• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lump and Stripe Soliton Solutions to the Generalized Nizhnik-Novikov-Veselov Equation?

    2018-11-19 02:22:34ZhengYiMa馬正義JinXiFei費金喜andJunChaoChen陳俊超
    Communications in Theoretical Physics 2018年11期
    關(guān)鍵詞:正義

    Zheng-Yi Ma(馬正義), Jin-Xi Fei(費金喜),and Jun-Chao Chen(陳俊超)

    1Institute of Nonlinear Analysis and Department of Mathematics,Zhejiang Lishui University,Lishui 323000,China

    2Department of Mathematics,Zhejiang Sci-Tech University,Hangzhou 310018,China

    3Department of Photoelectric Engineering,Zhejiang Lishui University,Lishui 323000,China

    AbstractWith the aid of the truncated Painlevé expansion,a set of rational solutions of the(2+1)-dimensional generalized Nizhnik-Novikov-Veselov(GNNV)equation with the quadratic function which contains one lump soliton is derived.By combining this quadratic function and an exponential function,the fusion and fission phenomena occur between one lump soliton and a stripe soliton which are two kinds of typical local excitations.Furthermore,by adding a corresponding inverse exponential function to the above function,we can derive the solution with interaction between one lump soliton and a pair of stripe solitons.The dynamical behaviors of such local solutions are depicted by choosing some appropriate parameters.

    Key words:Nizhnik-Novikov-Veselov equation,quadratic function,rational solution,lump soliton,stripe soliton

    1 Introduction

    The(2+1)-dimensional Korteweg-de Vries(KdV)equation introduced by Boiti et al.can be expressed[1]

    This nonlocal equation reduces to the(1+1)-dimensional KdV equation

    if x = y. The generalized Nizhnik-Novikov-Veselov(GNNV)equation is a symmetric generalization of the(2+1)-dimensional KdV equation

    where a,b,c,d are four free constants and Eq.(3)is also an isotropic Lax integrable extension of the(1+1)-dimensional KdV equation.This equation has been shown to be completely integrable and poessess exponentially localized solutions.[2?3]Using a novel approach involving the truncated Laurent expansion in the Painlevé analysis,the constructed multi-elliptic function solutions and multi-dromions have been extended to the trilinearized case of GNNV equation.[4]The elementary and systematic binary Bell polynomials method has been applied to this equation.[5]The bilinear representation,bilinear B?cklund transformation(BT),Lax pair and infinite conservation laws of this equation have been obtained directly,without too much trick like Hirota’s bilinear method.Applying the truncated Painlevé expansion to the(2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov(ANNV)system,some BTs including auto and non-auto ones have been obtained.[6]Starting from the consistent tan-function expansion(CTE),some complex interaction solutions between soliton and arbitrary other seed waves of the ANNV system have constructed,such as bight-dark soliton solution,dark-dark soliton solution,soliton-cnoidal wave interaction solutions,solitoff solutions and so on.

    One of valid ways to describe nonlinear phenomena is to derive various kinds of explicit solutions in the appropriate physical models,such as typical solitons and traveling wave solutions in nonlinear science.Recent advances in integrable systems,computer technics and numerical approaches have brought the development of effective techniques to search for these solutions.These powerful approaches include the inverse scattering method(a method which can be used to solve the initial value problem for certain classes of nonlinear partial differential equations),[7]the bilinear method(a new stability-preserving order reduction approach),[8]the B?cklund transform(which is typically a system of first order partial differential equations relating two functions,and often depending on an additional parameter).[9]The typical methods also include the truncated Painlevé expansion,[10]the similarity reduction,[11]the hyperbolic function method[12]and so on.

    This paper is presented as follows.In Sec.2,starting from the truncated Painlevé expansion,a set of rational solutions of(2+1)-dimensional GNNV equation with the quadratic function which contains a lump soliton is derived.In Sec.3,by combining the quadratic function with an exponential one,the interaction phenomena with fusion and fission between a lump and one stripe solitons are presented.In Sec.4,by introducing an inverse exponential function further for the above function,one generalized solution including the stripe soliton pairs interacting with a lump is obtained.The dynamical behaviors of such local solutions are discussed by choosing the appropriate parameters.The last section is a short summary.

