• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hierarchical Human Action Recognition with Self-Selection Classifiers via Skeleton Data?

    2018-11-19 02:23:22BenYueSu蘇本躍HuangWu吳煌MinSheng盛敏andChuanShengShen申傳勝
    Communications in Theoretical Physics 2018年11期

    Ben-Yue Su(蘇本躍), Huang Wu(吳煌),Min Sheng(盛敏),and Chuan-Sheng Shen(申傳勝)

    1School of Computer and Information,Anqing Normal University,Anqing 246133,China

    2The Key Laboratory of Intelligent Perception and Computing of Anhui Province,Anqing 246133,China

    3School of Mathematics and Computational Science,Anqing Normal University,Anqing 246133,China

    AbstractHuman action recognition has become one of the most active research topics in human-computer interaction and artificial intelligence,and has attracted much attention.Here,we employ a low-cost optical sensor Kinect to capture the action information of the human skeleton.We then propose a two-level hierarchical human action recognition model with self-selection classifiers via skeleton data.Especially different optimal classifiers are selected by probability voting mechanism and 10 times 10-fold cross validation at different coarse grained levels.Extensive simulations on a well-known open dataset and results demonstrate that our proposed method is efficient in human action recognition,achieving 94.19%the average recognition rate and 95.61%the best rate.

    Key words:human action recognition,hierarchical architecture model,self-selection classifiers,optimal classification unit

    1 Introduction

    Human action recognition(HAR)is a hots pot of computervision.[1]With the popularity of human centered-computing,HAR is of great importance in human-machine interaction,virtual reality,mixed reality,robotics,education,medical treatment,games,intangible cultural heritage and so on.[2]Due to individual diversity in human beings,styles of the same action performed by different persons are usually different.Because of psychological emotions,operating time and other reasons,the same action is performed even for the same person at same time,and the results may also be different.[3]Therefore,it is a huge challenge for HAR to deal with the complexity and variety of human actions.The study of HAR can be traced back to the early work of Johansson.[4]Experiments showed that most of the action can be direct recognized according to the position information of the joint,and the change of the human skeleton position can reflect the information of action.Many of the early research work were based on MoCap,[5?6]namely motion capture,a system of recording the movement of objects or people.However,MoCap needs to manually mark the position of joint point and thus is high-cost.

    Subsequently,Kinect a simple and low-cost device,has been paid much attention.Kinect released by Microsoft was originally used as a peripheral to the Microsoft Xbox gaming console to enhance the gaming experience.However,its excellent product experience and advanced somatosensory technology have attracted the interest of academics,and more and more scholars use its technology for research activities.HAR is an important topic of these activities.Recently,research works on Kinect-based human motion recognition have made great progress.Firstly,Li et al.[7]proposed a Bag-of-3D-Point human motion recognition algorithm.Yang et al.[8]developed a fast HAR algorithm based on skeleton data.A compact human pose representation based on Histograms of 3D Joint Locations(HOJ3D)was reported by Xia et al.[9]Afterwards,Ellis et al.[10]extracted time series of human gestures from skeleton sequences for action recognition,which includes each posture and the whole motion information.Very recently,Shahroudy et al.introduced a large-scale dataset(NTU RGB+D)for HAR,[11]and put forward a Part-aware Long Short-Term Memory(P-LSTM)model,which is more effective than the traditional recurrent neural network.Similarly,an end-to-end two-stream recurrent neural network method was proposed by Wang et al.[12]Other methods,such as Refs.[13–15]are also used to study the position information of the skeleton joint points for HAR.However,the data acquired by Kinect is low quality and high noise,since Kinect uses structured light coding technology to acquire the depth data of the image,[16?17]which makes the skeleton data drift.Therefore,it is another huge challenge for HAR using skeleton data.

    To overcome the above two challenges,on the one hand,we propose a hierarchical human motion recognition model to coarse grain actions,classifying human actions layer-by-layer,and each layer adopts different kinds of data features with or without time-varying.On the other hand,we design an optimal classification unit by selecting the best classifier based on the training data itself to enhance the recognition rate.

    The rest of the paper is organized as follows:We analyze human body structure stratification and propose hierarchical recognition strategy in the next section.In Sec.3,we introduce the optimal classification unit and describe the function of self selection classifier.Simulation results are presented in Sec.4,and discussion about the practicability,robustness and extensibility of the method in Sec.5.At last,the main conclusions are addressed in Sec.6.

    2 Hierarchical Architecture

    2.1 Human Body Structure Stratification

    Human body is a complex system,consisting of nine subsystems,where the human body movement system is an important one. The exercise system consists of three organs:bone,bone connection,and skeletal muscle.Bones are connected in different shapes to form the skeleton to make up the basic frame of the human body.The bone connection,so-called the joint,is a locomotion axis.The skeletal muscle provides power for motion.From the point of view of human movement,bone is passive,while skeletal muscle is active.As a result,the physical information of passive motion and the active EMG signal are main factors in the field of HAR.In the field of computer vision,optical sensors are generally used to acquire the physical information of motion.In common sense,the basic posture of the human body is usually composed of the head,neck,chest,abdomen and limbs.

