• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coherent Control of the Hartman Effect through a Photonic Crystal with Four-Level Defect Layer?

    2018-11-19 02:23:12FengLianHuFazalBadshahAbdulBasitHaiYangZhangQingHe3andGuoQinGe
    Communications in Theoretical Physics 2018年11期

    Feng-Lian Hu,Fazal Badshah,,2,? Abdul Basit,Hai-Yang Zhang,Qing He,,3and Guo-Qin Ge,?

    1School of Physics,Huazhong University of Science and Technology,Wuhan 430074,China

    2Quantum Optics Lab.Department of Physics,COMSATS Institute of Information Technolgy,Islamabad,Pakistan

    3College of Science,Zhongyuan University of Technology,Zhengzhou 450000,China

    AbstractIn this paper,we examine the transmission of a probe field through a one dimensional photonic crystal(1DPC)when the sixth layer of the crystal is doped with four level atoms.We analyze effects of the external driving field on the passage of weak probe field across the photonic crystal.It is found that for the phase time delay of the probe photons,intensity of the driving field switches the Hartman effect from sub to superluminal character.It is interesting to note that in our model,the superluminal transmission of the probe pulse is accompanied by a negligibly small absorption of the incident beam.It ensures that the probe field does not attenuate while passing through the photonic crystal.A similar switching of the Hartman effect may be obtained by adjusting detuning of the probe field related to the excited states of the four-level doping atoms.

    Key words:phase time delay,photonic crystal,Hartmann effect,superclassicality

    1 Introduction

    Photonic crystals(PCs)are periodic dielectric media with some exceptional electromagnetic(EM)properties.The most striking feature of these materials is their bandgap structure(BGS)commences due to the interference of light(i.e.,Bragg scattering).Within the photonic band gap(PBG)the electromagnetic field is evanescent.Such an evanescent EM field has an analogy with the electrons in quantum barriers.Therefore,the one-dimensional photonic crystals(1DPCs)act as optical barriers for investigating the tunneling time of the EM signals.[1?2]The tunneling time of a particle through a barrier or the EM wave through an evanescent region has been defined in many ways.[3?8]Amongst all,phase time is the most established both theoretically and experimentally.[9?17]It represents time of traversal of the wave packet through the interaction region and is calculated by employing the energy derivative of the phase of the transmission amplitude.Here we addressed the tunneling time of probe field(photons)through a 1DPC while the tunneling of ultracold atoms(particles)and their superclassical transmission has been studied in some interesting studies.[18?19]

    In recent years,the tunneling of EM waves through 1DPCs has attracted many groups of the researchers.This multi-layered arrangement has novel applications in the field of light-matter interaction.[1?2,20?22]According to the Hartman discovery,for long enough barriers,the tunneling time becomes independent of the barrier’s length.[4]It implies superluminal and arbitrarily large group velocities inside long barriers.Since after its recognition,this important effect has been studied extensively in many different systems.[23]The presence of a defect layer in 1DPCs facilitates in providing a coherent control of the Hartman effect of the probe light by controlling susceptibility of the doping atoms in the defected layer.Similarly,the superluminal transmission of the probe field through 1DPCs for two and three level atomic doping have been analyzed in some interesting studies.[24?25]In a recent study,the effects of phase control on the Hartman effect was discussed in the presence of multiple driving fields.[26]

    Atomic coherence and quantum interference play a crucial role in controlling the absorption and dispersion nature of the atomic media.In this scenario,the double electromagnetically induced transparency in an inverted-Y-type atomic system with Zeeman sublevels was investigated where it was found that the Zeeman degeneracy of the dark states may be lifted by the increasing intensity of the dressing field.[27]Similarly,the laser-induced atomic gratings may be used to study various characteristics of the stable multicomponent vector solitons consisting of two perpendicular four-wave mixing(FWM)dipole components.[28]Likewise,Zhang et al. experimentally studied PT-symmetric optical lattices with controllable gain-to-loss ratio in a coherently prepared N-type atomic ensemble.The relevant index modulation and the antisymmetric gain and loss pro files were introduced by exploiting the modified absorption and Raman gain in the four-level atomic configuration.[29]Further,interference of the three coupling fields have been used for splitting energy levels periodically,to form a periodic refractive index structure with honeycomb pro file that can be adjusted by the system’s controlling parameters.[30]

    Modification of the absorption and transmission characteristics of the atomic medium due to the quantum coherence and interference may lead to the subluminal and superluminal light propagation. It is quite well known that the super and subluminal propagations of light are due to the anomalous and normal dispersions,respectively.[31?33]It has been shown that for anomalous dispersions the group velocities of EM pulses may be abnormal,i.e.greater than c(the speed of light in vacuum),or even becomes negative.[32,34]It has many potential applications in various fields like the all-optical routing,[35?36]all-optical switching,[37]optical memories,and interferometry.[38?39]Here we use intensity of the external driving field to change the dispersion and absorption properties of 1DPC,which further control the phase time delay and the Hartman effect related to the probe field transmission.