    2 Lump Soliton Solution

    A lump soliton structure is localized in both space directions and described in a fully developed rogue wave(RW)which can be expressed by one suitable rational function.[13]For this purpose to the GNNV equation(3),we need the following process.The truncated Painlevé expansion[14?15]of Eq.(3)is

    here f is the singularity manifold,ui,vj,wk(i,j,k=0,1,2)are related to the function f as well as its derivative,which can be determined by substituting Eq.(4)into Eq.(3).Through the computation of fourteen overdetermined equations of these functions,the truncated Painlevé expansion can be derived

    here a0is a real constant.

    To search for the lump and its corresponding structures,we need to take the following quadratic function f,which has been proved effectively to the Kadomtsev-Petviashvili(KP)-like equations[16?23]

    where ai(i=1,2,...,9)are nine undetermined real parameters.By substituting Eq.(6)with(5)into Eq.(3)and collecting the coefficients of the variables x,y,and t,one can get twenty equations.A direct calculation leads to the following algebraic relation

    Therefore,the corresponding solution of the(2+1)-dimensional integrable GNNV equation(3)reads

    with

    Although the parameters a1,a2,a4,a5,a6,and a8are arbitrary,the solution should be well defined,which means two columns(a1,a2)and(a5,a6)out of proportion and unparallel in the(x,y)-plane,and the lump soliton solution could be taken shape.For this case,it can be seen from Eq.(9)that the lump solution tends to 0 at any given time t whenor equivalently,The moving path of this lump can be depicted by

    from vx=vy=0 of Eq.(9).This indicates its moving velocity

    and the maximum amplitude

    along with the moving path

    Fig.1 Pro files of the solution v in Eq.(9)with the time t=0,(a)3D lump plot,(b)the corresponding density plot,respectively.(c)The contour plot with routing display.

    As a typical example,we choose the parameters a=b=c=d=a2=a5=1,a0=a1=2,a4=a8=0,a6= ?1,so a3= ?27/5,a7=81/5,a9=5/9.The conditionsandare guaranteed,one lump solution is shown explicitly in Fig.1 for the solution v of Eq.(9).The chosen parameters a4=a8=0 affirm the lump with center at the origin when t=0.The corresponding moving velocity,the maximum amplitude and the moving path of this lump areandrespectively,which can be derived from Eqs.(12)–(14).Figure 1(a)is the three-dimensional plot of this lump at time t=0,Fig.1(b)is the corresponding density plot.Figure 1(c)shows contour plot of the lump at different times?1,0,1 and the moving route as described by the straight line at the slope?7/2 in the(x,y)-plane.

    3 Interaction Solution Between One Lump Soliton and a Stripe Soliton

    This section is to describe the interaction between one lump soliton and a stripe soliton with fusion and fission phenomena.Generally speaking,the elastic collision between solitons in an integrable model is one of the most important phenomena in soliton theory which means the velocity,amplitude and wave shape of each soliton do not change after their interaction.[24?25]However,in some special circumstances,the interactions between soliton excitations such as peakons and compactons of some integrable models are not completely elastic.[26]In particular,two or more solitons may fuse into one while one soliton may fission into two or more.Such phenomena are often called soliton fusion and fission.[27?28]Indeed,these phenomena have been found in many physical fields like plasma physics and hydrodynamics.[29?30]

    In the following,we seek for the fusion and fission phenomena for the(2+1)-dimensional integrable GNNV equation(3).By adding the exponential function

    to Eq.(6)with k0,k1,k2,and k3being four undetermined real parameters,the function f is expressed by

    Substituting Eq.(16)with Eq.(5)into Eq.(3)and collecting the coefficients of the variables x,y,t leads to 65 equations.By solving these equations,we obtain the following constraint relations of the parameters

    Fig.2 Density figures of the fusion solution v in Eq.(19)between one lump soliton and a stripe soliton with the times t= ?4,?0.1,1.5,15,respectively,in(x,y)-plane with the parameters(21).

    In this situation,the quadratic function solution of Eq.(16)is taken as

    Then the corresponding solution of the GNNV equation(3)has the form

    with

    The above constraint relations of the parameters(17)need to ensure the localization of the solution u,v,w. To obtain the interaction solution between one lump soliton and a stripe soliton to the integrable GNNV equation,we consider the special circumstance of the above solution(19)and(20)when a9=0.