    Human movement can be generally divided into translation,rotation,and compound movement.However,the movement and structure of the human body are dependent.In the following,we will stratify the structure of the human body.The first layer is a whole,and the second layer has five parts.Accordingly,we also separate the human body movement into two layers,corresponding to the whole body movement and the sectional movement respectively.Thus,the structure of human motion system exhibits hierarchical behavior,playing a guiding rule in HAR.

    Kinect skeleton tracking technology uses 20 human skeleton joint points to represent a human model.These 20 points are as follows:HipCenter(HC),Spine(S),Shoulder Center(SC),Head(H),Left Shoulder(LS),Left Elbow(LE),Left Wrist(LW),Left Hand(LH),Right Shoulder(RS),Right Elbow(RE),Right Wrist(RW),Right Hand(RH),HipLeft(HL),Left Knee(LK),Left Ankle(LA),Left Foot(LF),HipRight(HR),Right Knee(RK),Right Ankle(RA),and Right Foot(RF).Based on the Kinect skeleton model,we split human body into five parts,and draw its schematic illustration in Fig.1,where the Part 1 corresponds to the Waist and Head,the Part 2 the Left Arm,the Part 3 the Right Arm,the Part 4 the Left Leg,and the Part 5 the Right Leg.

    Fig.1(Color online)Kinect human model and 5 parts,where Part 1 includes HC,S,SC,and H;Part 2 includes LS,LE,LW,and LH;Part 3 includes RS,RE,RW,and RH;Part 4 includes HL,LK,LA,and LF;Part 5 includes HR,RK,RA,and RF.

    2.2 Hierarchical Recognition Strategy

    According to the human body structure stratification,we propose a hierarchical strategy,which simplifies the complex human body behavior by classifying different kinds of action.Our proposed hierarchical strategy is described in Fig.2.More specifically,we divide the original categoriesinto several major categoriesat the first level.Then,for each major category,we also divide it into several subcategories at the second level and repeat this operation.Finally,we get subcategories that can not be subdivided.

    Fig.2 Hierarchical classification strategy,whererepresents the category of some actions,parameter k denotes the index of layers to which the current action belongs,i indicates the order of its parent category,and j is the local index.Note that the number of sub-categories is different from each other,even in the same level.

    Next,we take the following actions,as examples such as waving with right hand,punching with right hand,waving with both hands and punching with both hands,and use two-level classification method to apply our strategy.Firstly,waving with right hand and punching with right hand are coarse-grained as one kind of movement,e.g.actions-with-right-arm,and waving with both hands and punching with both hands are regarded as another kind,e.g.actions-with-both-arms.Secondly,we further classify these two kinds of movement into more visible actions.Note that here the detailed actions of fingers are not considered.

    3 Self-Selection Classifiers

    3.1 Optimal Classification Unit

    The general process of HAR is shown in Fig.3,where feature extraction and classifier construction are the key points.There are two types of feature extraction:one is based on traditional knowledge acquisition and the other is based on deep learning.Obviously the latter has become a research hot topic in recent years,and has received much progress.In this present work,we are interested in the classifier construction.

    Fig.3 General process of HAR.M denotes the model learned through training samples.

    Traditionally,the classifier construction depends on one’s sufficient prior knowledge or experience.It is thus difficult to design an adaptive classifier,which can perform better identification automatically.In this article,we design an optimal classification unit(OCU),as shown in Fig.4,where the dotted part is the OCU.The main steps are summarized as below:

    (i)Giving training data with labels;

    (ii)Designing a set of classifiers{C(1),C(2),...,C(N)};

    (iii)Inputting the training data to each classifier by crossvalidation,and outputting a recognition rate matrix;

    (iv)Selecting an optimal classifier C(*)by the voting mechanism(refer for details to the Subsec.3.2.Probability voting mechanism);

    (v)Testing C(*)and outputting the final predict labels.

    Furthermore,OCU is also suitable for hierarchical classification.The use of OCU in deep hierarchical classification model is shown in Fig.5.More specifically,we design[OCU]1for the first level classification and use[OCU]2for each category at the second level,and so on.Ultimately,we obtain the final results at the last level.

    Fig.4 Schematic illustration of construction of OCU.FTrainingand FTestingrepresent the feature of training data and testing data,respectively. CV denotes the cross-validation method for determining the best classifier,C(1),C(2),C(j),and C(N)denote classifiers,R(1),R(2),R(j),and R(N)denote the recognition results by different classifiers,D is probability voting mechanism for decision-making,and C(*)indicates the optimal classifier.