    In this paper,we study transmission of the probe field through a one-dimensional photonic crystal.We consider that the sixth layer of the photonic crystal serves as a defected layer due to the doping of four-level atoms,which modifies response of the medium to the incident probe field in a similar fashion to the earlier studies related to the absorption and dispersion characteristics of the atomic media.[27?30]By analyzing the tunneling time of transmission,we find that a superluminal propagation of the probe field may be obtained by controlling intensity of the external driving filed.It is noted that the phase time delay saturates with the increasing stack number of the photonic crystal and thus the Hartman effect may be realized for the probe field propagation.Our results show that a proper adjustment of the driving field provides a switching of the Hartman effect from sub to superluminal character.It is interesting to note that here the superluminal transmission of the probe pulse is obtained for a negligible absorption of the probe field,which is always desirable in an experimental treatment.In addition,we show that detuning of the probe field also affects behavior of the phase time delay and causes a switching of the Hartman effect from positive to negative values.

    2 Model and Dynamics

    Our model consists of a one-dimensional photonic crystal made up of dielectric layers with structural sequencing as(ab)NLa.Here the symbols “a” and “b” are the two different layers of the dielectric material.We take“a” to be the titanium oxide with an index of refraction na=2.22,while “b” is the fused silica with an index nb=1.41.The notation NLstands for the stack number which gives periodicity of the 1DPC and is a measure of its length.The two types of layers satisfy the conditioni.e.they have equal optical thickness.Here λ0is the mid-gap wavelength of the probe field which we have taken as 692 nm,while,is the corresponding frequency with c being the speed of light in free space.The over all structure of the 1DPC is characterized by the sequence of layers(ab)2aD(ab)NLa with D as the defected layer doped with four-level atoms.

    Fig.1 (Color online)Schematics of the 1DPC with defect layer.The level structure shows an EIT configuration of the atoms doped in the defect layer D.

    Here our aim is to analyze propagation of the probe field through the 1DPC whose sixth layer is doped with a four-level atomic system as shown in Fig.1.In the atomic configuration studied here,there is a coherent driving field ?,which drives the two excited levelsand couples them to level?with detuning?jwith j=1,2 such that,where ν is the frequency of the driving field.The probe field of frequency νpcouples the two excited levels with the lower ground statehaving a detuning δ= ωe1g2? νp.The decay rates from the three upper levels to the ground state|g2?are denoted as γ1,γ2,and γ3,respectively.

    There is vacuum at the two ends of the 1DPC and a normal incidence of the probe field is considered for its transmission through the crystal.Using the transfer matrix approach,the electric and magnetic field components at the two nearby positions z and z+?z in a certain layer can be found as[24]

    In Eq.(1)njis a function of νpand represents the refractive index of the j-th layer.The transmission coefficient t(νp)corresponding to the incident probe field tunneling through the 1DPC can be calculated as[40?41]

    where,xij(i=1,2;j=1,2)are the matrix elements of∏that represents the total transfer matrix connecting the fields at the entrance and exit of the photonic crystal.The parameter nsis the refractive index of the substrate,which is taken to be the free space in our case.The transmission coefficient is a complex quantity,i.e.therefore,the phase time relation for the transmitted probe pulse can be given as[42]

    It clearly depends on the real and imaginary parts of the transmission amplitude.

    In order to analyze the probe field transmission,we must have an explicit expression for the susceptibility χ of the atomic system,which gives the steady state response of the atoms to the applied field.Solving the density matrix equations of motion at the steady state lead to the dispersion and absorption spectra,which are determined by the real and imaginary parts of the susceptibility[43]

    Here N is the atomic density while?g2e1and ?g2e2are the induced atomic dipole moments related to the transition fromrespectively.Similarly,?0is the dielectric constant of free space and ?1and ?2are the Rabi frequencies of the driving field corresponding to the transition?andrespectively.Further,ωe1e2is the energy gap between the two excited levels and the parameter Z is defined to be Z=Y Y?,with Y=A+iB,such that

    The dielectric function of the doped layer D can be defined as ?(ω)= ?B+ χ,whereis the background dielectric constant.The optical thickness of layer D is considered aswith nD=1+2πRe[χ]+being the group index which clearly depends on the dispersive properties of the defect layer D.

