看| 又粗又硬又长又爽又黄的视频| 最后的刺客免费高清国语| 午夜激情福利司机影院| 亚洲在线自拍视频| 美女脱内裤让男人舔精品视频| 久久精品久久久久久噜噜老黄 | 国产亚洲av片在线观看秒播厂 | 国产单亲对白刺激| 国产亚洲精品av在线| 亚洲激情五月婷婷啪啪| 一边亲一边摸免费视频| 久久久国产成人免费| 国产日韩欧美在线精品| 熟女电影av网| 色吧在线观看| 成人无遮挡网站| 午夜福利成人在线免费观看| 国产成人一区二区在线| 波多野结衣高清无吗| 亚洲内射少妇av| 欧美成人一区二区免费高清观看| 干丝袜人妻中文字幕| 在线播放无遮挡| 波多野结衣高清无吗| 97在线视频观看| a级毛色黄片| 久久久久久久久久成人| 国产伦精品一区二区三区视频9| 99久久无色码亚洲精品果冻| 一级av片app| 久久久久免费精品人妻一区二区| 日本五十路高清| 激情 狠狠 欧美| 亚洲人与动物交配视频| 亚洲三级黄色毛片| 国产精品综合久久久久久久免费| 精品午夜福利在线看| 好男人在线观看高清免费视频| 亚洲国产成人一精品久久久| 成人高潮视频无遮挡免费网站| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 又爽又黄a免费视频| 亚洲中文字幕一区二区三区有码在线看| 97超视频在线观看视频| 男插女下体视频免费在线播放| 国产淫语在线视频| 2022亚洲国产成人精品| 最近视频中文字幕2019在线8| 熟女人妻精品中文字幕| 亚洲欧美成人精品一区二区| 日本色播在线视频| 久久6这里有精品| 精品久久久久久久久久久久久| 最近中文字幕2019免费版| 热99在线观看视频| 18禁在线无遮挡免费观看视频| 欧美成人午夜免费资源| 老司机影院毛片| 久久久成人免费电影| 久久久久九九精品影院| 国产精品野战在线观看| 国产精品国产三级专区第一集| 亚洲av一区综合| 特大巨黑吊av在线直播| 国产精品一区二区三区四区免费观看| 高清日韩中文字幕在线| 美女cb高潮喷水在线观看| 亚洲在线观看片| 日韩av不卡免费在线播放| 网址你懂的国产日韩在线| 在线免费观看的www视频| 美女高潮的动态| 国产精品一区二区三区四区免费观看| 亚洲国产精品sss在线观看| 69人妻影院| 天堂影院成人在线观看| 欧美日韩一区二区视频在线观看视频在线 | 九草在线视频观看| 亚洲精品成人久久久久久| 欧美zozozo另类| 精品久久久久久久久久久久久| 国产精品久久久久久久电影| 亚洲自偷自拍三级| 久久久国产成人免费| 欧美变态另类bdsm刘玥| 日韩av不卡免费在线播放| 天美传媒精品一区二区| 级片在线观看| 天天躁夜夜躁狠狠久久av| 日韩强制内射视频| 麻豆精品久久久久久蜜桃| 国产成人freesex在线| 国产伦精品一区二区三区视频9| 久久午夜福利片| 老女人水多毛片| 免费观看在线日韩| 久久久久久国产a免费观看| 麻豆乱淫一区二区| 亚洲,欧美,日韩| 久久这里只有精品中国| 亚洲婷婷狠狠爱综合网| 老师上课跳d突然被开到最大视频| 精品熟女少妇av免费看| 色综合站精品国产| 色尼玛亚洲综合影院| 日产精品乱码卡一卡2卡三| 91久久精品国产一区二区成人| 在线播放国产精品三级| 久久欧美精品欧美久久欧美| 69人妻影院| 国产日韩欧美在线精品| 男人舔奶头视频| 国产精品久久久久久av不卡| av在线老鸭窝| 国产极品天堂在线| 丰满少妇做爰视频| 99久久精品一区二区三区| 久久国产乱子免费精品| 亚洲最大成人手机在线| 国产探花在线观看一区二区| 亚洲欧美成人综合另类久久久 | 国产成人freesex在线| 亚洲国产精品sss在线观看| 国产乱来视频区| 亚洲av不卡在线观看| 亚洲中文字幕日韩| 青青草视频在线视频观看| 高清在线视频一区二区三区 | 久久久成人免费电影| 久久久久网色| 亚洲国产精品合色在线| 国产亚洲91精品色在线| 久久99热6这里只有精品| 亚洲国产高清在线一区二区三| 一边亲一边摸免费视频| 久久久国产成人精品二区| 高清午夜精品一区二区三区| 一级二级三级毛片免费看| 中文字幕人妻熟人妻熟丝袜美| 婷婷色综合大香蕉| 国产真实乱freesex| 亚洲无线观看免费| 日韩三级伦理在线观看| 免费看av在线观看网站| 