    3.2 Probability Voting Mechanism

    We start from a recognition rate matrix N×M,where the row number 1,2,...,N represent the index of classifier,and M denotes m-fold cross-validation,and the voting mechanism of the optimal classifier is shown in Fig.6.The main idea is as follows: firstly,the probability of each classifier having maximal recognition rate in M tests is calculated(D1),and output the index of the classifier with maximal probability to “Unique?”.If output indices,the corresponding classifier will be regarded as the optimal one C(*)and outputs,otherwise,these indices are transferred to D2.Secondly,D2 calculates the average recognition rate of those classifiers given by D1 and outputs the index of the classifier with maximum rate.If outputs indices are unique,the corresponding classifier will be regarded as C(*)and outputs;otherwise,these indices are transferred to D3,and D3 randomly chooses a classifier finally.

    Fig.5 OCU in deep hierarchical classification model.TrD,TeD,TDPL,and SC are the abbreviation of Training Data,Testing Data,Testing Data Predict Label,and Sub-Category,respectively.The superscript of the symbol represents the index of layers.m indicates the number of categories in the local layer.

    Fig.6 The voting mechanism of OCU.Step D1 is to obtain the probability of each classifier having maximal recognition rate in M tests,and outputs the index of the classifier with maximal probability,D2 calculates the average rate over M trials of the classifiers offered by D1,and outputs the index of the classifier with maximal average rate,and D3 randomly chooses a classifier given by D2.

    4 Simulation

    4.1 Environment

    In this study,the simulation environment includes hardware and software. We use the hardware setup:Intel(R)Core(TM)i5-7500 CPU@3.40GHz 3.41GHz,8.00GB RAM(7.90GB usable),and the software setup:Windows 10 64-bit operating system and MATLAB R2017b.

    We take the public dataset MSR Action 3D(MSR Action3D Skeleton Real3D).There are 20 action types in this dataset,as shown in Fig.7,each action type consists of 10 subjects,and each subject is performed two or three times.The entire dataset has a total of 567 sample sequences,where 547 effective samples are taken and 20 data samples are missing.At the same time,we test with the whole dataset in subsequent experiments.Since the dataset sample size is not very large,in order to ensure the accuracy,we simulate by using ten times 10-fold cross validation method.

    4.2 Process

    (i)Feature Extraction

    Table 1 Each level classification target on MSRAction3D.The abbreviations are the same as Fig.7.

    Firstly,we divide the original actions into two-level categories,and each level includes seven kinds of actions,as shown in Table 1.For the first level actions,we employ(i=1,2,3,...,20;t=1,2,3,...,T)to describe the location of the i-th joint point at frame t,where T is the number of all frames(or time)of each sample.Then,we calculate the mean value M(xi)and the variance D(xi)of coordinates for each point through time T characterizing the global features,and Eq.(1)is as follows:

    Analogously,we can get M(yi),M(zi),and D(yi),The features of the first-level classification are thus described by the following vector F:

    Since RS(Right Shoulder)is relatively stable compared to other points of right arm motion,we choose it as the origin of coordinates.Note that the end effector can well translate the movement of the robot arm.Here,we define RH as the end-effector denoted by E3,where the subscript 3 denotes the third part of the human body.Denotingthe location of the point RH at time t,the relative position exhibiting spatial informationcan be given by

    To better characterize the temporal features of the actions,the speed v can be calculated as follows,

    Therefore,the characteristics S of the second-level classification can be described as follows:

    where symbols⊕and|in Eq.(5)denote that:=a or b or(a,b),and a|b:=a or b respectively.

    (ii)Classifier Construction

    Human action can be recognized as a typical time series signal,in which there is a strong correlation between the adjacent frames.Therefore,it is essential for HAR to analyze the change of the action trajectory of the joint points in both time and space.By using different classifiers we classify the data into two types according to their features.One is independent of time-varying,which includes Linear Discriminant Analysis(LDA),K-Nearest Neighbors(KNN),Naive Bayes(NB),C4.5 algorithm(C4.5),Classification and Regression Trees(CART),Support Vector Machine(SVM),Random Forest(RF),Back-Propagation Neural Network(BPNN)and some Ensemble Algorithm such as Boosting,Bagging and Random Subspace.The other is dependent of time-varying.The classifiers for this type of data usually contain Hidden Markov Model(HMM)and Long Short-Term Memory(LSTM).

    In combination with the features extracted from MSRAction3D dataset,we employ the classifiers without and with time-varying to deal with the first-level and second-level optimal classification unit respectively,where[OCU]1and[OCU]2as shown in Table 2.

    Table 2 Classifiers in each level of OCU,where[OCU]1and[OCU]2represent the first-level and second-level optimal classification unit,respectively.

