• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Study of Unsteady MHD Flow and Entropy Generation in a Rotating Permeable Channel with Slip and Hall Effects?

    2018-11-19 02:23:26KhanMakindeAhmadandKhan
    Communications in Theoretical Physics 2018年11期

    Z.H.Khan,O.D.Makinde,R.Ahmad,and W.A.Khan

    1State Key Laboratory of Hydraulics and Mountain River Engineering,College of Water Resource&Hydropower,Sichuan University,Chengdu 610065,China

    2Key Laboratory of Advanced Reactor Engineering and Safety,Ministry of Education,Tsinghua University,Beijing 100084,China

    3Faculty of Military Science,Stellenbosch University Private Bag X2,Saldanha 7395,South Africa

    4School of Mathematics and Physics,University of Queensland,St Lucia,Brisbane 4072,Queensland,Australia

    5Faculty of Engineering Sciences,GIK Institute of Engineering Sciences and Technology,Topi,Swabi,KPK,Pakistan

    6Department of Mechanical Engineering,College of Engineering,Prince Mohammad Bin Fahd University P.O.Box 1664,Al Khobar 31952,Kingdom of Saudi Arabia

    AbstractThis article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible,electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation,Hall and slip effects are considered within the flow analysis.The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs(partial differential equations)are solved with the help of Finite Difference Scheme.In the presence of pertinent parameters,the precise movement of the flow in terms of velocity,temperature,entropy generation rate,and Bejan numbers are presented graphically,which are parabolic in nature.Streamline pro files are also presented,which exemplify the accurate movement of the flow.The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel.It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.

    Key words:unsteady flow,rotating permeable channel,MHD,slip,hall effects,entropy analysis, finite difference method

    1 Introduction

    Entropy generation determines the performance of thermal machines such as heat engines,power plants,heat pumps,refrigerators and air conditioners.It performs a significant part in the thermodynamics of irreversible processes,which is briefly explained by de Groot and Mazur.[1]In recent years,the analysis of entropy generation has widely been used for the investigation of thermal processes.Entropy forms the foundation of most of the formulations of thermodynamics.Entropy generation analysis appears as a powerful tool to optimize efficiency of various heat transfer and fluids engineering devices.Identification of various conditions for exergetic effectiveness enhancement to occur would serve as a useful theoretical tool for the design and thermodynamic efficiency characterization of such an integrated system.Bejan[1]studied the entropy generation in fundamental convective heat transfer and explored that in convective fluid flow,entropy generation is due to viscous shear stresses and heat transfer.One of the aims of entropy generation is to minimize the heat transfer irreversibility and viscous dissipation irreversibility.The process of irreversibility exists inside the cavity during the process of convection.To retain the energy,it is essential to vanish the process of irreversibility.[1?2]The combined effects of hydrodynamic slip,suction or injection and convective boundary conditions on the global entropy generation in a steady flow of an incompressible MHD fluid through a channel with permeable plates has been investigated by Guillermo.[3]Eegunjobi and Makinde[4]examined the analysis of entropy generation in a variable viscosity within the MHD flow with permeable walls and convective surface boundary conditions.Arikoglu et al.[5]explored the slip effects on entropy generation in MHD flow over a rotating disk by mean of a semi-numerical analytical solution technique.

    Flows that are persuaded by the rotating disks are of considerable attention to the researchers and this is due to the physical phenomena of the flow within the rotating permeable or impermeable flow passages.The applications of such types of flows have emerged well in rotating machinery,lubrication,viscometer and crystal growth processes,etc.[3?8]Similarly,magnetic effects in lubrication have received a remarkable attention due to their substantial roles in industrial applications.Another significant factor within the MHD boundary layer analysis is the Hall effects.The Hall effects are substantial only when the applied magnetic field is very strong.Thus,the electric field as a result of polarization of charges and Hall effects becomes trivial.It has been briefly discussed by Ahmad.[9?11]A study in detail linked to Hall effects on free and forced convective flow in a rotating channel is investigated by Rao and Krishna.[12]Akbar and Khan[13]performed the entropy analysis for the Peristaltic flow of Cu-water nanofluid with magnetic field in a lopsided channel.Guria and Jana[14]examined the Hall effects on the hydromagnetic convective flow in a rotating channel.The unsteady two-dimensional MHD Couette flow in a rotating system with the Hall current and ion-slip current effects is examined by Jha and Apere.[15]Seth et al.[16]examined the combined free and forced convection Couette-Hartmann flow in a rotating channel with arbitrary conducting walls and Hall effects.Eegunjobi and Makinde[17]investigated the irreversibility in a variable viscosity Hartmann flow through a rotating permeable channel with Hall effects.Mabood et al.[18]investigated the MHD flow of a variable viscosity of the nanofluid in a rotating permeable channel with Hall effects.Makinde and Onyejekwe[19]found the numerical analysis of the two-dimensional MHD generalized Couette flow and heat transfer with variable viscosity.Makinde[20]solely performed the thermal decomposition of unsteady non-Newtonian MHD Couette flow with variable properties.Sheikholeslami et al.[21?22]have discussed interesting effects of non-uniform and variable magnetic fields on the flow of nanofluids.

