,,,
許多細菌能產(chǎn)生一種或多種溶血素(hemolysin)[1]。以往認為細菌溶血素溶解紅細胞與否可作為細菌表型鑒定指標,但對其致病作用所知甚少。近年研究發(fā)現(xiàn)細菌溶血素還能損傷甚至致死多種有核細胞和血小板,如單核細胞、粒細胞、肥大細胞、成纖維細胞、心肌細胞和內(nèi)皮細胞等,故又稱為細胞溶素(cytolysin),從而參與細菌致病過程中發(fā)揮了重要作用。本文就細菌溶血素分類及其功能、膜損傷和致病機制等方面進行綜述。
早年細菌溶血素多根據(jù)抗原性差異分類。例如,金黃色葡萄球菌溶血素因抗原性不同分為α、β、γ、δ、ε 5型,其中以α-溶血素致病作用最強。近年發(fā)現(xiàn)細菌溶血素還可損傷或溶解其它細胞,故溶血素通常以菌名加溶素(-lysin)命名。例如,鏈球菌溶素O(Streptolysin O, SLO)、李斯特菌溶素O(Listeriolysin O, LLO)、肺炎鏈球菌溶素(Pneumolysin, PLY)、產(chǎn)氣莢膜梭菌溶素O(perfringolysin O,PFO)等。根據(jù)分子結構、結合細胞方式、膜孔道形成機制和靶細胞反應的不同,可將細菌溶血素分為重復子毒素家族(repeats in toxin family,RTX)、膽固醇依賴細胞溶素家族(cholesterol-dependent cytolysin family,CDC),但金黃色葡萄球菌α-溶血素既不屬于RTX,也不屬于CDC。
1.1RTX家族目前其成員超過1 000種,多由革蘭陰性菌產(chǎn)生[2]。PTX結構獨特,其肽鏈C端結構域中有數(shù)量不等、富含甘氨酸且包含天冬氨酸的9肽重復序列,即G-G-X-G-(N/D)-D-X-(L/I/F)-X,該家族也由此命名[3]。RTX與Ca2+結合后才表現(xiàn)出毒性,9肽重復序列為Ca2+結合區(qū),此結合過程在菌體外完成,然后才能與細胞受體結合并發(fā)揮毒性作用。
RTX可插入靶細胞膜中形成分子量100~200 kDa的多聚體通道,使胞內(nèi)物外溢并引發(fā)溶血或溶細胞效應[2-4]。大腸埃希菌α溶血素HlyA是RTX家族典型代表,其分子量107 kDa,有13個RTX重復序列,合成后HlyA無活性,在?;D移酶HlyC作用下,HlyA中兩個賴氨酸脂肪?;?,成為成熟分子并獲得膜孔道形成活性[5]。RTX家族其它成員有30%~75%序列與大腸埃希菌HlyA相同,其成熟和活化也依賴于氨基酸?;揎梉4-5]。
RTX通過細菌I型分泌系統(tǒng)(type 1 secretion system,T1SS)分泌,T1SS由位于內(nèi)膜的ATP結合裝置(ABC)、位于周漿間隙的膜蛋白復合物形成蛋白(MFP)和一個跨越外膜的外膜蛋白(OMP)組成,由rtx-操縱子基因編碼[6]。RTX的C端有輸出信號結構域(domain),可與T1SS結合后轉運至胞外[3, 6]。
目前發(fā)現(xiàn),細菌接觸細胞后RTX才發(fā)揮毒性作用[7]。例如,大腸埃希菌HlyA對靶細胞攻膜過程如下:①靜電力敏感可逆吸附和不可逆插入:迄今未發(fā)現(xiàn)HlyA受體,插入能力與分子變構有關,不依賴膽固醇;②跨膜通道形成:HlyA單分子插入膜中,然后在膜內(nèi)形成同源低聚體,1~3個HlyA即可形成跨膜孔道[5, 7]。靶細胞膜上RTX積聚及持續(xù)作用可導致細胞凋亡[7]。
1.2CDC家族CDC通過靶細胞膜上膽固醇發(fā)揮作用,多由革蘭陽性菌產(chǎn)生[8-9]。常見的CDC有鏈球菌溶素SLO、李斯特菌溶素LLO、肺炎球菌溶素PLY和產(chǎn)氣莢膜梭菌溶素PFO[9]。