    (iii)Algorithm Flow Chart

    We give the flow chart of our simulation algorithm as shown in Fig.8.Obviously,the figure shows that our algorithm is based on a two-level hierarchical classification model.On the first level of classification,the original data is divided into training data and testing data according to the 10-fold cross-validation method,and their features F are extracted according to Eqs.(1)and(2).Then,through the self-selection classifiers[OCU]1,sub-categories(SubC)are obtained.Based on these sub-categories,we match the predict labels with the actual ones.On the second level of classification,the features S of each sub-category are extracted according to Eqs.(3),(4),and(5).By using the optimal classification unit[OCU]2,we get the second sub-categories,i.e.the final recognition results.

    Fig.8 The two-level classification algorithm flow chart.

    4.3 Result

    We perform ten times simulation tests and obtain the recognition rates,in which the maximum rate is 95.61%,the minimum is 92.87%,and the average is 94.19%.Obviously,our proposed algorithm has high potential for HAR.Furthermore,we give the confusion matrix corresponding to the best recognition result as shown in Table 3.In this matrix,the vertical coordinate output class represents the predict label of an action and the horizontal coordinate target class represents the true label of an action,and the value of each coordinate grid represents the accuracy rate of action predict label recognized as action true label.From the matrix,we can see that most of the actions achieve more than 90%recognition rates,even 6 out of 20 actions achieve 100%accuracy.Note that only one action Hand Catch gets the lowest accuracy,mainly because it is similar to other one-arm actions.Table 3 shows that our algorithm has better recognition ability for most of the actions.

    5 Discussion

    5.1 Practicability

    To evaluate the potential of our proposed method,we compare the recognition rates resulted from different approaches by using the MSR Action3D dataset as shown in Table 4.Obviously,the average rate AVG=94.19,the maximum rate Rmax=95.61 and the minimum rate Rmin=92.87 of our method are all larger than that of the others,and its variation SD=0.91 is the smallest,which indicates that our method has acceptable feasibility and accuracy.

    Table 3 The confusion matrix of best recognition result.

    Table 4 Methods comparison on MSRAction3D dataset,where Rmaxrepresents the best recognition rate,Rminrepresents the worst recognition rate,AVG represents the average recognition rate,and SD represents standard deviation of recognition rates(unit:%)

    Table 5 Results of control-experiments.

    5.2 Robustness

    Generally,some data are inevitably missing in the original dataset. For example,we find that there are 20 samples with missing data in the MSRAction3D dataset.Therefore,we design two sets of simulations with and without missing data,and the results are shown in Table 5.We find that the sample missing data cause the minute reduction of the recognition rate,but the change is very small,and there was no bug and no termination in the proceeding of the program,which suggests that our proposed method has higher robustness for recognizing human actions with fewer missing data.

    5.3 Extensibility

    Our approach has an extensibility including horizontal expansion and vertical extension.Here,so-called horizontal expansion,we indicate that the number and types of classifiers in OCU can be increased or modified according to the different scenario.In this study,we adopt a two-level model of HAR,and select in each level of OCU different classifiers.Specifically,the employed classifiers are shown as given in Table 2.Generally,we define the classification of human actions according to the structure of the body,and the number of hierarchial layers usually depends on the coarse-grained level.The more coarsegrained the fewer the number of layers is.Therefore,we determine the number of layers on the basis of the actual situation.This is so-called vertical extension.To be specific,we design a two-level hierarchical model in the present work.

    6 Conclusion

    In conclusion,we have proposed a two-level hierarchical HAR model with self-selection classifiers,where the classifiers without and with time-varying are employed to deal with the first-level and the second-level optimal classification unit,respectively.Then,we have extracted the mean and variance of discrete time series to characterize the first-level coarse actions,and calculated the location and speed of the end-effector to distinguish the fine actions in the second level.We have applied the method to a public dataset,and achieved an average recognition rate 94.19%and the best rate 95.61%,which suggests that our proposed method is efficient in HAR,and hierarchical recognition strategy can better explain the internal mechanism of human action.However,how to recognize the human actions with large scale dataset and deal with the systems with a great number of missing data problems?This open question surely deserves further investigations and may be the content of a future presentation.