    In the above studies,the scholars have achieved numerous results,which are linked to the two-dimensional laminar boundary layer analysis of MHD flow with entropy generation in different permeable rotating flow passages.In all the above studies,they transformed the system of PDEs into a system of ODEs via similarity transformation and then solved the corresponding system of ODEs with suitable numerical or analytical technique.The coupled high order non-linear PDEs solutions in boundary layer analyses for the unsteady MHD flow and entropy generation in a rotating permeable microchannel are very rare and so far,it has not been explored.To cover the gap,it is essential to find the solution to the high order nonlinear PDEs for the current analysis as PDEs solution show us the exact trend of the fluid flow for any category of a flow in any flow microchannel.Practical application of the considered problem in the present study can be found in miniaturized electronic devices such as micromixers.Micromixing technology has experienced rapid development in the past few years.It is an essential component of integrated micro fluidic system for chemical,biological and medical purposes.A well-designed micromixer has rapid mixing and compact in size.The thermal management in such devices has become a taxing issue.Micro-scale heat transfer becomes a topical subject and innovative techniques are needed to improve the thermal performance of heat sinks.For this purpose,a system of nonlinear PDEs solution has been obtained by mean of Finite Difference Scheme.In the understanding of recent studies,It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored and unattempted fluid flow models that are associated to the two-dimensional unsteady flow in a rotating channel.It is believed that the current study would also be beneficial in cooling of electronic devices and heat exchangers.

    2 Problem Formulation

    Consider the unsteady flow of an incompressible,electrically and thermally conducting viscous Newtonian fluid through a microchannel with two rotating permeable walls at y=0 and y=L under the action of an externally imposed transverse magnetic field B0taken into account Hall current.Initially at τ≤0,the fluid temperature is maintained at T0and no flow occurs.When τ>0,the flow occurs and both fluid and channel rotate simultaneously with a monotonous angular velocity ? about y-axis under the combined actions of uniform pressure gradient applied along x-direction and the suction/injection at the channel walls(See Fig.1).The channel lower wall is subjected to slip condition and maintained at temperature T0while the upper wall is kept at temperature T1such that T0

    Fig.1 Flow pattern of entropy generation in two rotating permeable walls.

    Bearing in mind the assumptions above,the governing equations of momentum and energy balance are given as[1?4]

    where u,w,T,σ,ρ,m= ωeτe,ωe,τe,k,cp,Eg,V,andμare respectively,the fluid velocity in x-direction,fluid velocity in z-direction, fluid temperature, fluid electrical conductivity, fluid density,Hall current parameter,cyclotron frequency,electron collision time,thermal conductivity coefficient,specific heat at constant pressure,the volumetric entropy generation rate,the injection/suction velocity and the fluid dynamic viscosity.

    The initial and boundary conditions for the fluid velocities and temperature are given as

    where C is the slip length parameter.

    Introducing the dimensionless variables and parameters as follows:

    Substituting Eq.(6),the governing equations and conditions(Eqs.(1)–(5))can be written as

    where Pr is the Prandtl number,R0signifies rotation parameter,Re signifies suction Reynolds number,Ec signifies Eckert number,δ is the slip parameter,M signifies magnetic field parameter,γ is the temperature difference parameter and A represents the pressure gradient parameter.Other quantity of interest is the Bejan number(Be),which is given as

    with initial and boundary conditions as

    It is noteworthy that N1depicts the thermodynamic irreversibility due to heat transfer while N2represents the combined effects of fluid friction and magnetic field irreversibility.When Be=0.5 both N1and N2contribute equally to the entropy production in the flow field.

    3 Finite Difference Numerical Procedure

    Finite Difference Method(FDM)serves as the basis for the numerical schemes(see Le Veque[23]).To achieve the time-dependent PDE numerical solution,both the implicit and explicit methods are widely used these days.In the current analysis,the dimensionless nonlinear second order parabolic partial differential equations i.e.,Eqs.(7)–(10)subject to initial and boundary conditions in Eq.(11)have been solved with the help of an explicit Finite Difference Scheme.The given system of PDEs is well-posed,which means that a solution exists if we restrict various embedding parameters such as Re,t,R0,δ,M,Ec,Pr,and γ to some fixed values.To obtain the PDE solutions for velocities U,W and temperature θ,we restrict the pressure gradient parameter A=1 throughout the analysis.The two infinite rotating permeable walls have been surrounded by the flow in x and y directions while the secondary flow has been taken along the z-axis.To obtain the difference equations,the region of the flow is divided into mesh of finite lines.Since the flow pattern is not varying in the x-direction so it is assumed insignificant as compared to a flow in the y-direction.The space under investigation is of finite dimension and the explicit difference equations are discretized as follows:

    Substituting Eq.(14)into Eqs.(7)–(13),the following explicit finite difference equations have been obtained

    with initial and boundary conditions take the following form

    The Bejan number have been presented in terms of difference equations as:

    It has been seen,through numerical experimentation,that as the time steps increase,a stable implicit Finite difference scheme does not always reduce CPU time and the computations do not always remain stable.As the time step increases,there is an increase in CPU time and even unstable computations and this results in issues with convergence of the problem.The finite difference scheme is standard because its relaxed stability constraints can result in better computational efficiency.The stability of the simultaneous system of PDEs for a similar type of problem was presented by Callahan and Marner.[24]In the current analysis,both the small time and large time solutions have been obtained,which converge well for the selected small values of the parameters and then all the results have been shown graphically.