CDC可在靶細胞膜上形成大型跨膜孔道,其過程如下:①CDC單體被靶細胞表面膽固醇受體識別并結合;②30~50個單體分子聚合后形成環(huán)狀孔道前體復合物;③復合物變構后插入細胞膜中形成大型β-桶狀跨膜孔道[8]。例如,SLO與靶細胞膜膽固醇受體結合后,單體分子發(fā)生寡聚化,形成環(huán)狀前孔結構(pre-pore structure),繼而變構插入細胞膜中形成大型跨膜兩親性桶狀孔道[10]。目前發(fā)現(xiàn)SLO形成的孔道最大,其直徑30~35 nm,可使細菌毒力因子進入細胞或細胞蛋白外溢。此外,CDC還可誘導炎癥反應[11]。
1.3其它金黃色葡萄球菌α-溶血素Hla不屬于RTX和CDC家族成員。Hla由292個氨基酸組成,可損傷紅細胞和血小板,引起小血管平滑肌收縮甚至痙攣,導致局部缺血壞死,也可引起單核細胞、淋巴細胞、血管內(nèi)皮細胞損傷。Hla損傷靶細胞膜過程如下:①通過非特異性高親和力受體與膜表面非特異性底物磷脂酰肌醇或膽固醇初步結合于靶細胞膜;②與特異性受體解整合素樣金屬蛋白酶ADAM10結合并集中于小窩蛋白-1(caveolin-1)富集區(qū);③7個單體與細胞膜磷脂分子中強親水性磷酸基團反應后形成七聚體,其下端為14個β-折疊反向平行排列而成的花籃狀穿孔結構;④七聚體轉變?yōu)橥盃罱Y構,形成直徑為l~1.5 nm穿膜孔道;⑤孔道較小但可使ATP和鐵離子等胞內(nèi)小分子物質(zhì)漏出,同時不可逆地改變細胞滲透壓和膜完整性,導致溶血和有核細胞腫脹及死亡,ADAM10與Hla結合后酶活性增強,可裂解E-鈣粘蛋白導致細胞屏障破壞甚至死亡[12-13]。
根據(jù)細菌溶血素對靶細胞的毒性與膜損傷機制不同,可分為膜成孔毒素、酯酶毒素和表面活性毒素。此外,線粒體和溶酶體膜也可成為一些細菌溶血素作用靶點。
2.1膜成孔毒素(pore-forming toxin,PFT)PFTs能在靶細胞膜上形成穿膜孔道,破壞細胞膜結構并使其滲透性增強而導致細胞滲透性溶解。根據(jù)二級結構不同,PFT分為α-PFT和β-PFT,分別形成α-螺旋兩親性跨膜孔道和β-桶狀跨膜結構[8]。例如,金黃色葡萄球菌α-溶血素、P-V殺白細胞素形成直徑小于2.5 nm的跨膜小孔道,CDC家族蛋白則形成直徑30 nm及以上的跨膜β-桶狀大孔道。
不同物種或不同細胞對同一PFT敏感性有差異[14-15]。例如,金黃色葡萄球菌α-溶血素溶解兔紅細胞能力強于羊紅細胞,不能溶解人紅細胞,但能溶解人血小板、血管內(nèi)皮細胞、上皮細胞和白細胞,溶解人淋巴細胞、單核細胞的濃度僅為溶解粒細胞的1/100[14]。此外,ADAM10表達量與細胞對金黃色葡萄球菌α-溶血素敏感性相關,人肺上皮A549細胞ADAM10被敲低后,對金黃色葡萄球菌α-溶血素的抵抗力顯著增強[12]。
2.2酯酶類毒素(lipasic toxin,LPT)LPT水解靶細胞膜磷脂,導致膜損傷甚至細胞裂解。例如,銅綠假單胞菌溶素具有水解卵磷脂的磷脂酶C(phospholipase C,PLC)活性,金黃色葡萄球菌β-溶血素具有PLC和水解鞘磷脂的鞘磷脂酶(sphingomyelinase,SMse)活性[16]。金黃色葡萄球菌β-溶血素為Mg2+依賴單鏈酯酶類毒素,同時具有PLC和SMse活性,水解卵磷脂后產(chǎn)生磷脂?;鶊F和二酰甘油,水解鞘磷脂后可產(chǎn)生神經(jīng)酰胺,損傷細胞膜或?qū)е录毎麧B漏而裂解。
不同物種或不同細胞的細胞膜對同一LPT敏感性有差異[16]。例如,金黃色葡萄球菌β溶血素迅速溶解綿羊紅細胞,但溶解兔紅細胞的速度較慢,可使白細胞和淋巴細胞活力顯著降低但不裂解。