    The above solution(19)is a composition of the quadratic sum of two polynomial functions g,h and an exponential function p for the variables x,y,t,and obviously,the order of an exponential function is higher than the polynomial functions.To illustrate the fusion and fission interaction structures,we choose the following values of related parameters

    Fig.3 Density figures of the fission solution v in Eq.(19)between one lump soliton and a stripe soliton with the times t= ?15,?2,0.1,4,respectively,with the parameters(21)except for the opposite values of a2,a3,a5,a7,k1,k2,k3.

    Figures 2(a)–2(d)show the whole fusion process between one lump soliton and a stripe soliton as they move in same direction.Figure 2(a)shows one lump and a stripe soliton in the separate station at the time t=?4.When t=?0.1,the lump has chased after and tangled with the stripe as shown in Fig.2(b).Then,this lump begins to be swallowed by the stripe as shown in Figs.2(c)(t=1.5)and 2(d)(t=15),and its energy transfer into the stripe soliton gradually,until these two solitons blend into one stripe structure.On the contrary,when some parameters are taken just the opposite values,i.e.a2=a5=?3,a3=6,a7=3,k1=k2=k3=?1,but the rest are the same as above(21),the fission phenomenon occurs only if the time t is taken from ?15 to 4.Figures 3(a)–3(d)show the whole fission process between one lump soliton and a stripe soliton.

    4 Interaction Solution Between One Lump Soliton and Stripe Soliton Pairs

    Along with the idea of the collision of one lump soli-ton and a stripe soliton,we start to study the collision of one lump soliton with stripe solitons pairs.To this end,we continue to add the exponential function which is a inverse one of Eq.(15)in the form

    to the expression of the function f in Eq.(16),where n0is also an undetermined real parameter.Then Eq.(16)has the form Substituting Eq.(23)with Eq.(5)into Eq.(3),after the complicated calculation,we have

    Fig.4 Density figures of the interaction solution v in Eq.(25)between one lump and stripe soliton pairs with the symmetric time t= ?20,?1,0,1,20,respectively,with the parameters(29).

    where the rest parameters may take arbitrary real constants theoretically if and only if the above expression(24)is meaningful.Then the corresponding rational solution of the(2+1)-dimensional integrable GNNV equation

    with

    The asymptotic behavior of one lump and resonance soliton pairs can be studied according to the expression of Eq.(26).By taking

    it is found that the function relation of g and η reads

    and further the limited relations for g,h and p+q are given by

    The expression(28)implies that two polynomial functions g,h are the same order,while the exponential function p+q is higher than a polynomial function when the time t→±∞.At this time,the resonance solitons pairs arise,since g in Eq.(27)contians the scaling and time displacement for η under the condition of η being a constant.

    In order to illustrate such an interaction effect,we choose the parameters as

    Figures 4(a)–4(e)show the interaction solution between one lump soliton and stripe soliton pairs at times t= ?20,?1,0,1,20,respectively,in(x,y)-plane.Figure 4(a)exhibits the resonance soliton pairs,in which a lump soliton is merged in the left one and almost invisible.With the increase of the time t,this lump fission from the left stripe propagating in Fig.4(b).At the moment t=0,the amplitude of lump arrives at the maximum,a lump and stripe soliton pairs are separated explicitly.Figures 4(c)and 4(d)show that the lump begins to be swallowed by the right stripe soliton,until the lump fuse into this stripe and continues to move in the same direction.

    5 Conclusion and Summary

    The study of the lump dynamic behaviors for the nonlinear GNNV equation firstly starts from the truncated Painlevé expansion with an auxiliary function f.By taking the auxiliary functions as the special form including the quadratic function and exponential function,we derive the lump solution,the interaction solution among one lump,a stripe soliton,and stripe soliton pairs.The lump solution is characterized by its structure localizing in all directions in the space.By combining the quadratic function with an exponential one,the interaction phenomena with fusion and fission between one lump and a stripe solitons are presented.For the interaction among one lump and a stripe soliton,there are two different physics phenomena:fusion and fission.In the process of fusion,the lump soliton and stripe soliton are independent from each other at first and as time goes on,lump soliton begins to be swallowed gradually until disappearing.The fission is an inverse progress of the fusion.As is known to all,to find the fission/fusion of the local coherent structures in a(2+1)-dimensional integrable equation is an important task.Furthermore,by introducing an inverse exponential function for the established function,one generalized solution including the stripe soliton pairs interacting with a lump is obtained.The dynamical behaviors of such local solutions are discussed mainly in density forms by choosing the appropriate parameters.