    4 Results and Discussion

    The problem of two-dimensional laminar flow of an incompressible fluid between two rotating permeable walls is studied.The influence of pertinent parameters on dimensionless velocities,temperature,skin friction,Nusselt number and entropy generation rate are investigated.Figures 2(a)and 2(b)depict the effects of suction Reynolds number on the dimensionless primary and secondary velocity of the fluid between lower and upper walls respectively.In the transient state,the primary velocity at the lower wall increases with increasing time as illustrated in Fig.2(a).This velocity further increases about the lower wall and then starts decreasing until zero at the upper wall.For small time,the primary velocity has no considerable effect for lesser suction Reynolds number.As the suction Reynolds number and time increases,the difference in primary velocity increases.The secondary velocity shows the same behavior in Fig.2(b).The trend of dimensionless temperature is explained in Fig.2(c)for increasing time and suction Reynolds number.For smaller time and smaller suction Reynolds number,the dimensionless temperature remains uniform and then increases with time and suction Reynolds number.

    The effects of rotation and slip parameters on the dimensionless primary and secondary velocities are demonstrated in Figs.3(a)and 3(b)respectively.In the absence of slip,both primary and secondary velocities are zero at the lower wall.As the slip parameter increases,the primary velocity increases at the lower wall(Fig.3(a)),whereas the secondary velocity remains zero at the lower wall(Fig.3(b)).The maximum primary velocity depends upon the rotation.In the absence of rotation,this maximum velocity is largest and decreases with increasing rotation.Both the dimensionless primary and secondary velocities satisfy the boundary conditions.It is significant to note that the dimensionless secondary velocity is lowest in the absence of rotation and increases with rotation.

    Fig.2 Effects of increasing time and Reynolds number on dimensionless(a)primary velocity,(b)secondary velocity and(c)temperature in transient state.

    Fig.3 Effects of rotation and slip parameters on dimensionless(a)primary velocity and(b)secondary velocity(transient state).

    Fig.4 Effects of rotational and slip parameters on the dimensionless entropy generation rate for(a)steady state and(b)transient state.

    The variation in the rate of overall dimensionless entropy generation with rotational and slip parameters is shown in Fig.4(a)for the steady state and Fig.4(b)for the transient state respectively.It is clear from Fig.4(a)that the entire dimensionless entropy generation rate is highest at the lower surface and decreases up to a minimum value about the upper surface and then increases.The slip parameter tends to increase the total dimensionless entropy generation rate whereas the rotational parameter reduces this rate.In the transient state,see Fig.4(b),the behavior of the total dimensionless entropy generation rate is similar for a very short time and this time decreases with increasing the slip parameter.This trend is revealed for the lower wall.After transient state,the effects of rotational and slip parameters on the total dimensionless entropy generation rate can be observed noticeably.In the absence of slip parameter,the total dimensionless entropy generation rate decreases with reducing the rotational parameter and on contrary,the total dimensionless entropy generation rate increases with rotational parameters whenever the slip parameter increases.

    The effects of magnetic and Hall current parameters on the total dimensionless entropy generation rate are depicted in Fig.5(a)for the steady state and Fig.5(b)for the transient state individually.In the steady state,minimum dimensionless entropy generation rate can be observed for both the parameters.This minimum point moves towards the upper surface with increasing the magnetic and Hall current parameters.A fact can be established that the dimensionless entropy generation rate increases at the lower surface whereas decreases at the upper surface(Fig.5(a)).In the transient state(Fig.5(b)),the dimensionless entropy generation rate shows the same behavior at the lower surface for very small time.After that time,the dimensionless entropy generation rate increases at different rates.However,this increase in the dimensionless entropy generation rate decreases with the magnetic parameter but increases with the Hall current parameter.It is eminent to note that the Hall current effects on the flow are more prominent and this is due to a strong magnetic field and hence the flow becomes three-dimensional owing to the Hall current effects.

    Fig.5 Effects of magnetic and Hall current parameters on the dimensionless entropy generation rate for(a)steady state and(b)transient state.

    Fig.6 Effects of Eckert and Prandtl numbers on the dimensionless entropy generation rate for(a)steady state and(b)transient state.

    Fig.7 Effects of rotational and slip parameters on Bejan number for(a)steady state and(b)transient state.