2.3表面活性類毒素(surface active toxin,SAT)SAT是一種兩性分子,但疏水性相對較強,可插入細胞膜引起膜表面張力和滲透壓改變,損傷細胞膜甚至導致細胞裂解。
金黃色或表皮葡萄球菌δ-溶血素是SAT典型代表。δ-溶血素由26個氨基酸組成、同時有疏水和親水性α-螺旋結構,插入細胞膜后可改變表面張力或損傷[17]。葡萄球菌δ-溶血素對脂類物質(zhì)具有天然的親和力,不僅能溶解紅細胞,還能溶解其他哺乳類細胞及其細胞器膜結構[18]。較之細胞膜的有序結構域,葡萄球菌δ溶血素更優(yōu)先結合于無序結構域,低濃度時該溶血素平行吸附于靶細胞膜表面,導致短暫性膜結構改變、膜張力下降、離子外流甚至觸發(fā)膜脂質(zhì)翻轉,高濃度時溶解細胞膜[17-18]。
細菌溶血素不僅可導致細胞膜損傷、細胞活力下降以及細胞溶解或裂解,還可引起細胞凋亡(apoptosis)或細胞壞死性凋亡(necroptosis)。此外,近年發(fā)現(xiàn)一些細菌溶血素能引起強烈的炎癥反應并導致炎癥性損傷[19-20]。
3.1細胞溶解或裂解膜成孔溶血素通過在靶細胞膜上形成穿膜蛋白孔道引起細胞滲透性紅細胞溶解(溶血)以及單核細胞、粒細胞、內(nèi)皮細胞和上皮細胞裂解。
3.2細胞膜損傷和細胞活力下降酯酶類溶血素水解靶細胞膜脂質(zhì)雙層中的磷脂,表面活性類溶血素插入靶細胞膜后引起膜表面張力和滲透壓改變,輕者導致細胞活力下降,重者導致溶血或有核細胞裂解。
3.3膜損傷相關離子失衡與病變?nèi)苎匾鸬募毎p傷可使膜兩側離子從高濃度一側向低濃度一側流動,通常Ca2+和Na+從胞外流入胞內(nèi),K+從胞內(nèi)流出胞外。
3.3.1Ca2+濃度失衡與病變胞內(nèi)游離Ca2+水平升高可激活Ca2+依賴蛋白酶類以及胞內(nèi)信號傳導系統(tǒng),如鈣調(diào)蛋白(CaM)、鈣依賴核酸內(nèi)切酶、鈣依賴磷脂酶A2(PLA2)信號傳導通路。金黃色葡萄球菌α-溶血素和肺炎球菌PLY膜孔道可使Ca2+內(nèi)流,激活鈣依賴核酸內(nèi)切酶和酪氨酸磷酸酶(PTPase),引起IL-2等細胞因子釋放和膜結構異常;大腸埃希菌HlyA膜孔道進入的Ca2+可激活PLA2信號通路,產(chǎn)生花生四烯酸、前列腺素、前列環(huán)素和白三烯,引起組織和器官功能紊亂、血管滲透性增加和脂質(zhì)性炎癥反應[21-23]。
3.3.2K+濃度失衡與病變金黃色葡萄球菌α-溶血素膜孔道使K+外流,氣道上皮細胞去極化并激活p38MAPK信號通路,導致細胞活力下降并引起炎癥反應和氣道重塑,K+損耗還引起單核細胞白細胞介素轉換酶(Interleukin converting enzyme,ICE)的激活,促進成熟IL-1β釋放;T淋巴細胞K+泄漏可導致細胞凋亡[23]。
3.4細胞凋亡壞死(necrosis)是細胞所有大分子物質(zhì)的降解,主要依賴于溶酶體破裂后釋放的酶類[22]。凋亡是細胞程序性死亡,為DNA在內(nèi)源性核酸內(nèi)切酶作用下被裂解。根據(jù)作用機制不同,細胞凋亡可分為caspase依賴和caspase非依賴兩條途徑[25]。
3.4.1caspase依賴細胞凋亡主要有膜死亡受體/配體Fas/FasL-caspase-8/3途徑和線粒體相關CytC-caspase-9/3途徑[26]。創(chuàng)傷弧菌細胞溶素(Vibriovulnificuscytolysin,VVC)可入胞作用于線粒體引起膜損傷,導致細胞色素C(CytC)釋放,通過CytC-caspase-9/3途徑引起血管內(nèi)皮細胞、肺上皮細胞和肝細胞凋亡[27]。創(chuàng)傷弧菌VVC還能與靶細胞膜膽固醇結合,激活Fas/FasL-caspase-8/3途徑誘導內(nèi)皮細胞和上皮細胞凋亡[28]。腸出血性大腸埃希菌溶血素(EnterohemorrhagicEscherichiacolihemolysin)以外膜囊泡方式入胞并靶向線粒體,經(jīng)CytC-caspase-9/3途徑引起內(nèi)皮細胞和上皮細胞凋亡[29]。金黃色葡萄球菌β-溶血素具有SMse活性,水解靶鞘磷脂產(chǎn)生神經(jīng)酰胺,通過CER-caspase-3途徑引起細胞凋亡[16, 30]。