    久久久欧美国产精品| 午夜福利视频在线观看免费| 国产男女超爽视频在线观看| 国产 一区精品| 日韩中文字幕视频在线看片| 嫩草影院入口| 亚洲av综合色区一区| 国产色婷婷99| 日本-黄色视频高清免费观看| 伦精品一区二区三区| 在线天堂最新版资源| 26uuu在线亚洲综合色| 在线观看国产h片| 一本大道久久a久久精品| 中文字幕免费在线视频6| 亚洲性久久影院| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品乱码久久久久久按摩| 亚洲国产av影院在线观看| 亚洲色图综合在线观看| 亚洲精品456在线播放app| 午夜免费男女啪啪视频观看| 免费高清在线观看视频在线观看| 日本wwww免费看| av国产精品久久久久影院| 久久99热6这里只有精品| 午夜视频国产福利| 一区二区三区精品91| 精品一区在线观看国产| 久久久精品区二区三区| 久久av网站| 亚洲精品乱码久久久久久按摩| av又黄又爽大尺度在线免费看| 久久 成人 亚洲| 999精品在线视频| 欧美激情 高清一区二区三区| 国产免费一级a男人的天堂| 99热网站在线观看| 亚洲四区av| 免费黄频网站在线观看国产| av.在线天堂| 日本vs欧美在线观看视频| 91精品国产国语对白视频| 婷婷成人精品国产| 看十八女毛片水多多多| 色婷婷av一区二区三区视频| 热99国产精品久久久久久7| 丝袜喷水一区| 寂寞人妻少妇视频99o| 99热网站在线观看| av女优亚洲男人天堂| 亚洲精品456在线播放app| 免费少妇av软件| 精品人妻熟女毛片av久久网站| 女性生殖器流出的白浆| 亚洲国产av新网站| 久久国内精品自在自线图片| 日韩精品免费视频一区二区三区 | 久久久久久久久久久久大奶| 国产精品免费大片| 日韩 亚洲 欧美在线| 免费人成在线观看视频色| 国产福利在线免费观看视频| 91久久精品国产一区二区三区| 日本欧美国产在线视频| 久久毛片免费看一区二区三区| 午夜福利网站1000一区二区三区| 国产成人精品婷婷| 久久久久精品性色| 亚洲性久久影院| 香蕉国产在线看| 成人国语在线视频| 亚洲国产精品成人久久小说| 日韩在线高清观看一区二区三区| 91国产中文字幕| 精品第一国产精品| 亚洲国产欧美日韩在线播放| 久久久久久久久久人人人人人人| 中国三级夫妇交换| 侵犯人妻中文字幕一二三四区| 成人综合一区亚洲| 亚洲一区二区三区欧美精品| 国产精品一区二区在线不卡| 女人被躁到高潮嗷嗷叫费观| 99视频精品全部免费 在线| 99热网站在线观看| 久久精品夜色国产| 免费看光身美女| 最黄视频免费看| 久久韩国三级中文字幕| 成人综合一区亚洲| 亚洲精品日韩在线中文字幕| 成人18禁高潮啪啪吃奶动态图| 国产成人aa在线观看| 考比视频在线观看| 观看av在线不卡| 91精品国产国语对白视频| 亚洲av在线观看美女高潮| 大陆偷拍与自拍| 国产一区亚洲一区在线观看| 国产精品嫩草影院av在线观看| 老女人水多毛片| 肉色欧美久久久久久久蜜桃| 伦理电影免费视频| 晚上一个人看的免费电影| 国产一区二区激情短视频 | 人人妻人人添人人爽欧美一区卜| 另类精品久久| 九九在线视频观看精品| 久久久精品94久久精品| 一边摸一边做爽爽视频免费| 久久鲁丝午夜福利片| 亚洲av成人精品一二三区| 丰满少妇做爰视频| 80岁老熟妇乱子伦牲交| 精品国产乱码久久久久久小说| 免费观看性生交大片5| 纯流量卡能插随身wifi吗| 亚洲av电影在线进入| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| 午夜视频国产福利| 久久久久精品久久久久真实原创| 99久久精品国产国产毛片| 天天影视国产精品| 一区二区三区精品91| 亚洲,一卡二卡三卡| 老熟女久久久| 在线看a的网站| 亚洲精品国产色婷婷电影| 丰满饥渴人妻一区二区三| 精品人妻熟女毛片av久久网站| 99香蕉大伊视频| 一级毛片我不卡| 亚洲国产毛片av蜜桃av| 国产精品无大码| 97在线视频观看| 热re99久久国产66热| 免费黄频网站在线观看国产| 22中文网久久字幕| 高清不卡的av网站| 青春草视频在线免费观看| 视频在线观看一区二区三区| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 婷婷色麻豆天堂久久| 久久久久久久精品精品| 久久国产精品男人的天堂亚洲 | 国产一级毛片在线| 久久人妻熟女aⅴ| 一级毛片电影观看| 