    Indeed,in nonlinear science,the studying of the explicit solution about an integrable system is helpful in clarifying the underlying algebraic structure of the soliton theory and plays an important role in reasonable explaining of the corresponding natural phenomenon and application.These related localized excitations and their behaviors are originated from many natural sciences,such as fluid dynamics,plasma physics,solid physics,superconducting physics,condensed matter physics and optical problems.[31?34]In fact,it is of interest to study such types of analytical solutions.As we know,the soliton and solitary wave are two typical nonlinear structures widely appearing in many physical fields such as ocean.Here we mainly devote to obtain the interaction of lump and stripe soliton solutions from the original model equation.It is expected to the realistic physical interpretation and experiment observation.For instance,in recent work,[35]the oblique propagation of ion-acoustic soliton-cnoidal waves was reported in a magnetized electron-positron-ion plasma with superthermal electrons.

    猜你喜歡
    正義
    用正義書寫文化自信
    華人時刊(2022年9期)2022-09-06 01:00:38
    從解釋到證成——最優(yōu)解釋方法是否可以充分證成正義理論?
    哲學評論(2021年2期)2021-08-22 01:55:10
    從出文看《毛詩正義》單疏本到十行本的演變
    天一閣文叢(2020年0期)2020-11-05 08:28:16
    紅六軍團的正義槍聲
    我的“正義”女神
    有了正義就要喊出來
    山東青年(2016年3期)2016-02-28 14:25:49
    正義必勝!和平必勝!人民必勝!
    倒逼的正義與溫情
    正義必勝!和平必勝!人民必勝!
    法律與正義
    浙江人大(2014年5期)2014-03-20 16:20:26
    自拍欧美九色日韩亚洲蝌蚪91| 成人午夜精彩视频在线观看| 免费观看在线日韩| 亚洲av.av天堂| 天美传媒精品一区二区| 久热久热在线精品观看| 国产探花极品一区二区| 日本色播在线视频| 中文字幕av电影在线播放| 在线观看www视频免费| 午夜福利乱码中文字幕| 午夜日本视频在线| 成人18禁高潮啪啪吃奶动态图| 亚洲一区中文字幕在线| 美女午夜性视频免费| 香蕉丝袜av| 亚洲伊人久久精品综合| 丰满少妇做爰视频| 国产一区有黄有色的免费视频| 性高湖久久久久久久久免费观看| 日韩精品有码人妻一区| 午夜日韩欧美国产| 亚洲国产毛片av蜜桃av| 国产免费福利视频在线观看| 午夜激情久久久久久久| 人妻少妇偷人精品九色| 午夜免费男女啪啪视频观看| 最新的欧美精品一区二区| 一边亲一边摸免费视频| 最近2019中文字幕mv第一页| 