    The Eckert number characterizes heat dissipation in thermodynamic systems.The dimensionless entropy generation rate is based on the heat transfer and fluid friction.Both of these processes dissipate heat energy that determines the Eckert number.The Prandtl number dictates heat diffusion rate.The greater the Prandtl number,the slower is the heat diffusion rate.The effect of these numbers on the dimensionless entropy generation rate is shown in Figs.6(a)and 6(b)for the steady and transient states.With both the Eckert and Prandtl numbers,the steady state dimensionless entropy generation rate increases at both the surfaces(Fig.6(a)).A minimum dimensionless entropy generation rate exists for each Eckert and Prandtl number that increases with an increase in each number.In the transient state,for a very small time,the behavior of the dimensionless entropy generation rate is same at the lower surface.After that time,the dimensionless entropy generation rate increases at different rates.This rate is influenced by both the Eckert and Prandtl numbers.The greater the Eckert or Prandtl number,the greater will be the rate of increase in the dimensionless entropy generation rate.

    The effects of pertinent parameters on the Bejan number are displayed in Figs.7–9 for both the steady and unsteady states.Thermodynamically,Bejan number can be defined as the ratio of dimensionless entropy generation rate due to heat transfer to the total dimensionless entropy generation rate due to heat transfer and fluid friction.Bejan number ranges from 0 to 1.It is imperative to mention that when:

    (i)Be→0, fluid friction dominates.

    (ii)Be→0.5,both fluid friction and heat transfer play the same role.

    (iii)Be→1,the heat transfer dominates.

    It is established that in Figs.7–9,the Bejan number exists between 0 and 1.In a steady state,the effects of rotational and slip parameters on Bejan number are demonstrated in Fig.7(a).It can be seen that,the entropy generation rate due to heat transfer dominates at the lower surface and this domination decreases up to upper surface where the entropy generation rate due to fluid friction dominates.The Bejan number increases with both the rotational and slip parameters(Fig.7(a)).In the transient state,rotational and slip parameters have no effect on Bejan number up to t=0.25 on the lower surface.After this time,the Bejan number increases with time and both parameters(Fig.7(b)).In the absence of magnetic and Hall current parameters,the entropy generation rate is almost the same due to fluid friction and heat transfer.However,it increases in the neighborhood of lower surface with increasing both the parameters at a lower surface under the steady state conditions.This is elucidated in Fig.8(a).Depending upon both parameters,after attaining maximum value,the Bejan number decreases up to the upper plate.This shows that at the upper surface, fluid friction irreversibility dominates.In the transient state,no effect could be found on the Bejan number for a very short time(Fig.8(b)).After that,the Bejan number increases with time uniformly at different rates depending upon the values of both parameters.Eckert number determines the relative importance of the kinetic energy of a flow whereas Prandtl number determines the relative importance of momentum diffusivity.The effects of these numbers on the Bejan umber are displayed in Figs.9(a)and 9(b)for the steady and transient states respectively.When these numbers are smaller,the entropy generation rates due to heat transfer and fluid friction are the same at the lower surface under the steady state condition(Fig.9(a)).However,as these numbers upsurge,the entropy generation rate due to heat transfer increases with the vertical distancrom the lower surface and then decreases up to the upper surface where the entropy generation rate due to fluid friction dominates.As usual,the entropy generation rate due to fluid friction dominates for a very short time and then de-creases with an increase in time.As t→∞,the entropy generation rate dominates due to heat transfer.The unsteady state streamline pro files with different increasing slip parameters are shown in Fig.10.Increase in slip parameter has enlarged the streamline pro file,which shows that the slip parameter has significant impact on the flow passage.

    Fig.8 Effects of magnetic and Hall current parameters on Bejan number for(a)steady state and(b)transient state.

    Fig.9 Effects of Eckert and Prandtl numbers on Bejan number for(a)steady state and(b)transient state.

    Fig.10 Streamlines pro files with variations in slip parameters.

    5 Conclusions

    This article reports an unsteady two-dimensional laminar flow of an incompressible,electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The effects of entropy generation,Hall and slip effects on the two-dimensional MHD flow are considered within the current flow channel.The unsteady systems of dimensionless PDEs are solved by implementing the Finite Difference Scheme.To achieve the accurate movement of the laminar MHD flow in terms of velocity,temperature,skin friction coefficient,Nusselt and Bejan numbers,the pertinent parameters such as Re,t,R0, δ,M,Ec,Pr and γ have been fixed to some constant values.Furthermore,the three-dimensional graphical representations of the streamlines are presented,which ensure the precise movement of the flow field within the existing flow channel.It is expected that the current study would provide a platform for solving the system of nonlinear PDEs of the other unexplored and unsolved fluid flow models that are linked to the two-dimensional unsteady MHD flow in rotating fluid flow passages.It is further believed that the current study would be beneficial in the field of micromixing technology by enhancing exergetic effectiveness through device design for efficient operation and thermodynamic efficiency.