    3 Results and Discussion

    For our numerical results,we assumeand take.Frequency of the probe field corresponding to the energy gape between the two excited states and the ground level is chosen to be νp=105γ.In order to discuss the dispersion and absorption characteristics of our system,we plot the real(solid curve)and imaginary(dashed curve)parts of the susceptibility versus the driving field for zero detuning of the probe field.Here we select the driving field such that ?1= ?2= ? and other parameters as γ1= γ2=3γ,γ3=0,?1=0.2γ,ωe1e2=0.4γ.It is noted that behavior of the dispersion curve is normal for smaller values of the driving field as indicated by the solid blue curve of Fig.2.For the given values of the parameters such a behavior remains unchanged for the driving field around ? =0.5γ.It is a mater of fact that the normal dispersion corresponds to the subluminal transmission of the probe field,which is accompanied by large absorption as given by the dashed curve for the smaller values of ? in the given plot.As the driving field increases beyond ? =0.5γ,the normal character of the dispersion changes into the anomalous behavior,which is a sign of the superluminal passage of the probe field through the 1DPC.It is very interesting that for our system the superluminal transmission may be achieved with a negligible absorption of the probe field.Next,in Fig.3,we show the phase time delay of the incident probe field versus the stack number NLfor zero detuning δ.The other important parameters are γ1= γ2=3γ, γ3=0,?1=0.2γ,ωe1e2=0.4γ.When there is no driving fields i.e.?1= ?2=0,we obtain a positive character of the Hartman effect(see Fig.3(a)).Initially,the phase time delay increases as we increase the number of stacks NL.For NL=9 it reaches to a saturated value 1.0×10?29and stays there for further higher values of NL.In the inset of this figure,we have given a plot of the real and imaginary components of the susceptibility χ.The solid blue curve shows that at δ=0,the probe field has a normal dispersion(positive slope)and the corresponding phase time is positive.Therefore,a subluminal Hartman effect is realized for the parameters of Fig.3(a).The dashed red curve of the insets has high values,which indicates that here the subluminal Hartman effect corresponds to a higher absorption of the probe field.For a small driving field of magnitudes ?1= ?2=0.02γ,the saturation point of the phase time delay occurs at a bit higher value tphase=1.15× 10?29,which shows its sensitivity to the applied driving field.

    Fig.2 (Color online)Real(solid curve)and imaginary(dashed curve)parts of the susceptibility(χ)as a function of the driving field ? for δ=0 and ?1= ?2= ?.Other parameters are γ1= γ2=3γ,γ3=0,?1=0.2γ,ωe1e2=0.4γ.

    Fig.3 (Color online)Phase time delay tphasevs.number of stack NLfor(a)?1= ?2=0,(b)?1= ?2=0.02γ.Other parameters are γ1= γ2=3γ,γ3=0,?1=0.2γ,ωe1e2=0.4γ.

    When we further increase the applied driving field to a strength ?1= ?2=2γ,anomalous dispersion at δ=0 is obtained as shown by the real component of susceptibilityin the inset of Fig.4(a).The main plot in this figure is the phase time delay as a function of the stack number of the 1DPC at δ=0.Here phase time of the probe field through the photonic crystal is negative or superluminal.For this case,we again obtained a saturation value of the phase time delay,which remains static with further increments in the stack number.It means that for the current value of the driving field(?1= ?2=2γ)negative Hartman effect is realized for a 1DPC constituted by the two positive refractive index materials(PIMs).Thus the intensity of the applied driving field plays a crucial role in changing the dispersive nature of the photonic crystal for the passage of the incident probe field.Consequently,a proper choice of the driving field intensity enables us to switch from positive to negative Hartman effect.Another important feature is the correspondingly effectively no absorption of the probe field for the parameters used here(see the dashed red curve(Im[χ])in the inset of Fig.4).It is a matter of great concern that for our system we obtained superluminal transmission of the probe field with a negligible absorption.This ensures a smooth passage of photons through the crystal without any considerable attenuation of the incident beam.This provides an edge to our model over various studies where the superluminal transmission was found with high gain[44]or absorption.[45]

    Fig.4 (Color online)Phase time delay tphasevs.number of stack NLfor(a)?1= ?2=2γ,(b)?1= ?2=4γ.Other parameters are γ1= γ2=3γ,γ3=0,?1=0.2γ,ωe1e2=0.4γ.