精品人妻在线不人妻| 制服丝袜香蕉在线| 男女边吃奶边做爰视频| 欧美成人午夜精品| 欧美人与善性xxx| 国产精品成人在线| av国产精品久久久久影院| 国产精品一二三区在线看| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费| 欧美精品国产亚洲| 观看美女的网站| 夜夜骑夜夜射夜夜干| 久久久久久人妻| 美女高潮到喷水免费观看| 欧美人与性动交α欧美精品济南到 | 日韩精品有码人妻一区| 一级毛片我不卡| 久久精品国产亚洲av天美| 黄色一级大片看看| 少妇人妻久久综合中文| 99久久精品国产国产毛片| 精品人妻一区二区三区麻豆| 精品国产乱码久久久久久男人| 色吧在线观看| 欧美 亚洲 国产 日韩一| av在线观看视频网站免费| 极品人妻少妇av视频| 久久 成人 亚洲| 国产精品蜜桃在线观看| 女人久久www免费人成看片| 国产极品粉嫩免费观看在线| 美女福利国产在线| 91成人精品电影| 日本免费在线观看一区| 欧美中文综合在线视频| 激情视频va一区二区三区| 免费在线观看完整版高清| 欧美精品一区二区免费开放| 日本爱情动作片www.在线观看| 晚上一个人看的免费电影| 欧美人与善性xxx| 日本色播在线视频| 天天躁日日躁夜夜躁夜夜| 男女午夜视频在线观看| 久久久久久久久久久久大奶| 国产人伦9x9x在线观看 | 观看av在线不卡| 啦啦啦在线免费观看视频4| 飞空精品影院首页| 色网站视频免费| 日日撸夜夜添| 亚洲国产精品成人久久小说| 国产精品不卡视频一区二区| 亚洲天堂av无毛| 高清不卡的av网站| 在线观看一区二区三区激情| 男的添女的下面高潮视频| 国产精品三级大全| 亚洲欧美日韩另类电影网站| 亚洲国产日韩一区二区| av免费在线看不卡| 少妇 在线观看| 蜜桃在线观看..| 亚洲人成电影观看| 美女福利国产在线| 日韩电影二区| 这个男人来自地球电影免费观看 | 国产一级毛片在线| 国产男女超爽视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 中文天堂在线官网| 黄片播放在线免费| 亚洲少妇的诱惑av| 美女大奶头黄色视频| 精品一区在线观看国产| 999久久久国产精品视频| 看十八女毛片水多多多| 国产男人的电影天堂91| 成人二区视频| 精品国产一区二区三区久久久樱花| 一本色道久久久久久精品综合| 女性被躁到高潮视频| 人妻 亚洲 视频| 欧美亚洲 丝袜 人妻 在线| 观看美女的网站| 男人舔女人的私密视频| 满18在线观看网站| 国产亚洲最大av| 国产精品久久久久久精品古装| 亚洲中文av在线| av片东京热男人的天堂| 一边摸一边做爽爽视频免费| 国产精品.久久久| 成人国语在线视频| 国产精品一二三区在线看| 精品酒店卫生间| 色吧在线观看| 亚洲欧美精品综合一区二区三区 | 亚洲内射少妇av| 韩国av在线不卡| 捣出白浆h1v1| 在线观看三级黄色| 免费看av在线观看网站| 欧美激情高清一区二区三区 | 亚洲精品第二区| 伦精品一区二区三区| 久久精品国产自在天天线| 亚洲国产最新在线播放| 午夜福利一区二区在线看| 街头女战士在线观看网站| 久久97久久精品| 国产日韩欧美亚洲二区| 亚洲av国产av综合av卡| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲| 麻豆av在线久日| 欧美日韩视频高清一区二区三区二| 中文字幕制服av| 熟女电影av网| av天堂久久9| 国产精品蜜桃在线观看| 国产成人精品无人区| 中文字幕最新亚洲高清| 久久久国产欧美日韩av| 久久精品亚洲av国产电影网| 日韩欧美精品免费久久| 深夜精品福利| 久久久久视频综合| 国产精品一二三区在线看| 国产白丝娇喘喷水9色精品| 在线观看三级黄色| 成年av动漫网址| 亚洲av日韩在线播放| 制服人妻中文乱码| videos熟女内射| 麻豆av在线久日| 日日摸夜夜添夜夜爱| av在线app专区| 男女啪啪激烈高潮av片| 王馨瑶露胸无遮挡在线观看| 国产午夜精品一二区理论片| 一区二区av电影网| 欧美成人午夜精品| 成年美女黄网站色视频大全免费| 亚洲精品久久午夜乱码| 久久这里有精品视频免费| 成人黄色视频免费在线看| 国语对白做爰xxxⅹ性视频网站| 