国产高清不卡午夜福利| 国产精品日韩av在线免费观看| 麻豆av噜噜一区二区三区| h日本视频在线播放| 少妇的逼好多水| 麻豆av噜噜一区二区三区| 插逼视频在线观看| 国产一区二区在线av高清观看| 欧美成人午夜免费资源| 欧美又色又爽又黄视频| 美女内射精品一级片tv| 国产又色又爽无遮挡免| 国产欧美另类精品又又久久亚洲欧美| 日韩一区二区三区影片| 日本黄色视频三级网站网址| 国产精品女同一区二区软件| 最近最新中文字幕大全电影3| www日本黄色视频网| 免费观看的影片在线观看| 夜夜爽夜夜爽视频| eeuss影院久久| 热99re8久久精品国产| 亚洲第一区二区三区不卡| 亚洲18禁久久av| 麻豆乱淫一区二区| 国产免费一级a男人的天堂| 长腿黑丝高跟| 久99久视频精品免费| 日韩国内少妇激情av| 一边亲一边摸免费视频| 中文字幕制服av| 日日啪夜夜撸| 免费观看的影片在线观看| 人妻制服诱惑在线中文字幕| 国产亚洲91精品色在线| 精品99又大又爽又粗少妇毛片| 22中文网久久字幕| videossex国产| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 一本久久精品| 日本熟妇午夜| 少妇的逼好多水| av黄色大香蕉| 91av网一区二区| 在线免费观看不下载黄p国产| 欧美区成人在线视频| 国产av码专区亚洲av| 我要搜黄色片| 亚洲无线观看免费| 成人漫画全彩无遮挡| 91精品一卡2卡3卡4卡| 丰满乱子伦码专区| 国产在线一区二区三区精 | av免费观看日本| 亚洲国产精品成人久久小说| 欧美日韩国产亚洲二区| 日韩制服骚丝袜av| 乱系列少妇在线播放| 人妻系列 视频| 午夜福利在线观看免费完整高清在| 亚洲欧洲日产国产| 国产乱人偷精品视频| 我的老师免费观看完整版| 亚洲精品影视一区二区三区av| 高清视频免费观看一区二区 | 国产精品福利在线免费观看| 性插视频无遮挡在线免费观看| 久久久久国产网址| 国产精品日韩av在线免费观看| 又黄又爽又刺激的免费视频.| 一个人看的www免费观看视频| 少妇被粗大猛烈的视频| 91精品国产九色| 国产爱豆传媒在线观看| 一本一本综合久久| 少妇熟女aⅴ在线视频| 狂野欧美激情性xxxx在线观看| 天堂影院成人在线观看| 男女下面进入的视频免费午夜| 插阴视频在线观看视频| 国产伦一二天堂av在线观看| 综合色av麻豆| 国产又黄又爽又无遮挡在线| 男女啪啪激烈高潮av片| 亚洲精品影视一区二区三区av| 国产黄片美女视频| 九九热线精品视视频播放| 亚洲久久久久久中文字幕| 午夜福利在线观看免费完整高清在| 日韩欧美精品免费久久| 91狼人影院| 日韩欧美三级三区| 18禁裸乳无遮挡免费网站照片| 国产成人午夜福利电影在线观看| 亚洲美女视频黄频| 久久久久性生活片| 亚洲精品自拍成人| 少妇猛男粗大的猛烈进出视频 | 国产激情偷乱视频一区二区| 精品久久久久久久久亚洲| 国产精品蜜桃在线观看| 成人毛片60女人毛片免费| 亚洲婷婷狠狠爱综合网| 人人妻人人澡人人爽人人夜夜 | 人人妻人人看人人澡| 色吧在线观看| 国产大屁股一区二区在线视频| 亚洲成人精品中文字幕电影| 99久国产av精品国产电影| 国产午夜精品论理片| 日韩三级伦理在线观看| 91精品国产九色| 午夜福利高清视频| 卡戴珊不雅视频在线播放| 国产伦精品一区二区三区四那| 日韩三级伦理在线观看| 亚洲精品456在线播放app| 国产免费一级a男人的天堂| 免费观看性生交大片5| 亚洲人成网站在线观看播放| 热99在线观看视频| 日本黄色片子视频| 成年女人看的毛片在线观看| av在线天堂中文字幕| 成人美女网站在线观看视频| 日韩中字成人| 麻豆成人午夜福利视频| 伊人久久精品亚洲午夜| 免费大片18禁| 国产成人a区在线观看| 久久精品国产自在天天线| 水蜜桃什么品种好| 1000部很黄的大片| 久久精品久久精品一区二区三区| 日韩视频在线欧美| 国产黄a三级三级三级人| 成年av动漫网址| 国产极品天堂在线| 免费看av在线观看网站| 在线观看av片永久免费下载| 成人无遮挡网站| 99视频精品全部免费 在线| 欧美一区二区亚洲| 欧美一级a爱片免费观看看| 爱豆传媒免费全集在线观看|