3.4.2caspase非依賴細胞凋亡近年發(fā)現(xiàn)巨噬細胞吞噬病原微生物過程中產(chǎn)生的高水平活性氧簇(reactive oxygen species,ROS)可通過p53激活Bcl-2家族Puma和Noxa,抑制抗凋亡Bcl-2并使促凋亡Bax去抑制,使線粒體釋放凋亡誘導因子(apoptosis-inducing factor,AIF)和核酸內(nèi)切酶G(endonuclease G,EndoG),引發(fā)caspase非依賴細胞凋亡[31]。金黃色葡萄球菌α-溶血素可引起使單核細胞ROS介導caspase非依賴細胞凋亡[32-33]。
3.5細胞壞死性凋亡細菌感染宿主后產(chǎn)生的腫瘤壞死因子-α(TNF-α)可激活炎癥相關細胞程序性死亡[34],稱為壞死性凋亡,其關鍵環(huán)節(jié)是蛋白激酶RIPK-1/-3激活,但上下游信號通路尚不清楚[35]。一些細菌PFT可引起肺組織細胞壞死性凋亡,其主要機制是離子外流和氧化暴發(fā)(oxidation burst)激活RIPK-1/-3所致[36]。
3.6炎癥反應病原微生物感染后機體通常產(chǎn)生炎癥反應,可引起組織或細胞炎癥性損傷或死亡。近年發(fā)現(xiàn),不少細菌溶血素可通過Toll樣受體(Toll-like receptors,TLRs)和Nod樣受體(Nod-like receptors,NLRs)引發(fā)強烈的炎癥反應。迄今所知哺乳類細胞有4種模式識別受體:TLRs、NLRs、凝集素樣受體(CLRs)和解旋酶樣受體(RLRs),其中TLRs和NLRs識別病原微生物及其組分并介導感染性炎癥反應[37]。
3.6.1TLRs介導的炎癥反應與配體結合后經(jīng)MyD88或TRIF途徑激活NF-κB、p38MAPK和JNK信號通路上調(diào)多種致炎細胞因子表達。近年發(fā)現(xiàn),TLR2識別霍亂弧菌溶血素,TLR4識別產(chǎn)氣莢膜梭菌PFO、鏈球菌SLO和炭疽桿菌炭疽溶素O(anthrolysin O,ALO),TLR2和TLR4識別肺炎鏈球菌PLY、李斯特菌LLO和問號鉤端螺旋體溶血素,通過上述信號通路上調(diào)多種致炎細胞因子表達[38-40]。問號鉤端螺旋體溶血素Sph2、HlpA和TlyA誘生IL-1β或TNF-α的活性甚至與大腸埃希菌LPS相當[40]。此外,溶血后釋放的亞鐵血紅素可被TLR4識別,激活上述信號通路引發(fā)炎癥反應[41]。此外,金黃色葡萄球菌α-溶血素經(jīng)NF-κB信號通路促進巨噬細胞表達IL-8,引起中性粒細胞浸潤為主的化膿性炎癥[42]。
3.6.2NLRs介導的炎癥反應NLRs位于胞漿,分為NLRP1~NLRP5,其中NLRP3可與接頭蛋白ASC和半胱天冬蛋白酶-1(caspase-1)組成炎癥小體(inflammasome)[43]。NLRP3炎癥小體調(diào)控IL-1β、IL-18、IL-33和高遷移率族蛋白-1(High mobility group box 1,HMGB-1)表達,IL-1β和HMGB-1可經(jīng)自分泌和旁分泌途徑分別與IL-1β受體(IL-1βR)和TLR2/4結合,激活NF-κB、p38MAPK和JNK信號通路放大炎癥反應[43-45]。