国产日韩欧美亚洲二区| 国产精品国产三级专区第一集| 青春草亚洲视频在线观看| 欧美日韩亚洲高清精品| 国产福利在线免费观看视频| 啦啦啦视频在线资源免费观看| 午夜精品国产一区二区电影| 人成视频在线观看免费观看| 亚洲精品av麻豆狂野| 乱码一卡2卡4卡精品| 国产永久视频网站| 国产成人a∨麻豆精品| 男人添女人高潮全过程视频| 欧美日韩视频精品一区| av国产久精品久网站免费入址| 在线观看人妻少妇| 两性夫妻黄色片 | 久久久欧美国产精品| 99香蕉大伊视频| 2021少妇久久久久久久久久久| 美女中出高潮动态图| 街头女战士在线观看网站| 久久韩国三级中文字幕| 欧美变态另类bdsm刘玥| 国产精品秋霞免费鲁丝片| 在现免费观看毛片| 欧美激情极品国产一区二区三区 | 两个人免费观看高清视频| 婷婷色综合大香蕉| a 毛片基地| 亚洲精品美女久久av网站| 成人国产av品久久久| 99久久中文字幕三级久久日本| 国内精品宾馆在线| 成年人免费黄色播放视频| 十分钟在线观看高清视频www| 国产片特级美女逼逼视频| 国产毛片在线视频| 国产欧美另类精品又又久久亚洲欧美| 啦啦啦啦在线视频资源| 制服丝袜香蕉在线| 日日爽夜夜爽网站| 久久精品熟女亚洲av麻豆精品| 一区二区三区精品91| 国语对白做爰xxxⅹ性视频网站| 天天影视国产精品| 国产麻豆69| 曰老女人黄片| 成人亚洲欧美一区二区av| 免费久久久久久久精品成人欧美视频 | 亚洲高清免费不卡视频| 尾随美女入室| 又粗又硬又长又爽又黄的视频| 麻豆精品久久久久久蜜桃| 欧美日韩亚洲高清精品| 亚洲av日韩在线播放| 视频中文字幕在线观看| 日韩欧美一区视频在线观看| 日日撸夜夜添| 飞空精品影院首页| 久久久亚洲精品成人影院| 亚洲成人手机| 久久毛片免费看一区二区三区| 久久精品国产自在天天线| 99久国产av精品国产电影| 少妇被粗大的猛进出69影院 | 国产精品国产三级国产专区5o| 看免费成人av毛片| 啦啦啦在线观看免费高清www| 一级黄片播放器| 成人亚洲欧美一区二区av| 久久影院123| 久久久a久久爽久久v久久| 91国产中文字幕| 又黄又粗又硬又大视频| 久久精品国产亚洲av涩爱| 国产欧美另类精品又又久久亚洲欧美| 建设人人有责人人尽责人人享有的| 亚洲在久久综合| 日韩三级伦理在线观看| 999精品在线视频| 永久免费av网站大全| 亚洲,一卡二卡三卡| 日韩一区二区视频免费看| 国产极品粉嫩免费观看在线| 超碰97精品在线观看| 永久网站在线| 国产免费视频播放在线视频| 免费在线观看完整版高清| 中国三级夫妇交换| 亚洲图色成人| 69精品国产乱码久久久| 青春草国产在线视频| 日本-黄色视频高清免费观看| 两个人看的免费小视频| 午夜福利乱码中文字幕| 亚洲国产欧美在线一区| 久久人人97超碰香蕉20202| 视频在线观看一区二区三区| 亚洲欧美中文字幕日韩二区| 香蕉丝袜av| 日本av手机在线免费观看| 青春草视频在线免费观看| 少妇人妻 视频| 一级黄片播放器| av.在线天堂| 久久97久久精品| 精品人妻在线不人妻| 精品久久久久久电影网| 狠狠精品人妻久久久久久综合| 国产免费一级a男人的天堂| 久久韩国三级中文字幕| 亚洲国产日韩一区二区| 黄片播放在线免费| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 国产色婷婷99| 日韩中文字幕视频在线看片| 精品亚洲乱码少妇综合久久| 国产熟女午夜一区二区三区| 激情视频va一区二区三区| 你懂的网址亚洲精品在线观看| 少妇的逼好多水| 国产乱来视频区| 男人舔女人的私密视频| 国产在视频线精品| 久热这里只有精品99| 一区二区三区精品91| 精品久久蜜臀av无| 日韩 亚洲 欧美在线| 日本黄色日本黄色录像| 自拍欧美九色日韩亚洲蝌蚪91| 精品卡一卡二卡四卡免费| av线在线观看网站| 日韩av不卡免费在线播放| 一区二区三区四区激情视频| 最近的中文字幕免费完整| 黄色一级大片看看| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美视频二区| 久久国产精品大桥未久av| 激情五月婷婷亚洲| 内地一区二区视频在线| 国产成人精品久久久久久| 人人澡人人妻人| 国产又爽黄色视频| 男女边摸边吃奶| 啦啦啦视频在线资源免费观看| 在线观看一区二区三区激情| 中文字幕人妻熟女乱码| 人妻少妇偷人精品九色| 日韩熟女老妇一区二区性免费视频| 日韩中文字幕视频在线看片| 九色亚洲精品在线播放| 岛国毛片在线播放| 国产男女内射视频| 久久久久久人妻| 日本黄大片高清| 黄片播放在线免费| av在线老鸭窝| 只有这里有精品99| av国产精品久久久久影院| 亚洲第一av免费看| 婷婷色麻豆天堂久久| 在线观看免费高清a一片| 免费少妇av软件| 只有这里有精品99| 国产在视频线精品| 亚洲人成网站在线观看播放| 欧美亚洲 丝袜 人妻 在线| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| av.