    国产成人精品无人区| 国产在线一区二区三区精| 一区二区三区激情视频| 国产亚洲一区二区精品| 精品电影一区二区在线| 在线视频色国产色| 欧美黑人欧美精品刺激| 成在线人永久免费视频| 99re在线观看精品视频| 久久国产精品人妻蜜桃| 亚洲精品久久午夜乱码| 色播在线永久视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲欧美精品综合一区二区三区| 美女视频免费永久观看网站| a级毛片黄视频| 亚洲精品在线美女| 一区二区三区激情视频| 涩涩av久久男人的天堂| 国产亚洲精品第一综合不卡| 亚洲少妇的诱惑av| 午夜福利欧美成人| 欧美激情 高清一区二区三区| 日本黄色日本黄色录像| 亚洲性夜色夜夜综合| 亚洲av第一区精品v没综合| 亚洲一区二区三区欧美精品| 两性夫妻黄色片| 极品人妻少妇av视频| 国产精品免费大片| 午夜免费鲁丝| 一级黄色大片毛片| 国产主播在线观看一区二区| 99riav亚洲国产免费| 国产精品永久免费网站| 在线观看免费视频日本深夜| 男女床上黄色一级片免费看| 中文字幕人妻熟女乱码| 免费在线观看日本一区| 999精品在线视频| 欧美老熟妇乱子伦牲交| 欧美色视频一区免费| 黄片播放在线免费| 国产精品综合久久久久久久免费 | 亚洲精品国产一区二区精华液| 成人永久免费在线观看视频| 午夜福利欧美成人| 99riav亚洲国产免费| 国产精品一区二区在线不卡| 悠悠久久av| 精品人妻熟女毛片av久久网站| 青草久久国产| 人人妻人人添人人爽欧美一区卜| 久久久久久免费高清国产稀缺| a级片在线免费高清观看视频| 一边摸一边抽搐一进一小说 | 在线天堂中文资源库| 成人手机av| 久久人人爽av亚洲精品天堂| 亚洲专区中文字幕在线| 国产精品av久久久久免费| 99久久精品国产亚洲精品| 9191精品国产免费久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人精品无人区| 校园春色视频在线观看| 国产亚洲一区二区精品| 午夜福利免费观看在线| 国产麻豆69| 热re99久久国产66热| 自线自在国产av| 老汉色av国产亚洲站长工具| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品sss在线观看 | 国产精品秋霞免费鲁丝片| 色综合婷婷激情| 黑人巨大精品欧美一区二区蜜桃| 久久精品国产亚洲av高清一级| 亚洲综合色网址| 好看av亚洲va欧美ⅴa在| av天堂在线播放| 国产午夜精品久久久久久| 欧美日韩成人在线一区二区| 高清在线国产一区| 亚洲欧美精品综合一区二区三区| 999久久久国产精品视频| 日韩中文字幕欧美一区二区| 精品第一国产精品| 夫妻午夜视频| 最新美女视频免费是黄的| 高潮久久久久久久久久久不卡| 亚洲国产毛片av蜜桃av| 一a级毛片在线观看| 国产精品免费一区二区三区在线 | 日本精品一区二区三区蜜桃| 女性生殖器流出的白浆| 51午夜福利影视在线观看| 中国美女看黄片| 精品国产一区二区久久| 日本一区二区免费在线视频| xxx96com| 午夜两性在线视频| 亚洲,欧美精品.| 男女下面插进去视频免费观看| 制服诱惑二区| 亚洲,欧美精品.| 大型黄色视频在线免费观看| 免费看a级黄色片| 免费少妇av软件| 在线免费观看的www视频| 91成年电影在线观看| 久久久久久久久久久久大奶| 国产成人av教育| 黑人欧美特级aaaaaa片| av不卡在线播放| 三上悠亚av全集在线观看| 国产精品久久久人人做人人爽| 亚洲av日韩精品久久久久久密| 最近最新免费中文字幕在线| 性少妇av在线| 国产1区2区3区精品| 黑人巨大精品欧美一区二区mp4| 无遮挡黄片免费观看| 国产一区二区三区在线臀色熟女 | 一区在线观看完整版| 免费一级毛片在线播放高清视频 | 18禁观看日本| 国产精品久久久久久人妻精品电影| 黑人猛操日本美女一级片| 亚洲精品成人av观看孕妇| 天堂√8在线中文| 日本wwww免费看| 欧美 亚洲 国产 日韩一| 精品视频人人做人人爽| 又大又爽又粗| 精品高清国产在线一区| 午夜福利欧美成人| 十八禁人妻一区二区| 窝窝影院91人妻| 黑人巨大精品欧美一区二区蜜桃| 国产黄色免费在线视频| 国产1区2区3区精品| 欧美精品高潮呻吟av久久| 满18在线观看网站| 欧美久久黑人一区二区| 极品少妇高潮喷水抽搐| 99riav亚洲国产免费| 丁香六月欧美| 久久久精品免费免费高清| 一区在线观看完整版| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲精品不卡| x7x7x7水蜜桃| 