NLRP3炎癥小體激活機制如下:①ROS途徑:激活能力最強,細胞吞噬病原體時細胞骨架重排、細胞膜損傷激活的NADP/NADPH氧化酶系統(tǒng)以及線粒體膜損傷所致電子漏均可產(chǎn)生大量ROS;②溶酶體途徑:吞噬泡與溶酶體融合或溶酶體膜損傷時均可釋放組織蛋白酶B(cathepsin B)激活NLRP3炎癥小體;③半通道途徑:P2X7離子通道激活后釋放的ATP等可誘導跨膜縫隙連接蛋白-1(pannexin-1,Panx1)六聚體開放孔道,亞鐵血紅素等NLRP3配體分子經(jīng)該孔道入胞激活NLRP3炎癥小體[43-44]。細菌溶血素所致膜損傷引起ROS升高和組織蛋白酶B釋放、溶血產(chǎn)生的亞鐵血紅素,均可激活NLRP3炎癥小體[44, 46]。金黃色葡萄球菌α-溶血素可激活NLRP3炎癥小體,導致特征性IL-18和HMGB-1表達和分泌[32-33]。金黃色葡萄球菌α-溶血素和P-V殺白細胞素、腸出血性大腸埃希菌溶血素和李斯特菌溶素LLO雖可經(jīng)TLR2/4引起炎癥反應,但激活NLRP3炎癥小體是引起炎癥反應的主要機制[33, 47-49]。此外,TLR4-NF-κB信號通路可上調(diào)巨噬細胞NLRP3表達[50]。
3.6.3離子流與炎癥相關性金黃色葡萄球菌α-溶血素和P-V殺白細胞素均引起的靶細胞K+外流可促進IL-1β分泌[47, 51],該α-溶血素相關K+外流還可激活p38MAP和NF-κB,上調(diào)IL-8合成與分泌[52]。此外,胞內(nèi)K+減少可導致caspase-1激活,剪切IL-18前體使之成熟并促使其分泌或激活ICE促進IL-1β外分泌[23, 53]。細菌溶血素膜損傷引起的Ca2+內(nèi)流可激活PLA2信號通路產(chǎn)生脂質(zhì)性炎癥介質(zhì),另可通過細胞呼吸暴發(fā)(respiratory burst)和線粒體產(chǎn)生大量ROS激活NLRP3炎癥小體[21-23, 54]。
細菌溶血素可通過細胞膜損傷、細胞溶解或裂解、離子失衡相關病變、細胞凋亡、炎癥反應等參與細菌致病過程。然而,大腸埃希菌α-溶血素、傷寒沙門菌E-溶血素(HlyE)和乙型鏈球菌β-溶血素還能作用血管內(nèi)皮細胞和血小板,使毛細血管滲透性增高和凝血障礙而引起出血,其中傷寒沙門菌還可感受宿主應激性激素釋放HlyE[5, 55],但機制不明。近年發(fā)現(xiàn),細菌LPS經(jīng)caspase-1激活小鼠caspase-11或人caspase-4/5相關非經(jīng)典炎癥小體(non-canonical inflammasome),剪切gasdermin家族中gasdermin-D成為有活性的gasdermin D-NT,從細胞膜內(nèi)側形成膜孔道,引起炎癥性程序性死亡,稱為細胞焦亡(pyroptosis)[56-58]。因此,同樣具有激活caspase-1和膜成孔毒性的細菌溶血素能否激活非經(jīng)典炎癥小體并誘導細胞焦亡值得研究。
參考文獻:
對于紫斑病的防治可以通過在發(fā)病初期噴75%百菌清可濕性粉劑600倍液、70%代森錳鋅可濕性粉劑500倍液、50%撲海因可濕性粉劑1500倍液、40%的大富丹可濕性粉劑500倍液等藥劑的輪換使用,每隔一周以上時間噴施一次。連續(xù)噴施4次即可。
[1] Yan J. Medical microbiology [M]. Third Edition, Beijing: The High Education Press, 2016, 43-49. (in Chinese)
嚴杰. 醫(yī)學微生物學 [M]. 3版,北京:高等教育出版社,2016, 44-46.