在线天堂| 伦理电影免费视频| 男人舔女人的私密视频| 日本免费在线观看一区| 狂野欧美激情性xxxx在线观看| 秋霞在线观看毛片| kizo精华| 极品人妻少妇av视频| 人妻少妇偷人精品九色| 黄色配什么色好看| 一边亲一边摸免费视频| av在线app专区| 99热国产这里只有精品6| 热re99久久精品国产66热6| 一级片免费观看大全| 亚洲国产色片| 日韩人妻精品一区2区三区| 在现免费观看毛片| 欧美精品一区二区大全| 中文乱码字字幕精品一区二区三区| 国产av精品麻豆| 亚洲婷婷狠狠爱综合网| 大陆偷拍与自拍| 一二三四中文在线观看免费高清| 亚洲国产日韩一区二区| 久久99热这里只频精品6学生| 一区二区日韩欧美中文字幕 | 丰满迷人的少妇在线观看| 免费看不卡的av| 国国产精品蜜臀av免费| 午夜视频国产福利| 青春草亚洲视频在线观看| 国产又色又爽无遮挡免| 青春草亚洲视频在线观看| 亚洲精品一二三| 亚洲精品国产色婷婷电影| 赤兔流量卡办理| 丰满乱子伦码专区| 蜜桃在线观看..| 伦理电影免费视频| 欧美人与善性xxx| 欧美性感艳星| 看免费成人av毛片| 18禁在线无遮挡免费观看视频| 久久久久精品人妻al黑| 啦啦啦视频在线资源免费观看| 最近最新中文字幕大全免费视频 | 男的添女的下面高潮视频| 精品一区二区三区视频在线| 精品福利永久在线观看| 秋霞在线观看毛片| 国产精品偷伦视频观看了| 人妻系列 视频| 18在线观看网站| 日韩一区二区三区影片| 美女大奶头黄色视频| 午夜激情av网站| 交换朋友夫妻互换小说| 最近2019中文字幕mv第一页| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 亚洲av成人精品一二三区| 熟妇人妻不卡中文字幕| 色婷婷av一区二区三区视频| 日本欧美视频一区| 夫妻午夜视频| 亚洲,欧美精品.| 亚洲国产精品一区三区| 免费大片黄手机在线观看| 国产1区2区3区精品| 国产精品一区二区在线观看99| 一区二区三区四区激情视频| 国产男女超爽视频在线观看| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 一级黄片播放器| 街头女战士在线观看网站| 丝袜在线中文字幕| 极品人妻少妇av视频| 乱码一卡2卡4卡精品| 精品久久蜜臀av无| 亚洲丝袜综合中文字幕| 两个人看的免费小视频| 五月开心婷婷网| 丝袜美足系列| 日本黄大片高清| 国产精品一区www在线观看| 亚洲精品乱码久久久久久按摩| 国产精品一区www在线观看| 日韩av在线免费看完整版不卡| 女性被躁到高潮视频| 精品人妻偷拍中文字幕| 久久久精品区二区三区| 亚洲欧洲国产日韩| 久久久a久久爽久久v久久| 一级片'在线观看视频| 亚洲精品久久成人aⅴ小说| 一级毛片电影观看| 不卡视频在线观看欧美| 成人无遮挡网站| 午夜福利在线观看免费完整高清在| 一本久久精品| 国产女主播在线喷水免费视频网站| 中文乱码字字幕精品一区二区三区| 男女免费视频国产| 狂野欧美激情性bbbbbb| 欧美精品一区二区免费开放| 99久久人妻综合| 各种免费的搞黄视频| 男人添女人高潮全过程视频| 久久热在线av| 久久久久久久久久久免费av| 在现免费观看毛片| 国产极品天堂在线| 男人舔女人的私密视频| 五月玫瑰六月丁香| 国产精品国产av在线观看| 午夜免费鲁丝| 大陆偷拍与自拍| 久久久久网色| 日本与韩国留学比较| 飞空精品影院首页| 亚洲一级一片aⅴ在线观看| 青春草视频在线免费观看| 中文字幕最新亚洲高清| 成年人免费黄色播放视频| 成人无遮挡网站| 男女下面插进去视频免费观看 | 免费人妻精品一区二区三区视频| 热re99久久精品国产66热6| 制服诱惑二区| 一边摸一边做爽爽视频免费| 亚洲一区二区三区欧美精品| 亚洲精品国产av蜜桃| 久久精品国产自在天天线| 国产亚洲一区二区精品| 91国产中文字幕| 亚洲美女搞黄在线观看| 