久久久精品区二区三区| 51午夜福利影视在线观看| 免费av中文字幕在线| 国产高清视频在线播放一区| 国产成人精品久久二区二区91| 国产片内射在线| 午夜视频精品福利| av超薄肉色丝袜交足视频| 国产日韩一区二区三区精品不卡| 午夜免费成人在线视频| 99国产精品一区二区蜜桃av | 一个人免费在线观看的高清视频| 黑人猛操日本美女一级片| 国产高清视频在线播放一区| 亚洲五月天丁香| 怎么达到女性高潮| 国产野战对白在线观看| 国产av又大| 搡老熟女国产l中国老女人| 两个人免费观看高清视频| 男人操女人黄网站| 亚洲国产精品合色在线| 亚洲中文av在线| 人妻久久中文字幕网| 亚洲精品国产区一区二| 一夜夜www| 欧美精品av麻豆av| 国产精品久久久av美女十八| 免费观看a级毛片全部| 91九色精品人成在线观看| av视频免费观看在线观看| 午夜精品久久久久久毛片777| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 精品无人区乱码1区二区| 黄色成人免费大全| 久久中文字幕人妻熟女| 久久热在线av| 涩涩av久久男人的天堂| 99香蕉大伊视频| 在线十欧美十亚洲十日本专区| 中文字幕人妻丝袜一区二区| 欧美中文综合在线视频| 亚洲精品在线观看二区| 日韩人妻精品一区2区三区| 国产精品电影一区二区三区 | 午夜免费鲁丝| 一区二区日韩欧美中文字幕| 亚洲免费av在线视频| 在线观看免费视频日本深夜| 亚洲精品中文字幕一二三四区| 人人澡人人妻人| 亚洲国产精品sss在线观看 | e午夜精品久久久久久久| 一级毛片精品| 国产高清激情床上av| 久久天躁狠狠躁夜夜2o2o| 自拍欧美九色日韩亚洲蝌蚪91| 一区二区三区激情视频| 91av网站免费观看| 亚洲情色 制服丝袜| 村上凉子中文字幕在线| 在线观看免费午夜福利视频| 亚洲熟女毛片儿| 黑丝袜美女国产一区| 亚洲综合色网址| 午夜精品国产一区二区电影| 国产精华一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲久久久国产精品| 狂野欧美激情性xxxx| 身体一侧抽搐| 下体分泌物呈黄色| 90打野战视频偷拍视频| av一本久久久久| 亚洲伊人色综图| 亚洲人成电影观看| 不卡av一区二区三区| 国产精品二区激情视频| svipshipincom国产片| 一进一出抽搐gif免费好疼 | 人妻丰满熟妇av一区二区三区 | 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费 | 黄色成人免费大全| 男女免费视频国产| 99国产精品99久久久久| 18禁国产床啪视频网站| 老司机午夜福利在线观看视频| 久久香蕉精品热| 欧美日本中文国产一区发布| 女警被强在线播放| av国产精品久久久久影院| 韩国精品一区二区三区| 亚洲九九香蕉| 亚洲成国产人片在线观看| 欧美 亚洲 国产 日韩一| 免费少妇av软件| 欧美精品人与动牲交sv欧美| 欧美中文综合在线视频| 免费在线观看日本一区| 国产亚洲精品久久久久久毛片 | www.熟女人妻精品国产| 少妇 在线观看| 天堂动漫精品| 在线观看免费午夜福利视频| 精品高清国产在线一区| 色在线成人网| 在线看a的网站| 久久ye,这里只有精品| 一区二区三区激情视频| 亚洲av电影在线进入| 欧美成人免费av一区二区三区 | 老鸭窝网址在线观看| 亚洲午夜理论影院| 99在线人妻在线中文字幕 | av有码第一页| 50天的宝宝边吃奶边哭怎么回事| 丰满的人妻完整版| 777米奇影视久久| 韩国精品一区二区三区| 如日韩欧美国产精品一区二区三区| 老司机深夜福利视频在线观看| 美女高潮到喷水免费观看| 最近最新中文字幕大全电影3 | 久久久久久亚洲精品国产蜜桃av| 国产深夜福利视频在线观看| 波多野结衣一区麻豆| 亚洲专区国产一区二区| 亚洲国产欧美一区二区综合| 一边摸一边抽搐一进一出视频| 午夜福利在线免费观看网站| 日日摸夜夜添夜夜添小说| 一进一出好大好爽视频| 国产激情久久老熟女| 亚洲美女黄片视频| 视频区图区小说| 亚洲精品中文字幕在线视频| 国产色视频综合| 亚洲色图av天堂| 91av网站免费观看| 国产成+人综合+亚洲专区| 天堂√8在线中文| 最近最新中文字幕大全电影3 | 操美女的视频在线观看| 嫩草影视91久久| 国产成人影院久久av| 成年人午夜在线观看视频| 丝袜美腿诱惑在线| 亚洲av片天天在线观看| 成人免费观看视频高清| svipshipincom国产片| 欧美在线黄色| 婷婷丁香在线五月| 天天影视国产精品| 免费不卡黄色视频| 国产日韩欧美亚洲二区| 黄色片一级片一级黄色片| 