    Fig.5 (Color online)Phase time delay tphasevs number of stack NLfor the parameters in Fig.3(a)with detuning(a)δ=?3.0γ and(b)δ=1.0γ.

    Further,we show a switching of the Hartman effect from sub to superluminal character by the atom- field detuning for a constant driving field(?1= ?2=2γ).In Fig.5(a),we select detuning as δ= ?3.0γ and plot the phase time delay as a function of the stack number NL.Rest of the parameters are the same as used in Fig.4(a).It can be seen from the dispersion curve of the probe field(inset of Fig.5(a))that its behavior at δ= ?3.0γ is normal i.e.the slope of the curve is positive.As the normal dispersion results the subluminal transmission that is why here we obtain a positive(subluminal)Hartman effect with a saturation value around tphase=3.25×10?29.In Fig.5(b)we choose a different value of detuning of the probe field i.e.δ=1.0γ for which the phase time delay gets superluminal values against increasing stack number of the photonic crystal.Here the saturation occurs at tphase= ?3.45× 10?30(a superluminal value)as indicated by the anomalous dispersion at the present value of detuning(see inset of Fig.5(a)).Therefore apart from the intensity of the driving field the atom- field detuning also provide a switching from the sub to superluminal Hartman effect for the probe field transmission.

    In summery,here we have proposed a scheme in which an incident probe field interacts with a 1DPC having a defect layer due to four-level atomic doping.The photonic crystal is made up mainly of two positive index materials with a slight doping in the sixth layer of the multilayered arrangement.This causes a remarkable change in the dispersion and absorption characteristics of the photonic crystal.Here we find that by controlling the Rabi frequency of the external driving field one can change the phase time delay of the probe field from sub to superluminal behavior.It is noted that for a suitable values of the parameters the superluminal character of Hartman effect may be obtained for a negligible absorption of the incident beam,which is always desired in an experimental treatment.The probe field detuning also provides a switching of the Hartman effect from positive to negative nature.