一区二区日韩欧美中文字幕| 免费播放大片免费观看视频在线观看| 一边摸一边做爽爽视频免费| 欧美激情高清一区二区三区 | 亚洲成人一二三区av| 人体艺术视频欧美日本| 午夜免费鲁丝| 久久久精品免费免费高清| 精品国产乱码久久久久久小说| 久久国内精品自在自线图片| 亚洲久久久国产精品| 99热网站在线观看| 丝袜在线中文字幕| 纵有疾风起免费观看全集完整版| 亚洲,一卡二卡三卡| 欧美av亚洲av综合av国产av | 人人妻人人添人人爽欧美一区卜| 免费少妇av软件| 欧美日本中文国产一区发布| 视频在线观看一区二区三区| 丰满乱子伦码专区| 久久久久久久国产电影| 亚洲一区二区三区欧美精品| 性色avwww在线观看| kizo精华| 久久久国产一区二区| 欧美成人精品欧美一级黄| 亚洲国产精品一区二区三区在线| 啦啦啦视频在线资源免费观看| 一级爰片在线观看| 最黄视频免费看| a级毛片黄视频| www.av在线官网国产| 久久久久视频综合| 婷婷色av中文字幕| 91午夜精品亚洲一区二区三区| 毛片一级片免费看久久久久| 国产精品香港三级国产av潘金莲 | 亚洲精品日韩在线中文字幕| 一本大道久久a久久精品| 欧美老熟妇乱子伦牲交| 国产精品亚洲av一区麻豆 | 国产在线视频一区二区| 伦理电影免费视频| 男人添女人高潮全过程视频| 成人国产麻豆网| 一二三四在线观看免费中文在| 看十八女毛片水多多多| 黄色怎么调成土黄色| 在线观看一区二区三区激情| 亚洲欧美成人综合另类久久久| 人妻少妇偷人精品九色| 一级毛片黄色毛片免费观看视频| 亚洲,一卡二卡三卡| 日韩欧美一区视频在线观看| 国产成人免费观看mmmm| 久久久久久人妻| 亚洲av国产av综合av卡| 亚洲欧美中文字幕日韩二区| 国产av码专区亚洲av| 久久午夜综合久久蜜桃| 亚洲三级黄色毛片| 18禁裸乳无遮挡动漫免费视频| 欧美日韩精品网址| 成年女人在线观看亚洲视频| 国产精品av久久久久免费| av有码第一页| 日韩三级伦理在线观看| 日韩中文字幕欧美一区二区 | 国产精品嫩草影院av在线观看| 久久久欧美国产精品| 最黄视频免费看| 青青草视频在线视频观看| 久热久热在线精品观看| 在线天堂中文资源库| av片东京热男人的天堂| 日韩一区二区三区影片| 国产白丝娇喘喷水9色精品| www.精华液| 三上悠亚av全集在线观看| 天堂中文最新版在线下载| 制服人妻中文乱码| 91成人精品电影| 免费高清在线观看视频在线观看| 91精品国产国语对白视频| 日本91视频免费播放| 免费女性裸体啪啪无遮挡网站| 日韩大片免费观看网站| 亚洲精品国产av成人精品| 极品少妇高潮喷水抽搐| 大话2 男鬼变身卡| 国产精品三级大全| 久久韩国三级中文字幕| www.精华液| 色婷婷久久久亚洲欧美| 国产亚洲精品第一综合不卡| 大陆偷拍与自拍| 日韩精品有码人妻一区| 综合色丁香网| 日韩制服丝袜自拍偷拍| 蜜桃在线观看..| 日韩不卡一区二区三区视频在线| 精品久久久精品久久久| 亚洲精品一二三| 欧美日韩一级在线毛片| 又黄又粗又硬又大视频| 欧美+日韩+精品| 日韩制服骚丝袜av| 99热全是精品| 一级毛片黄色毛片免费观看视频| 丰满迷人的少妇在线观看| av在线老鸭窝| 黄片无遮挡物在线观看| 国产综合精华液| 日韩制服丝袜自拍偷拍| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 亚洲精品国产av蜜桃| 免费看不卡的av| 久久99蜜桃精品久久| 久久久久人妻精品一区果冻| 麻豆精品久久久久久蜜桃| 亚洲第一青青草原| 街头女战士在线观看网站| 久久精品国产综合久久久| h视频一区二区三区| 男人操女人黄网站| 欧美另类一区| 青春草国产在线视频| 久久女婷五月综合色啪小说| 国产精品人妻久久久影院| 国产在视频线精品| 美女中出高潮动态图| 黄片无遮挡物在线观看| 欧美国产精品va在线观看不卡| 久久久久久久亚洲中文字幕| 欧美精品人与动牲交sv欧美| 一二三四中文在线观看免费高清| 狠狠精品人妻久久久久久综合| 纵有疾风起免费观看全集完整版| 精品少妇久久久久久888优播| 亚洲第一av免费看| 中文欧美无线码| 久久韩国三级中文字幕| 久久毛片免费看一区二区三区| 欧美人与性动交α欧美精品济南到 | 