动漫黄色视频在线观看| 国产成人影院久久av| 777久久人妻少妇嫩草av网站| 国产伦人伦偷精品视频| 亚洲va日本ⅴa欧美va伊人久久| 天天添夜夜摸| 啦啦啦在线免费观看视频4| 亚洲精品一二三| 国产男女内射视频| 久久狼人影院| 国产男女内射视频| 成年动漫av网址| 老司机午夜福利在线观看视频| 人人妻,人人澡人人爽秒播| 99热国产这里只有精品6| 妹子高潮喷水视频| 男人的好看免费观看在线视频 | 精品乱码久久久久久99久播| 久久人妻av系列| 久久精品国产亚洲av香蕉五月 | 捣出白浆h1v1| xxxhd国产人妻xxx| 久久久久精品人妻al黑| 一级毛片女人18水好多| 亚洲熟妇熟女久久| 99精品在免费线老司机午夜| 亚洲精品粉嫩美女一区| 久久青草综合色| 一本一本久久a久久精品综合妖精| 欧美日韩亚洲国产一区二区在线观看 | 老司机影院毛片| 在线观看免费高清a一片| 十八禁网站免费在线| 久久久久久久久免费视频了| 精品人妻熟女毛片av久久网站| 精品一区二区三区av网在线观看| 一本一本久久a久久精品综合妖精| 国产高清国产精品国产三级| 美女高潮喷水抽搐中文字幕| 亚洲欧美日韩高清在线视频| 国产一区二区激情短视频| 怎么达到女性高潮| av有码第一页| 欧美日韩国产mv在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久中文字幕人妻熟女| 欧美乱色亚洲激情| 日本a在线网址| 欧美 亚洲 国产 日韩一| 黄频高清免费视频| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 国产精品免费大片| 日韩欧美一区二区三区在线观看 | 午夜福利视频在线观看免费| 女人被狂操c到高潮| 亚洲成人免费电影在线观看| 狠狠狠狠99中文字幕| 老司机深夜福利视频在线观看| 国产一区二区三区综合在线观看| 欧美中文综合在线视频| 日韩欧美一区视频在线观看| 色尼玛亚洲综合影院| 久久亚洲精品不卡| 久久午夜综合久久蜜桃| 久久久久精品人妻al黑| 精品高清国产在线一区| a级片在线免费高清观看视频| 国产成人av教育| 国产亚洲精品久久久久久毛片 | 人人妻人人爽人人添夜夜欢视频| 成人黄色视频免费在线看| 成人精品一区二区免费| 欧美在线黄色| 69精品国产乱码久久久| 无限看片的www在线观看| 一区二区日韩欧美中文字幕| 无人区码免费观看不卡| 身体一侧抽搐| a级毛片在线看网站| 多毛熟女@视频| 一区福利在线观看| 99热国产这里只有精品6| 女同久久另类99精品国产91| 99国产综合亚洲精品| 精品午夜福利视频在线观看一区| 国产亚洲av高清不卡| 久久精品国产亚洲av高清一级| 搡老熟女国产l中国老女人| 精品人妻熟女毛片av久久网站| 国产在线精品亚洲第一网站| 欧美黑人精品巨大| 欧美黄色淫秽网站| 精品人妻1区二区| 欧美日韩一级在线毛片| 久久久久久免费高清国产稀缺| 久久精品91无色码中文字幕| 欧美 亚洲 国产 日韩一| 视频区欧美日本亚洲| 国产片内射在线| 国产一区有黄有色的免费视频| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲一级av第二区| 麻豆av在线久日| 色老头精品视频在线观看| 精品免费久久久久久久清纯 | 久久人妻福利社区极品人妻图片| 少妇猛男粗大的猛烈进出视频| 19禁男女啪啪无遮挡网站| 丰满迷人的少妇在线观看| 久久天堂一区二区三区四区| 首页视频小说图片口味搜索| 精品一区二区三区视频在线观看免费 | 欧美人与性动交α欧美软件| 亚洲av日韩精品久久久久久密| 亚洲精品久久午夜乱码| 黄色女人牲交| 中出人妻视频一区二区| 亚洲专区中文字幕在线| 久久久国产成人免费| 激情视频va一区二区三区| 啪啪无遮挡十八禁网站| 少妇猛男粗大的猛烈进出视频| 99国产精品免费福利视频| 国产精品永久免费网站| 美女午夜性视频免费| 亚洲成国产人片在线观看| 国产在线一区二区三区精| 一级作爱视频免费观看| 建设人人有责人人尽责人人享有的| 亚洲一码二码三码区别大吗| 亚洲中文日韩欧美视频| 国产精品久久久av美女十八| 日日摸夜夜添夜夜添小说| 精品一区二区三区av网在线观看| www.自偷自拍.com| 99国产精品一区二区蜜桃av | 国产蜜桃级精品一区二区三区 | 午夜91福利影院| 欧美午夜高清在线| 十分钟在线观看高清视频www| 久久国产精品影院| av有码第一页| 久久人人爽av亚洲精品天堂| av欧美777| 久久这里只有精品19| 久9热在线精品视频| 国产精品久久久久成人av| 色94色欧美一区二区| 国产1区2区3区精品| 亚洲av美国av| 午夜久久久在线观看| 极品少妇高潮喷水抽搐| www.999成人在线观看| 国产精品av久久久久免费| 91大片在线观看| tube8黄色片| 欧美精品一区二区免费开放| 91九色精品人成在线观看| 亚洲精品美女久久av网站| 丁香六月欧美| 露出奶头的视频| 久久精品亚洲精品国产色婷小说| 国产精品.