[2] Linhartová I, Bumba L, Masín J, et al. RTX proteins: a highly diverse family secreted by a common mechanism[J]. Fems Microbiol Rev, 2010, 34(6): 1076-1112. DOI:10.1111/j.1574-6976.2010.00231.x
[3] Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity[J]. Biochim Biophys Acta, 2016, 1858(3): 526-537. DOI: 10.1016/j.bbamem.2015.10.025
[4] Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins[J]. Annu Rev Microbiol, 2011, 65(1): 71-90. DOI: 10.1146/annurev-micro-090110-102943
[5] Wiles TJ, Mulvey MA. The RTX pore-forming toxin α-hemolysin of uropathogenicEscherichiacoli: progress and perspectives[J]. Future Microbiol, 2013, 8(1): 73-84. DOI: 10.2217/fmb.12.131
[6] Thomas S, Holland IB, Schmitt L. The type 1 secretion pathway — the hemolysin system and beyond[J]. Biochim Biophys Acta, 2014, 1843(8): 1629-1641. DOI: 10.1016/j.bbamcr.2013.09.017
[7] Kim YR, Lee SE, Kook H, et al.VibriovulnificusRTX toxin kills host cells only after contact of the bacteria with host cells[J]. Cell Microbiol, 2008, 10(4): 848-862. DOI: 10.1111/j.1462-5822.2007.01088.x
[8] Cyril FR, James CW, Michelle AD. Giant MACPF/CDC pore forming toxins: A class of their own[J]. Biochim Biophys Acta, 2016, 1858(3): 475-486. DOI: org/10.1016/j.bbamem.2015.11.017
[9] Hotze EM, Le HM, Sieber JR, et al. Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria[J]. Infect Immun, 2013, 81(1): 216-225. DOI: 10.1128/IAI.00927-12
[10] Gonzalez MR, Bischofberger M, Pernot L, et al. Bacterial pore forming toxins: the (w)hole story?[J]. Cell Mol Life Sci, 2008, 6(3): 493-507. DOI: 10.1007/s00018-007-7434-y
[11] Cassidy SK, O’Riordan MX. More than a pore: the cellular response to cholesterol dependent cytolysins[J]. Toxins, 2013, 5(4): 618-636. DOI: 10.3390/toxins5040618
[12] Wilke GA, Bubeck-Wardenburg J. Role of a disintegrin and metalloprotease 10 inStaphylococcusaureusalpha-hemolysin-mediated cellular injury[J]. Proc Natl Acad Sci USA, 2010, 107(30): 13473-13478. DOI: 10.1073/pnas.1001815107
[13] Inoshima I, Inoshima N, Wilke GA, et a1. AStaphylococcusaureuspore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice[J]. Nat Med, 2011, 17(10):1310-1314. DOI: 10.1038/nm.2451
[14] Berube B, Wardenburg J.Staphylococcusaureus-toxin: nearly a century of intrigue[J]. Toxins, 2013, 5(6): 1140-1166. DOI: 10.1038/nm.2451
[15] Loffler B, Hussain M, Grundmeier M, et al.Staphylococcusaureuspanton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils[J]. PLoS Pathog, 2010, 6(1): e1000715-1000726. DOI: 10.1371/journal.ppat.1000715
[16] Alfa H, Bao GV, Christopher SS, et al.Staphylococcusaureusβ-toxin mutants are defective in biofilm ligase and sphingomyelinase activity, and causation of infective endocarditis / sepsis[J]. Biochemistry, 2016, 55(17): 2510-2517. DOI: 10.1021/acs.biochem.6b00083
[17] Julien V, Nicolas G, Christian L, et al. δ-hemolysin, an update on a membrane-interacting peptide [J]. Peptides, 2009, 30(4): 817-823. DOI: 10.1016/j.peptides.2008.12.017
[18] Cheung GY, Duong AC, Otto M. Direct and synergistic hemolysis caused byStaphylococcusphenol-soluble modulins: implications for diagnosis and pathogenesis[J]. Microbes Infect, 2012, 14(4): 380-386. DOI: 10.1016/j.micinf.2011.11.013
[19] Wang H, Peng S, Chen DF. Research progress on the virulence factors ofStreptococcushemolysinS[J]. Chin J Zoonoses, 2017, 33(3): 287-292. DOI:10.3969/j.issn.1002-2694.018.2017.03 (in Chinese)
王虹, 彭爽, 陳德芳. 鏈球菌毒力因子溶血素S的研究進展[J]. 中國人獸共患病學報, 2017,33(3): 287-292.
[20] Luo XN, Cao XY, Cai XP. Research progress on mononuclear cell hyperplasia listeria hemolysin[J]. Chin J Zoonoses, 2009,25 (09): 895-898. DOI: 10.5297/ser.1201.002 (in Chinese)
駱學農(nóng), 曹曉瑜, 才學鵬. 單核細胞增生李斯特菌溶血素的研究進展[J]. 中國人獸共患病學報, 2009,25 (09): 895-898.