久久久久久久久久久免费av| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品电影小说| 久久亚洲国产成人精品v| 一本色道久久久久久精品综合| 国产成人欧美| 国产精品久久久av美女十八| 欧美精品人与动牲交sv欧美| 热re99久久国产66热| 欧美日韩亚洲高清精品| 伦精品一区二区三区| 精品一区二区免费观看| 国产精品久久久久成人av| 波多野结衣av一区二区av| 色网站视频免费| 亚洲国产欧美在线一区| 亚洲色图综合在线观看| 亚洲av在线观看美女高潮| 国产成人精品在线电影| 日韩大片免费观看网站| 亚洲av免费高清在线观看| 亚洲国产精品999| www.熟女人妻精品国产| 久久久欧美国产精品| 夫妻午夜视频| 在线观看免费视频网站a站| 亚洲综合色网址| 国产免费又黄又爽又色| 熟女少妇亚洲综合色aaa.| 美女午夜性视频免费| 亚洲国产欧美在线一区| 午夜福利乱码中文字幕| 欧美精品av麻豆av| 国产毛片在线视频| 日本av手机在线免费观看| 深夜精品福利| 啦啦啦中文免费视频观看日本| 十八禁网站网址无遮挡| 国产av国产精品国产| 免费大片黄手机在线观看| av国产精品久久久久影院| 不卡视频在线观看欧美| 高清不卡的av网站| 久久久久久久久久久免费av| 午夜91福利影院| 欧美日韩综合久久久久久| 99久久综合免费| 亚洲人成77777在线视频| 国产免费视频播放在线视频| 久久国产精品大桥未久av| 亚洲国产最新在线播放| 亚洲欧美一区二区三区黑人 | 视频在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 国产精品无大码| 婷婷色av中文字幕| 日韩精品有码人妻一区| 丁香六月天网| 高清av免费在线| 一区二区日韩欧美中文字幕| 国产精品一区二区在线不卡| 国产探花极品一区二区| 精品少妇内射三级| 国产精品av久久久久免费| 亚洲欧美清纯卡通| 男的添女的下面高潮视频| 最近2019中文字幕mv第一页| 久久精品亚洲av国产电影网| 三上悠亚av全集在线观看| 日韩不卡一区二区三区视频在线| 久久久国产欧美日韩av| 免费久久久久久久精品成人欧美视频| kizo精华| 久久精品久久精品一区二区三区| 国产一区二区激情短视频 | 亚洲av欧美aⅴ国产| 丝袜脚勾引网站| 亚洲精品视频女| 三级国产精品片| 亚洲色图 男人天堂 中文字幕| 欧美日韩亚洲高清精品| 日日撸夜夜添| 久久精品熟女亚洲av麻豆精品| 夫妻午夜视频| 亚洲久久久国产精品| 高清不卡的av网站| 精品国产露脸久久av麻豆| 一本久久精品| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| 久久99精品国语久久久| 999久久久国产精品视频| 菩萨蛮人人尽说江南好唐韦庄| 男女午夜视频在线观看| 国产激情久久老熟女| 国产不卡av网站在线观看| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 久久国内精品自在自线图片| 1024视频免费在线观看| 婷婷成人精品国产| 色婷婷av一区二区三区视频| 男女无遮挡免费网站观看| 亚洲精品国产色婷婷电影| 久久av网站| 日日爽夜夜爽网站| 中文字幕人妻丝袜制服| 一二三四在线观看免费中文在| 91国产中文字幕| 婷婷成人精品国产| 亚洲伊人久久精品综合| 久久精品熟女亚洲av麻豆精品| 国产人伦9x9x在线观看 | 欧美人与性动交α欧美软件| 日韩一本色道免费dvd| 在线观看www视频免费| 免费在线观看黄色视频的| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| 国产毛片在线视频| 亚洲婷婷狠狠爱综合网| 纵有疾风起免费观看全集完整版| 一区二区三区激情视频| 少妇被粗大猛烈的视频| 丝袜喷水一区| 成人影院久久| 女性生殖器流出的白浆| 在现免费观看毛片| freevideosex欧美| 三上悠亚av全集在线观看| 十分钟在线观看高清视频www| 久久精品熟女亚洲av麻豆精品| 日韩伦理黄色片| 久久精品国产鲁丝片午夜精品| 爱豆传媒免费全集在线观看| 免费看不卡的av| 国精品久久久久久国模美| 美女脱内裤让男人舔精品视频| 