久久久| svipshipincom国产片| 国产日韩欧美亚洲二区| tocl精华| 久热爱精品视频在线9| 99国产精品一区二区蜜桃av | 美女高潮喷水抽搐中文字幕| 人妻丰满熟妇av一区二区三区 | 亚洲精品乱久久久久久| 欧美av亚洲av综合av国产av| 欧美成人免费av一区二区三区 | 如日韩欧美国产精品一区二区三区| 久久香蕉精品热| 18在线观看网站| 国产视频一区二区在线看| 中国美女看黄片| 国产乱人伦免费视频| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 天天操日日干夜夜撸| av不卡在线播放| 少妇裸体淫交视频免费看高清 | 国产精品九九99| 欧美大码av| 宅男免费午夜| 伦理电影免费视频| 在线永久观看黄色视频| 夫妻午夜视频| 国产精品久久久人人做人人爽| 午夜久久久在线观看| 久久精品aⅴ一区二区三区四区| 一级片'在线观看视频| 丁香欧美五月| 国产精品亚洲av一区麻豆| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 日本五十路高清| 日本撒尿小便嘘嘘汇集6| 国产在线一区二区三区精| 老司机午夜十八禁免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利视频在线观看免费| 可以免费在线观看a视频的电影网站| 亚洲美女黄片视频| 国产区一区二久久| 国产又爽黄色视频| 校园春色视频在线观看| 一a级毛片在线观看| 国产激情久久老熟女| 老汉色av国产亚洲站长工具| 欧美日韩瑟瑟在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产一区二区三区四区第35| 脱女人内裤的视频| 亚洲av熟女| 超碰97精品在线观看| 18禁裸乳无遮挡动漫免费视频| 18禁国产床啪视频网站| 国产亚洲精品一区二区www | 99久久人妻综合| 在线播放国产精品三级| 日韩视频一区二区在线观看| 亚洲欧美激情在线| e午夜精品久久久久久久| 1024香蕉在线观看| 亚洲一区二区三区不卡视频| 免费观看人在逋| 欧美日韩av久久| 狠狠婷婷综合久久久久久88av| 久久人妻熟女aⅴ| 丝袜美足系列| 大香蕉久久网| 国产成人免费无遮挡视频| 国产91精品成人一区二区三区| 国产精品 欧美亚洲| 精品国产美女av久久久久小说| 久久人妻av系列| 男女床上黄色一级片免费看| 日日夜夜操网爽| 人人妻人人澡人人爽人人夜夜| 天天躁日日躁夜夜躁夜夜| 少妇裸体淫交视频免费看高清 | 国产成人精品在线电影| 好看av亚洲va欧美ⅴa在| 国产成人精品久久二区二区91| 一二三四在线观看免费中文在| 亚洲av欧美aⅴ国产| 黄网站色视频无遮挡免费观看| 午夜福利在线观看吧| 亚洲欧美日韩另类电影网站| 欧美乱妇无乱码| 巨乳人妻的诱惑在线观看| 99精品在免费线老司机午夜| 日韩人妻精品一区2区三区| 人人妻,人人澡人人爽秒播| 久久国产精品人妻蜜桃| 狠狠狠狠99中文字幕| 999久久久国产精品视频| 男女高潮啪啪啪动态图| 国产av精品麻豆| 国产99白浆流出| 欧美日韩亚洲国产一区二区在线观看 | 男女下面插进去视频免费观看| 精品电影一区二区在线| 国内久久婷婷六月综合欲色啪| 天天添夜夜摸| 欧美日韩黄片免| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩福利视频一区二区| 日韩欧美一区视频在线观看| 咕卡用的链子| 成人手机av| 国产淫语在线视频| 色播在线永久视频| 国产色视频综合| 日韩精品免费视频一区二区三区| 在线国产一区二区在线| 国产精品成人在线| 久久精品熟女亚洲av麻豆精品| 亚洲中文日韩欧美视频| 在线观看免费日韩欧美大片| 午夜福利欧美成人| 亚洲国产欧美网| 高清毛片免费观看视频网站 | 中文字幕人妻丝袜一区二区| 老熟妇乱子伦视频在线观看| 制服诱惑二区| videos熟女内射| 多毛熟女@视频| 99国产精品99久久久久| 成人免费观看视频高清| 无限看片的www在线观看| 久久精品成人免费网站| 国产精品综合久久久久久久免费 | 在线观看舔阴道视频| 满18在线观看网站| 国产亚洲av高清不卡| 中文字幕人妻熟女乱码| 国产成人系列免费观看| 搡老乐熟女国产|