国产亚洲欧美精品永久| 免费在线观看完整版高清| 免费观看性生交大片5| 国产又色又爽无遮挡免| 久久 成人 亚洲| 免费女性裸体啪啪无遮挡网站| 女性被躁到高潮视频| 日产精品乱码卡一卡2卡三| 久热久热在线精品观看| 日日撸夜夜添| 欧美变态另类bdsm刘玥| 久久 成人 亚洲| 久久人妻熟女aⅴ| 亚洲欧美日韩另类电影网站| 国产国语露脸激情在线看| 精品人妻一区二区三区麻豆| 一级a做视频免费观看| 在线精品无人区一区二区三| 欧美日韩国产mv在线观看视频| 久久人妻熟女aⅴ| 少妇熟女欧美另类| 最新中文字幕久久久久| 精品视频人人做人人爽| 免费观看性生交大片5| 国产熟女欧美一区二区| 少妇人妻精品综合一区二区| 久久精品国产自在天天线| 国产一区有黄有色的免费视频| 大片电影免费在线观看免费| 亚洲成av片中文字幕在线观看 | 丝袜美足系列| 国产永久视频网站| 如何舔出高潮| xxx大片免费视频| 色5月婷婷丁香| 精品少妇内射三级| 男女啪啪激烈高潮av片| 久久久久久人人人人人| 777米奇影视久久| 熟女av电影| 王馨瑶露胸无遮挡在线观看| 男女边摸边吃奶| 成年av动漫网址| 日韩av免费高清视频| 欧美激情国产日韩精品一区| 我要看黄色一级片免费的| 亚洲精品自拍成人| 国产在线一区二区三区精| 97在线视频观看| 伦理电影大哥的女人| 亚洲国产色片| 免费在线观看黄色视频的| 精品国产一区二区三区四区第35| 久久久久人妻精品一区果冻| 国产成人精品在线电影| 97人妻天天添夜夜摸| av免费观看日本| 免费少妇av软件| 综合色丁香网| 日本-黄色视频高清免费观看| 在线免费观看不下载黄p国产| 国产熟女午夜一区二区三区| 欧美97在线视频| 日韩成人av中文字幕在线观看| 国产在线免费精品| a 毛片基地| 免费播放大片免费观看视频在线观看| 在线观看一区二区三区激情| 久久人人爽av亚洲精品天堂| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| 考比视频在线观看| 丝袜美足系列| 丝袜人妻中文字幕| 乱码一卡2卡4卡精品| 中国国产av一级| 国产熟女欧美一区二区| 欧美3d第一页| 自拍欧美九色日韩亚洲蝌蚪91| 色5月婷婷丁香| 婷婷色综合www| 如日韩欧美国产精品一区二区三区| 亚洲av在线观看美女高潮| 久久ye,这里只有精品| 最近中文字幕2019免费版| 黄网站色视频无遮挡免费观看| 亚洲av成人精品一二三区| 国产av一区二区精品久久| 18禁在线无遮挡免费观看视频| 成人毛片a级毛片在线播放| 亚洲精品国产av蜜桃| 多毛熟女@视频| 欧美激情 高清一区二区三区| 搡老乐熟女国产| www.av在线官网国产| 黄色视频在线播放观看不卡| 如日韩欧美国产精品一区二区三区| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 午夜福利乱码中文字幕| 9191精品国产免费久久| 亚洲精品,欧美精品| 一级爰片在线观看| 中文字幕av电影在线播放| 边亲边吃奶的免费视频| 亚洲图色成人| 两个人看的免费小视频| 国产精品一国产av| 欧美97在线视频| 国产免费视频播放在线视频| 婷婷色麻豆天堂久久| 久久久国产欧美日韩av| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区黑人 | 免费看光身美女| 亚洲国产精品成人久久小说| 国产麻豆69| 国产毛片在线视频| 久久久久网色| 亚洲国产av新网站| 熟女av电影| 五月天丁香电影| 又大又黄又爽视频免费| 另类亚洲欧美激情| 一本久久精品| 五月伊人婷婷丁香| 一级爰片在线观看| 美女福利国产在线| 超色免费av| 日韩视频在线欧美| 美女内射精品一级片tv| av网站免费在线观看视频| 国产精品久久久久久精品古装| 午夜日本视频在线| 亚洲国产欧美日韩在线播放| 精品国产一区二区久久| 人妻 亚洲 视频| 最近中文字幕高清免费大全6| 国产免费现黄频在线看| 欧美日韩国产mv在线观看视频| 国产福利在线免费观看视频| 亚洲精品中文字幕在线视频| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区三卡| 亚洲内射少妇av| 国产在线视频一区二区| 2021少妇久久久久久久久久久| 男的添女的下面高潮视频| 欧美成人精品欧美一级黄| 免费播放大片免费观看视频在线观看| 少妇精品久久久久久久| 搡老乐熟女国产| 99精国产麻豆久久婷婷|