    99久久人妻综合| 亚洲激情五月婷婷啪啪| 婷婷色综合www| av又黄又爽大尺度在线免费看| 日本av免费视频播放| 亚洲成人手机| 中国三级夫妇交换| 国内揄拍国产精品人妻在线| 九色成人免费人妻av| 嫩草影院新地址| 好男人视频免费观看在线| 免费观看性生交大片5| 久久人人爽av亚洲精品天堂| 校园人妻丝袜中文字幕| 欧美国产精品一级二级三级 | 人人妻人人添人人爽欧美一区卜| 亚洲精品乱久久久久久| 国产欧美另类精品又又久久亚洲欧美| 视频区图区小说| 色婷婷av一区二区三区视频| 亚洲国产欧美在线一区| 五月玫瑰六月丁香| 高清av免费在线| 22中文网久久字幕| 美女脱内裤让男人舔精品视频| 看十八女毛片水多多多| 欧美精品人与动牲交sv欧美| 纵有疾风起免费观看全集完整版| 我的老师免费观看完整版| av有码第一页| 全区人妻精品视频| 久久久久精品久久久久真实原创| 国产黄频视频在线观看| 69精品国产乱码久久久| 少妇被粗大猛烈的视频| 一区二区av电影网| 天堂8中文在线网| 午夜激情福利司机影院| 亚洲图色成人| 在线亚洲精品国产二区图片欧美 | 中文字幕久久专区| 久久久精品免费免费高清| 一级毛片aaaaaa免费看小| 伦理电影大哥的女人| 三级国产精品欧美在线观看| 午夜日本视频在线| 一区二区av电影网| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区二区在线观看99| 久久久国产精品麻豆| 亚洲经典国产精华液单| 免费大片黄手机在线观看| av.在线天堂| 高清午夜精品一区二区三区| 赤兔流量卡办理| 国产白丝娇喘喷水9色精品| 久久毛片免费看一区二区三区| 久久久久久久大尺度免费视频| 欧美成人午夜免费资源| 青春草视频在线免费观看| 精品一区二区三卡| 99re6热这里在线精品视频| 成人毛片a级毛片在线播放| 日本与韩国留学比较| 国产精品偷伦视频观看了| 桃花免费在线播放| 精品午夜福利在线看| 色哟哟·www| 丰满乱子伦码专区| 国产男女内射视频| 最近中文字幕高清免费大全6| 国产成人aa在线观看| 狂野欧美白嫩少妇大欣赏| 水蜜桃什么品种好| 99热6这里只有精品| 亚洲av在线观看美女高潮| 欧美成人午夜免费资源| 国产色婷婷99| 精品一品国产午夜福利视频| 中国美白少妇内射xxxbb| 欧美日韩综合久久久久久| 婷婷色综合大香蕉| 久久久久精品久久久久真实原创| 大码成人一级视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧洲日产国产| 人人妻人人澡人人看| 国产一区亚洲一区在线观看| 久久人人爽av亚洲精品天堂| 久久精品国产亚洲av天美| 人人妻人人澡人人爽人人夜夜| 日韩精品有码人妻一区| 大香蕉97超碰在线| a级片在线免费高清观看视频| 亚洲av国产av综合av卡| av国产精品久久久久影院| 特大巨黑吊av在线直播| h日本视频在线播放| 色婷婷av一区二区三区视频| 高清欧美精品videossex| 日本91视频免费播放| 欧美区成人在线视频| 十分钟在线观看高清视频www | 国产在线视频一区二区| 我的女老师完整版在线观看| 一级黄片播放器| 国产成人一区二区在线| 九九久久精品国产亚洲av麻豆| 成人无遮挡网站| 久久国产精品男人的天堂亚洲 | 中文字幕人妻丝袜制服| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩另类电影网站| 黄色配什么色好看| 亚洲av.av天堂| 男人和女人高潮做爰伦理| av专区在线播放| 亚洲av中文av极速乱| 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美 | 日韩中文字幕视频在线看片| 99热这里只有是精品在线观看| 久久精品国产亚洲av涩爱| 视频区图区小说| 中文字幕精品免费在线观看视频 | av在线app专区| 寂寞人妻少妇视频99o| 自拍欧美九色日韩亚洲蝌蚪91 | 少妇人妻一区二区三区视频| 男女国产视频网站| 午夜视频国产福利| 精品亚洲成a人片在线观看| 国产探花极品一区二区| 日韩av在线免费看完整版不卡| 在线观看三级黄色| 亚洲va在线va天堂va国产| 在线观看www视频免费| 日韩视频在线欧美| 美女脱内裤让男人舔精品视频| av福利片在线| 国产精品国产三级国产av玫瑰| 色视频在线一区二区三区| 一区二区三区免费毛片| 欧美丝袜亚洲另类| 99re6热这里在线精品视频| 国产午夜精品久久久久久一区二区三区| 