美女国产高潮福利片在线看| 国产精品一国产av| 在线观看人妻少妇| 国产片内射在线| 久久鲁丝午夜福利片| 美国免费a级毛片| 伊人亚洲综合成人网| 另类精品久久| 女人精品久久久久毛片| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频| 免费女性裸体啪啪无遮挡网站| 少妇人妻精品综合一区二区| 久久久久精品久久久久真实原创| 欧美97在线视频| 亚洲情色 制服丝袜| 国产成人精品在线电影| 国产 精品1| 亚洲熟女精品中文字幕| 免费黄频网站在线观看国产| 伦理电影免费视频| 亚洲经典国产精华液单| 97人妻天天添夜夜摸| 国产一区二区三区av在线| 久久精品国产亚洲av天美| 久久久国产一区二区| 欧美人与善性xxx| 精品久久久精品久久久| 最新的欧美精品一区二区| 伊人久久大香线蕉亚洲五| 亚洲综合色网址| 在线精品无人区一区二区三| 又黄又粗又硬又大视频| 久久99精品国语久久久| 精品人妻一区二区三区麻豆| 欧美精品av麻豆av| 亚洲人成77777在线视频| 国产 精品1| av福利片在线| 亚洲国产看品久久| 久久久久久久精品精品| 日本-黄色视频高清免费观看| 亚洲三区欧美一区| 七月丁香在线播放| 午夜福利一区二区在线看| 一二三四中文在线观看免费高清| 纵有疾风起免费观看全集完整版| 如何舔出高潮| 又粗又硬又长又爽又黄的视频| 亚洲久久久国产精品| 夜夜骑夜夜射夜夜干| 只有这里有精品99| 在线观看人妻少妇| 两个人看的免费小视频| 欧美日韩综合久久久久久| 亚洲精品第二区| 精品一区二区三区四区五区乱码 | 亚洲精品成人av观看孕妇| 最新中文字幕久久久久| 日韩一区二区视频免费看| xxxhd国产人妻xxx| 男女免费视频国产| 婷婷成人精品国产| 在线观看三级黄色| 成年人免费黄色播放视频| 我要看黄色一级片免费的| 国产精品成人在线| 欧美精品高潮呻吟av久久| 制服人妻中文乱码| 精品国产乱码久久久久久男人| 黄网站色视频无遮挡免费观看| 日日撸夜夜添| 人妻一区二区av| 国产在视频线精品| 香蕉国产在线看| 国产成人精品一,二区| 美女xxoo啪啪120秒动态图| 色网站视频免费| 欧美成人午夜精品| 中国三级夫妇交换| 尾随美女入室| 2021少妇久久久久久久久久久| 如日韩欧美国产精品一区二区三区| 亚洲国产毛片av蜜桃av| 久久99热这里只频精品6学生| 久久99一区二区三区| 久久久久久人人人人人| 亚洲欧洲日产国产| 夫妻性生交免费视频一级片| 97精品久久久久久久久久精品| 精品一区二区免费观看| 在线天堂最新版资源| 亚洲精品在线美女| 777米奇影视久久| www.av在线官网国产| 欧美日韩精品网址| 日韩制服骚丝袜av| 黄片小视频在线播放| 国产精品久久久久成人av| 男人操女人黄网站| 精品一品国产午夜福利视频| 黄色毛片三级朝国网站| 亚洲精品自拍成人| 男女午夜视频在线观看| 人人妻人人添人人爽欧美一区卜| 男女下面插进去视频免费观看| 男人舔女人的私密视频| 久久ye,这里只有精品| 丝袜美腿诱惑在线| 精品国产超薄肉色丝袜足j| 国产男人的电影天堂91| 日韩熟女老妇一区二区性免费视频| 亚洲欧美一区二区三区国产| 色婷婷av一区二区三区视频| 高清视频免费观看一区二区| 亚洲四区av| 免费在线观看黄色视频的| 少妇的逼水好多| 日韩免费高清中文字幕av| 日本色播在线视频| 久热这里只有精品99| 午夜日韩欧美国产| 亚洲精品视频女| 日本91视频免费播放| 啦啦啦中文免费视频观看日本| 天天躁夜夜躁狠狠久久av| 精品人妻一区二区三区麻豆| 色视频在线一区二区三区| 成人毛片60女人毛片免费| 国产爽快片一区二区三区| 久久影院123| 久久99一区二区三区| www.自偷自拍.com| 国产精品女同一区二区软件| 永久免费av网站大全| 亚洲伊人色综图| 校园人妻丝袜中文字幕| 男的添女的下面高潮视频| av在线app专区| 看免费av毛片| 亚洲一区二区三区欧美精品| 亚洲国产毛片av蜜桃av| 久久国产亚洲av麻豆专区| 欧美亚洲 丝袜 人妻 在线| 亚洲第一av免费看| 嫩草影院入口| 国产精品一国产av| 考比视频在线观看| 超碰成人久久| 久久精品国产自在天天线| 久热这里只有精品99| 婷婷色综合www|