[21] Inoshima I, Inoshima N, Wilke GA, et al AStaphylococcusaureuspore-forming toxin subverts the activity of ADAM10 to cause lethal infection in mice[J]. Nat Med, 2011, 17(10): 1310-1314. DOI: 10.1038/nm.2451
[22] Los FC, Randis TM, Aroian RV, et al. Role of pore-forming toxins in bacterial infectious diseases[J]. Microbiol Mol Biol Rev, 2013, 77(2): 173-207. DOI: 10.1128/MMBR.00052-12
[23] Eiffler I, Behnke J, Ziesemer S, et al.Staphylococcusaureus-toxin-mediated cation entry depolarizes membrane potential and activates p38 MAP kinase in airway epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(3): L676-685. DOI: 10.1152/ajplung.00090.2016
[24] Bleriot C, Lecuit M. The interplay between regulated necrosis and bacterial infection[J]. Cell Mol Life Sci, 2016, 73(11/12): 2369-2378. DOI: 10.1007/s00018-016-2206-1
[25] Wei YB, Fan TJ, Yu MM. Inhibitor of apoptosis proteins and apoptosis[J]. Acta Biochim Biophys Sin, 2008, 40(4): 278-288. DOI: 10.1111/j.1745-7270.2008.00407.x
[26] Zhang X, Vallabhaneni R, Loughran P A, et al. Changes in FADD levels, distribution, and phosphorylation in TNF-alpha induced apoptosis in hepatocytes is caspase-3, caspase-8 and BID dependent[J]. J Apoptosis, 2008, 13(8): 983-992. DOI: 10.1016/j.neuroimage.2006.07.002
[27] Zhao JF, Sun AH, Ruan P, et al.Vibriovulnificuscytolysin induces apoptosis in HUVEC, SGC-7901 and SMMC-7721 cells via caspase-9/3-dependent pathway[J]. Microbial Pathogenesis, 2009, 46(4): 194-200. DOI: 10.1016/j.micpath.2008.12.005
[28] Yu HN, Lee YR, Park KH, et al. Membrane cholesterol is required for activity ofVibriovulnificuscytolysin[J]. Arch Microbiol, 2007, 187(6): 467-473. DOI: 10.1007%2Fs00203-007-0214-0
[29] Bielaszewska M, Rüter C, Kunsmann L, et al. EnterohemorrhagicEscherichiacolihemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis[J]. PLoS Pathog, 2013, 9(12): e1003797-1003826. DOI: 10.1371/journal.ppat.1003797
[30] Mao C, Obeid LM. Ceramidasas: regulators of cellular responses mediated by ceramide, sphingosine and sphingosine-1-phosphate[J]. Biochim Biophys Acta, 2008, 1781(9): 424-434. DOI: 10.1016/j.bbalip.2008.06.002
[31] Hu WL, Ge YM, Ojcius DM, et al. p53-signaling controls cell cycle arrest and caspase-independent apoptosis in macrophages infected with pathogenicLeptospiraspecies[J]. Cell Microbiol, 2013, 15(10): 1624-1659. DOI: 10.1111/cmi.12141
[32] Craven RR, Gao X, Allen IC, et al.Staphylococcusaureusalpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells[J]. PLoS One, 2009, 4(10): e7446-7456. DOI: 10.1371/journal.pone.0007446
[33] Kebaier C, Chamberland RR, Allen IC, et al.Staphylococcusaureusα-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome[J]. J Infect Dis, 2012, 205(5): 807-817. DOI: 10.1093/infdis/jir846
[34] Liu TT,Liu CS,Guan JC,et al. Apoptosis mechanism of human umbilical vein endothelial cells induced byStaphylococcusaureusa-hemolysin[J]. Chin J Zoonoses, 2010, 26(06): 569-571.DOI:10.3969/j.issn.1002-2694.2010.06.015 (in Chinese)
劉婷婷, 劉從森, 管俊昌,等. 金黃色葡萄球菌α溶血素誘導臍靜脈內(nèi)皮細胞凋亡機制的研究[J].中國人獸共患病學報, 2010, 26(06): 569-571.