女人精品久久久久毛片| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧洲精品一区二区精品久久久 | 热99国产精品久久久久久7| 99热这里只有是精品50| 这个男人来自地球电影免费观看 | 老熟女久久久| 国产黄色免费在线视频| 午夜福利视频精品| av视频免费观看在线观看| 欧美日韩视频精品一区| 国产精品嫩草影院av在线观看| 少妇的逼水好多| 国产熟女午夜一区二区三区 | 在线观看一区二区三区激情| 国产 一区精品| av国产久精品久网站免费入址| 男女无遮挡免费网站观看| 国产精品偷伦视频观看了| 六月丁香七月| 人人妻人人看人人澡| 久久久久精品久久久久真实原创| 久久精品夜色国产| 国产白丝娇喘喷水9色精品| 中文精品一卡2卡3卡4更新| 青春草国产在线视频| 成人亚洲精品一区在线观看| av一本久久久久| 亚洲国产欧美日韩在线播放 | 少妇人妻精品综合一区二区| av有码第一页| 有码 亚洲区| 欧美成人精品欧美一级黄| 天堂中文最新版在线下载| 亚洲欧洲精品一区二区精品久久久 | 日韩免费高清中文字幕av| 嘟嘟电影网在线观看| 欧美最新免费一区二区三区| 亚洲国产av新网站| 王馨瑶露胸无遮挡在线观看| 在线播放无遮挡| www.色视频.com| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 久久青草综合色| 国产色爽女视频免费观看| av在线观看视频网站免费| 丰满少妇做爰视频| 欧美日本中文国产一区发布| av一本久久久久| 高清毛片免费看| 成人毛片a级毛片在线播放| 国产高清有码在线观看视频| 久热这里只有精品99| 最黄视频免费看| 在现免费观看毛片| 性高湖久久久久久久久免费观看| 高清av免费在线| 欧美日韩亚洲高清精品| 男人舔奶头视频| 欧美精品高潮呻吟av久久| 亚洲精品视频女| 久久 成人 亚洲| 国产免费又黄又爽又色| 菩萨蛮人人尽说江南好唐韦庄| 免费黄色在线免费观看| 99re6热这里在线精品视频| 91aial.com中文字幕在线观看| 亚洲精品国产成人久久av| 黄色视频在线播放观看不卡| 国产精品久久久久久精品古装| 久热这里只有精品99| 成人亚洲精品一区在线观看| 日本色播在线视频| 国产日韩一区二区三区精品不卡 | 热re99久久国产66热| 亚洲丝袜综合中文字幕| 久久精品久久久久久噜噜老黄| 国产老妇伦熟女老妇高清| 国产在线视频一区二区| www.色视频.com| 午夜福利影视在线免费观看| 最新中文字幕久久久久| 丰满人妻一区二区三区视频av| 国产高清有码在线观看视频| 99热这里只有精品一区| 80岁老熟妇乱子伦牲交| 最近中文字幕2019免费版| 观看av在线不卡| 中国国产av一级| 妹子高潮喷水视频| 国产成人一区二区在线| 欧美精品一区二区大全| 久久午夜综合久久蜜桃| 久久久久久久国产电影| 蜜臀久久99精品久久宅男| 成人无遮挡网站| 人妻一区二区av| 97超视频在线观看视频| 老熟女久久久| 国产午夜精品久久久久久一区二区三区| 日本欧美国产在线视频| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜爱| 亚洲丝袜综合中文字幕| 亚洲自偷自拍三级| 乱码一卡2卡4卡精品| 中文欧美无线码| 大香蕉97超碰在线| 日韩精品免费视频一区二区三区 | 五月天丁香电影| 狠狠精品人妻久久久久久综合| 日韩视频在线欧美| 国产精品久久久久久久电影| 亚洲自偷自拍三级| 中文字幕精品免费在线观看视频 | 亚洲色图综合在线观看| 日本黄色片子视频| 亚洲电影在线观看av| 青春草亚洲视频在线观看| 亚洲国产毛片av蜜桃av| 搡女人真爽免费视频火全软件| 99热6这里只有精品| 欧美xxⅹ黑人| 夜夜骑夜夜射夜夜干| 国产一区二区三区综合在线观看 | 亚州av有码| 国产精品蜜桃在线观看| 国产精品成人在线| 亚洲国产精品成人久久小说| 免费av不卡在线播放| 国产精品女同一区二区软件| 大又大粗又爽又黄少妇毛片口| freevideosex欧美| 亚洲精品乱久久久久久| 亚洲欧美精品自产自拍| 亚洲国产av新网站| 天堂8中文在线网| 国产无遮挡羞羞视频在线观看| 欧美激情国产日韩精品一区| 久久热精品热| 亚洲欧洲精品一区二区精品久久久 | 中文字幕免费在线视频6| 久久久久久久久久久免费av| 国产伦精品一区二区三区视频9| 欧美另类一区| 久久久久精品性色| 91成人精品电影| 亚洲国产精品一区二区三区在线| 五月玫瑰六月丁香| 欧美精品亚洲一区二区| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 精品视频人人做人人爽| 亚洲内射少妇av| 国产亚洲av片在线观看秒播厂| 国产极品粉嫩免费观看在线 | videos熟女内射| 日本色播在线视频| 丝袜在线中文字幕| 国产熟女午夜一区二区三区 | 国产精品99久久久久久久久| 青春草亚洲视频在线观看| 国产欧美日韩精品一区二区| 啦啦啦在线观看免费高清www| 高清在线视频一区二区三区| 亚洲国产精品专区欧美| 久久精品国产鲁丝片午夜精品| 哪个播放器可以免费观看大片| 国产淫片久久久久久久久| 日本免费在线观看一区| 亚洲成人手机| 老司机影院毛片| 久久精品久久精品一区二区三区| 日韩成人伦理影院| 偷拍熟女少妇极品色| 午夜视频国产福利| 免费av中文字幕在线| 中文字幕久久专区| 精品久久久久久久久av| h视频一区二区三区| 九九久久精品国产亚洲av麻豆| 在线免费观看不下载黄p国产| 亚洲在久久综合| 一级,二级,三级黄色视频| 狂野欧美激情性xxxx在线观看| 一级黄片播放器| 黄色一级大片看看| 精品国产一区二区久久| 精品卡一卡二卡四卡免费| 又黄又爽又刺激的免费视频.| freevideosex欧美| 9色porny在线观看| 国产免费一级a男人的天堂| 99热网站在线观看| 中文字幕av电影在线播放| 国产精品国产三级国产专区5o| 欧美一级a爱片免费观看看| 国产亚洲5aaaaa淫片| 少妇裸体淫交视频免费看高清| 高清毛片免费看| 美女脱内裤让男人舔精品视频| 有码 亚洲区| 成人二区视频| 久久99一区二区三区| 亚洲,一卡二卡三卡| 亚洲久久久国产精品| 久久综合国产亚洲精品| 欧美激情国产日韩精品一区| 最近中文字幕高清免费大全6| 99国产精品免费福利视频| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 久久久精品94久久精品| 18+在线观看网站| 精品一区在线观看国产| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| 日本91视频免费播放| 一级毛片 在线播放| 久久精品国产亚洲av天美| 视频区图区小说| 欧美成人午夜免费资源| 七月丁香在线播放| 一级爰片在线观看| 国产男女内射视频| 久久久欧美国产精品| 大码成人一级视频| 内地一区二区视频在线| 中文天堂在线官网| 搡老乐熟女国产| 内地一区二区视频在线| 九九在线视频观看精品| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 午夜福利网站1000一区二区三区| 日本av手机在线免费观看| 丝袜喷水一区| 欧美亚洲 丝袜 人妻 在线| 丰满少妇做爰视频| 国产白丝娇喘喷水9色精品| av卡一久久| 人人妻人人澡人人爽人人夜夜| 精品卡一卡二卡四卡免费| 久久久久久久久久人人人人人人| 美女cb高潮喷水在线观看| 你懂的网址亚洲精品在线观看| 欧美 亚洲 国产 日韩一| 亚洲国产精品一区二区三区在线| 最近2019中文字幕mv第一页| 国产黄频视频在线观看| 韩国av在线不卡| 高清黄色对白视频在线免费看 | 啦啦啦在线观看免费高清www| 一本一本综合久久| 女人久久www免费人成看片| 爱豆传媒免费全集在线观看| 国产一级毛片在线| 我的老师免费观看完整版| 在线观看免费高清a一片| 中文字幕久久专区| 少妇人妻 视频| 最近2019中文字幕mv第一页| 日本-黄色视频高清免费观看| 久久6这里有精品| 日韩成人伦理影院| 国产精品免费大片| 国产欧美日韩精品一区二区| 亚洲av男天堂| 天堂俺去俺来也www色官网| 亚洲电影在线观看av| 日日爽夜夜爽网站| 国产又色又爽无遮挡免| 国产一区二区在线观看日韩| 人妻系列 视频| 久久女婷五月综合色啪小说| av国产精品久久久久影院| 人妻 亚洲 视频| 只有这里有精品99| 精品少妇内射三级| 欧美激情极品国产一区二区三区 | 精品人妻熟女毛片av久久网站| 欧美少妇被猛烈插入视频| 精品久久久噜噜| 国产伦精品一区二区三区视频9| 丝袜在线中文字幕| 亚洲激情五月婷婷啪啪| 一本大道久久a久久精品| 人体艺术视频欧美日本| 色吧在线观看| videos熟女内射| 日韩大片免费观看网站| 极品少妇高潮喷水抽搐| 亚洲综合色惰| 91成人精品电影| 最近最新中文字幕免费大全7| 高清在线视频一区二区三区| 亚洲av男天堂| 国产欧美日韩一区二区三区在线 | 日韩三级伦理在线观看| 熟妇人妻不卡中文字幕| 日韩伦理黄色片| 韩国高清视频一区二区三区| 伊人亚洲综合成人网| 大香蕉97超碰在线| 精品国产一区二区三区久久久樱花| 99九九线精品视频在线观看视频| 国产成人精品一,二区| 各种免费的搞黄视频| 婷婷色av中文字幕| 欧美日韩视频精品一区| 丝袜在线中文字幕| 亚洲美女黄色视频免费看| 久久人人爽人人片av| 亚洲精品乱码久久久久久按摩| 美女cb高潮喷水在线观看| 看免费成人av毛片| 9色porny在线观看| 熟女av电影| 有码 亚洲区| 中文字幕久久专区| 十分钟在线观看高清视频www | 欧美日本中文国产一区发布| 久久狼人影院| av一本久久久久| 国产伦理片在线播放av一区| 日本爱情动作片www.