[35] Vince JE, Silke J. The intersection of cell death and inflammasome activation[J]. Cell Mol Life Sci, 2016, 73(11-12): 2349-2367. DOI: 10.1007/s00018-016-2205-2
[36] Gonzalez-Juarbe N, Gilley RP, Hinojosa CA, et al. Pore-forming toxins induce macrophage necroptosis during acute bacterial pneumonia[J]. PLoS Pathog, 2015, 11(12): e1005337-1005359. DOI: 10.1371/journal.ppat.1005337
[37] Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6): 805-820. DOI: 10.1016/j.cell.2010.01.022
[38] Dessing MC, Hirst RA, de Vos AF, et al. Role of Toll-like receptors 2 and 4 in pulmonary inflammation and injury induced by pneumolysin in mice[J]. PLoS One, 2009, 4(11): e7993-7998. DOI: 10.1371/journal.pone.0007993
[39] Hunt S, Green J, Artymiuk PJ. Hemolysin E (HlyE, ClyA, SheA) and related toxins[J]. Adv Exp Med Boil, 2010, 677(1): 116-126. DOI: 10.1007/978-1-4419-6327-7
[40] Wang H, Wu YF, Ojcius, DM, et al. Leptospiral hemolysins induce proinflammatory cytokines through Toll-like receptor 2-and 4-mediated JNK and NF-κB signaling pathways[J]. PLoS One, 2012, 7(8): e42266-42280. DOI: 10.1371/journal.pone.0042266
[41] Figueiredo RT, Fernandez PL, Mourao-Sa DS, et al. Characterization of heme as activator of Toll-like receptor 4[J]. J Biol Chem, 2007, 282(28): 20221-20229. DOI: 10.1074/jbc.M610737200
[42] Parimon TL, Li Z, Bolz DD, et al.Staphylococcusaureusα-hemolysin promotes platelet-neutrophil aggregate formation[J]. J Infect Dis, 2013, 208(5): 761-770. DOI: 10.1093/infdis/jit235
[43] Schroder K, Tschopp J. The inflammasomes[J]. Cell, 2010, 140(6): 821-832. DOI: 10.1016/j.cell.2010.01.040
[44] Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes[J]. Nat Rev Immunol, 2013, 13(6): 397-411. DOI: 10.1038/nri3452
[45] Lu B, Nakamura T, Inouye K, et al. Novel role of PKR in inflammasome activation and HMGB1 release[J]. Nature, 2012, 488(7413): 670-674. DOI: 10.1038/nature11290
[46] Dutra FF, Alves LS, Rodrigues D, et al. Hemolysis-induced lethality involves inflammasome activation by heme[J]. Proc Natl Acad Sci U S A, 2014, 111(39): 4110-4118. DOI: 10.1073/pnas.1405023111
[47] Holzinger D, Gieldon L, Mysore V. et al.StaphylococcusaureusPanton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome[J]. J Leukoc Biol, 2012, 92(5): 1069-1081. DOI: 10.1189/jlb.0112014
[48] Zhang X, Cheng Y, Xiong Y, et al. EnterohemorrhagicEscherichiacolispecific enterohemolysin induced IL-1β in human macrophages and EHEC-induced IL-1β required activation of NLRP3 inflammasome[J]. PLoS One, 2012, 7(11): e50288-50296. DOI: 10.1371/journal.pone.0050288
[49] Meixenberger K, Pache F, Eitel J, et al.Listeriamonocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3[J]. J Immunol, 2010, 184(2): 922-930. DOI: 10.4049/jimmunol.0901346
[50] Qiao Y, Wang P, Qi J, et al. TLR-induced NF-κB activation regulates NLRP3 expression in murine macrophages[J]. FEBS Lett, 2012, 586(7): 1022-1026. DOI: 10.1016/j.febslet.2012.02.045
[51] Spaan AN, Vrieling M, Wallet P, et al. The staphylococcal toxins-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors[J]. Nat Commun, 2014, 5(11): 5438-5468. DOI: 10.1038/ncomms6438
[52] Kloft N, Busch T, Neukirch C, et al. Pore-forming toxins activate MAPK p38 by causing loss of cellular Potassium[J]. Biochembiophys Res Commun, 2009, 385(4): 503-506. DOI: 10.1016/j.bbrc.2009.05.121
[53] Brodsky IE, Monack D, NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens[J]. Semin Immunol, 2009, 21(4): 199-207. DOI: 10.1016/j.smim.2009.05.007
[54] Nunes P, Demaurex N. The role of calcium signaling in phagocytosis[J]. J Leukoc Biol, 2010, 88(1): 57-68. DOI: 10.1189/jlb.0110028
[55] Karavolos MH, Bulmer DM, Spencer H, et al.Salmonellatyphisense host neuroendocrine stress hormones and release the toxin hemolysin E[J]. EMBO Rep, 2011, 12: 252-258. DOI: 10.1038/embor.2011.4
[56] Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371): 117-121. DOI: 10.1038/nature10558
[57] Vigano E, Diamond CE, Spreafico R, et al. Human caspase-4 and caspase-5 regulate the one-step non-canonical inflammasome activation in monocytes[J]. Nat Commun, 2015, 6(10): 8761-8773. DOI: 10.1038/ncomms9761
[58] Liu X, Zhang ZB, Lieberman J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores[J]. Nature, 2016, 535(7610): 153-158. DOI: 10.1038/nature18629