在线观看| 97在线人人人人妻| 欧美xxⅹ黑人| 91aial.com中文字幕在线观看| 天天操日日干夜夜撸| 国产成人aa在线观看| 2022亚洲国产成人精品| 妹子高潮喷水视频| 中文欧美无线码| 特大巨黑吊av在线直播| 日韩精品有码人妻一区| 亚洲国产精品国产精品| 一级毛片 在线播放| 91成人精品电影| 七月丁香在线播放| av在线老鸭窝| 色吧在线观看| 国产高清三级在线| 各种免费的搞黄视频| 夜夜爽夜夜爽视频| 免费久久久久久久精品成人欧美视频 | 欧美+日韩+精品| 人人妻人人添人人爽欧美一区卜| 人妻制服诱惑在线中文字幕| 一二三四中文在线观看免费高清| 久久久久国产网址| videossex国产| 欧美日韩一区二区视频在线观看视频在线| 精品国产国语对白av| 国产精品.久久久| 国产高清有码在线观看视频| 成人免费观看视频高清| 国语对白做爰xxxⅹ性视频网站| 久久国产精品大桥未久av | 国产成人精品久久久久久| 成年人午夜在线观看视频| 精品人妻偷拍中文字幕| 在线观看www视频免费| 日本色播在线视频| av线在线观看网站| 国产精品国产三级国产av玫瑰| 十八禁高潮呻吟视频 | 乱码一卡2卡4卡精品| 爱豆传媒免费全集在线观看| 亚洲av成人精品一区久久| 欧美精品国产亚洲| 80岁老熟妇乱子伦牲交| 青春草亚洲视频在线观看| 久久久久久久久久成人| 国产黄片视频在线免费观看| 不卡视频在线观看欧美| 国产综合精华液| 欧美激情国产日韩精品一区| 久久青草综合色| 亚洲成色77777| 一本大道久久a久久精品| 人妻夜夜爽99麻豆av| 亚洲精品日本国产第一区| 成人毛片a级毛片在线播放| 精品人妻熟女av久视频| 永久免费av网站大全| 热99国产精品久久久久久7| 国产成人精品久久久久久| 亚洲精品日本国产第一区| 亚洲av欧美aⅴ国产| 狂野欧美白嫩少妇大欣赏| 亚洲精品久久久久久婷婷小说| 国产乱来视频区| 亚洲欧美精品专区久久| 国产精品久久久久久久久免| 爱豆传媒免费全集在线观看| 精品少妇黑人巨大在线播放| 久久久久网色| 国产极品粉嫩免费观看在线 | 国产在线视频一区二区| 麻豆成人午夜福利视频| 免费播放大片免费观看视频在线观看| 久久久精品免费免费高清| 大片免费播放器 马上看| freevideosex欧美| 在线观看人妻少妇| 综合色丁香网| 边亲边吃奶的免费视频| 免费黄网站久久成人精品| 一级毛片电影观看| 成人亚洲欧美一区二区av| 99热这里只有是精品在线观看| 亚洲一级一片aⅴ在线观看| 欧美激情国产日韩精品一区| 国产片特级美女逼逼视频| 国内揄拍国产精品人妻在线| 免费看不卡的av| 性色avwww在线观看| 欧美日韩在线观看h| 日本欧美视频一区| 久久 成人 亚洲| 亚洲精品自拍成人| 十八禁高潮呻吟视频 | 九九在线视频观看精品| 国产无遮挡羞羞视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产淫片久久久久久久久| 免费播放大片免费观看视频在线观看| 国产精品国产av在线观看| 一本久久精品| 精华霜和精华液先用哪个| 99久久精品一区二区三区| 一区二区三区免费毛片| 欧美精品一区二区免费开放| 美女中出高潮动态图| 毛片一级片免费看久久久久| 久久久午夜欧美精品| 国产一区有黄有色的免费视频| 亚洲色图综合在线观看| 亚洲精品乱码久久久久久按摩| 国产日韩欧美亚洲二区| 国产综合精华液| 中文天堂在线官网| 日日啪夜夜爽| 亚洲精品久久午夜乱码| 久久久亚洲精品成人影院| 老女人水多毛片| 亚洲色图综合在线观看| 亚洲精品乱码久久久久久按摩| 丝袜喷水一区| 黄色毛片三级朝国网站 | 99久久人妻综合| 国产综合精华液| 久久久久久久久久久久大奶| 高清在线视频一区二区三区| 日韩成人av中文字幕在线观看| 久久久久久久久久久久大奶| 国产日韩欧美亚洲二区| 最近中文字幕高清免费大全6| 男女啪啪激烈高潮av片| 久久久a久久爽久久v久久| 中文字幕av电影在线播放| 蜜臀久久99精品久久宅男| 精品一区二区三卡| 久久午夜福利片| 少妇人妻一区二区三区视频| 两个人免费观看高清视频 | 一区二区三区精品91|